Sepulveda Dam

Akash Caveney, Sophia Hoang, Jordin Morley, Lisa Mouren-Laurens, Skyler Stonesifer, & Sam Wellsfry

Introduction

Importance of Studying CSS

- Massive decline due to
 - agriculture, residential development, air pollution
- Recognition of habitat loss for protected species sparked numerous restoration efforts
- Sepulveda Wildlife Basin: North Reserve and Bull Creek

Hypotheses

Hypotheses

 H_1 : We expect that there is a significant difference in the CSS in Sepulveda Dam when looking at North Reserve versus Bull Creek within the same season.

 ${\it H_0}$: We expect that there is not a significant difference in the CSS in Sepulveda Dam when looking at North Reserve versus Bull Creek within the same season

 H_1 : We expect that there is a significant difference in the CSS in Sepulveda Dam when looking at the North Reserve between Fall and Spring seasons.

 H_0 : We expect that there is not a significant difference in the CSS in Sepulveda Dam when looking at the North Reserve between Fall and Spring seasons.

 H_1 : We expect that there is a significant difference in the CSS in Sepulveda Dam when looking at Bull Creek between Fall and Spring seasons.

 H_0 : We expect that there is not a significant difference in the CSS in Sepulveda Dam when looking at Bull Creek between Fall and Spring seasons.

Data and Methods

- Eight 20-meter transects at Bull Creek and the North Reserve
- Ninety-degree angles to the trails and the bunny trails

Mystery Grass 1: Identified as *Stipa cernua*

Image of our transect line and dead brush at North Reserve

- Our main shortcoming was encountering multiple "mystery species"
 - samples and pictures of each to wait to identify them back at the lab, which could lead to human error
- Chi squared analysis for our data analysis
 - Bull Creek in Fall 2018 and Spring 2019: Amsinckia intermedia, Sisymbrium altissimum, bare dirt, and Hordeum murinum.
 - North Reserve in Fall 2014/2016 and Spring 2019 Baccharis pilularis, bare dirt, Hirschfeldia incana, and Baccharis salicifolia.
 - Bull Creek and the North Reserve in Spring 2019 we used the variables A. intermedia, H. incana, S. altissimum, and E. cicutarium.
- Exploratory nature of this study, warrants an alpha level of 0.10 as the standard for rejecting the null hypothesis.

Variables for Bull Creek (Spring v Fall)

Amsinckia intermedia © 2014 Vertin Alvarez

Hordeum murinum © 2010 Michael O'Brien

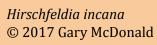
Sisymbrium altissimum © 2010 Jean Pawek

Variables for the North Reserve (Spring v Fall)

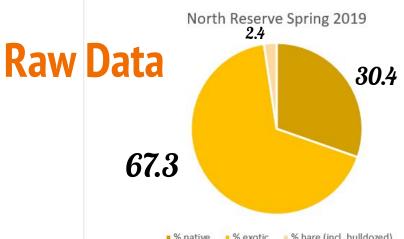
Baccharis pilularis
© 2019 Acacia Garden Solutions

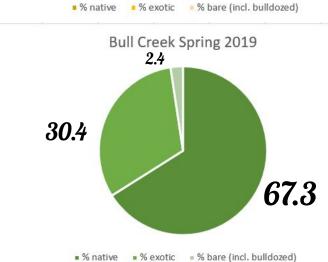
Hirschfeldia incana
© 2017 Gary McDonald

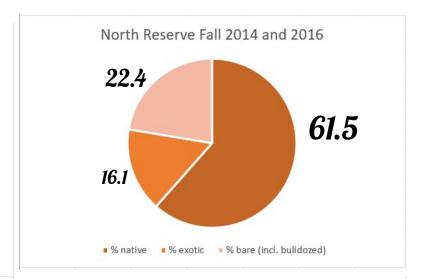
Baccharis salicifolia © 2009 Neal Kramer

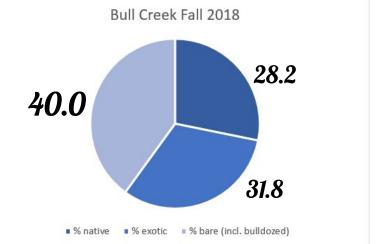

Variables for Sepulveda Dam (same season)

