W. Sepulveda Basin

By: Jaynee Guevara, Amanda Martinez, Patti Um, & Brian Carroll ES&P/GEOG 330

C. Rodrigue

Spring 2017

Background

- Land usage of Sepulveda Basin
- Causes of change in Sepulveda Basin (flood, fires, etc)

August 1989

Hypothesis

Species patterns in Sepulveda vary depending on land use

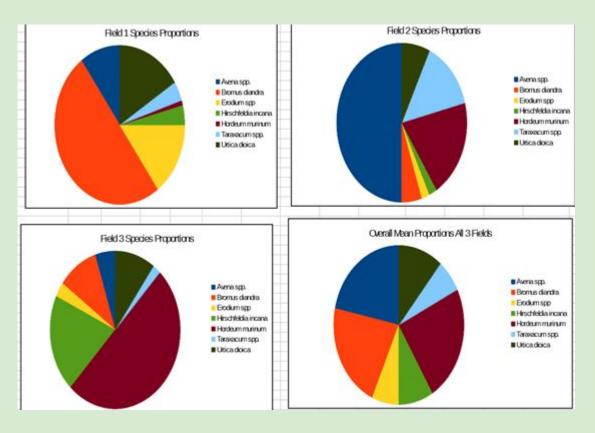
Data Collection Methods

- Quadrats and sample collection
- Soil compaction penetrometer
- pH (Kelway) meter

Photos

Hirschfeldia incana

Hordeum murinum


Z-Test of the Three Fields

- Using only 2 quadrats per field limited the data returned
 - Errors in z-test
- There is NO significant difference

	^		٠ ,	-	E				-	I N	- 1	IVI I	TV .	·	P 1	٧	т -	1 1	
1		N field	Middle field	S field	Means Diff of Prop	N vs Middle	N vs S	Middle vs S	St Err	N vs Middle	N vs S	Middle vs S Z	of diff of	N vs Middle	N vs S	Middle vs S	prob-value N vs Middle	NvsSM	iddle vs S
2	Bare soil	0.00	0.00	0.20	0.07	0.00	-0.20	-0.20		0.00	0.28	0.28		#DIV/0!	-0.71	-0.71	#DIV/0!	0.240	0.240
3	Brassica nigra	0.00	0.05	0.00	0.02	-0.05	0.00	0.05		0.15	0.00	0.15