Sisymbrium altissimum ©2010 Jean Pawek




Erodium cicutarium
© 2008 Steve Matson





Amsinckia intermedia
© 2014 Vertin Alvarez

Results of Hypothesis 1

Bull Creek Spring 2019 vs. North Reserve Spring 2019

8	VAR 1	VAR 2		*
ē i		a	b	
A. intermedia	Obs	49	0	49
	Exp	30.032	18.968	
		С	d	
H. incana	Obs	13	44	57
	Exp	34.935	22.065	
		е	f	
S. altissimum	Obs	47	14	61
	Ехр	37.387	23.613	
	238	g	h	
E. cicutarium	Obs	5	14	19
	Exp	11.645	7.355	
	*	114	72	186

ij	X ² calc	82.709
	alpha	0.10
	df	3
	X ² crit	6.251
	prob	0.000
-	k (min r or c)	2
effect size me	easure) Cramér's V	0.667
(effect siz	ze measure) φc or w	0.667
	Noncentrality (λ)	82.709
Es	stimated power (1-β)	1.000
	power (Rodrigue)	1.000

VAR 1: Bull Creek Spring 2019 VA

VAR 2: North Reserve Spring 2019

Results of chi squared analysis

Results of Hypothesis 2 & 3

Bull Creek Spring 2019 vs. Bull Creek Fall 2018

	VAR 1	VAR 2		*
		a	b	
A. intermedia	Obs	49	0	49
	Exp	30.198	18.802	
		С	d	
S. altissimum	Obs	47	0	47
	Exp	28.965	18.035	
		е	f	
Bare dirt	Obs	4	44	48
	Exp	29.581	18.419	
		g	h	
H. <u>murinum</u>	Obs	6	22	28
	Exp	17.256	10.744	
	*	106	66	172

VAR 1: Bull Creek Spring 2019 VAR 2: Bull Creek Fall 2018

	X ² calc	136.559
	alpha	0.10
	df	3
	X ² crit	6.251
	prob	0.000
17	k (min r or c)	2
(effect size mea	sure) Cramér's V	0.891
	measure) φc or w	0.891
	Noncentrality (λ)	136.559
Est	imated power (1-β)	1.000
Corrected	power (Rodrique)	1.000

♦ North Reserve Spring 2019 vs. North Reserve Fall 2014/16

	VAR 1	VAR 2		*
		а	b	
B. pilularis	Obs	19	32	51
	Exp	21.224	29.776	
	- 1 SA - N	С	d	
Bare dirt	Obs	4	32	36
	Exp	14.981	21.019	
		е	f	
H. incana	Obs	44	3	47
	Exp	19.559	27.441	
		g	h	
B. <u>salicifolia</u>	Obs	Ō	27	27
	Exp	11.236	15.764	
	*	67	94	161

VAR 1: North Reserve Spring 2019 VAR 2: North Reserve Fall 2014/16

	X ² _{calc}	85.741
	alpha	0.10
	df	3
	X ² ent	6.251
	prob	0.000
	k (min r or c)	2
(effect size n	neasure) Cramér's V	0.730
(effect :	size measure) φc or w	0.730
*	Noncentrality (λ)	85.741
17	Estimated power (1-β)	1.000
Correct	ed power (Rodrigue)	1.000

Discussion

- We found higher species diversity in the North
 Reserve compared to Bull Creek
- Bull Creek had a higher sum count of species, but the location was not as diverse as the North Reserve.
 This could be a result of sampling error due to the time constraints and large area we needed to cover.
- Higher counts of bare dirt in both areas during the
 Fall in comparison to spring season
- Explanation for less counts of bare dirt likely due to a wetter-than usual season.

Conclusion

- We found that there was a statistically significant difference in the species diversity found within the North Reserve and Bull Creek in the Sepulveda Dam during Fall and Spring seasons.
- We also found a statistically significant difference in the species diversity found within the North Reserve and Bull Creek in the Sepulveda Dam during the same Spring season.
- Directions for further research would be to
 either allow for two days of data collecting, or
 having Sepulveda Dam split into two groups like
 Forestal.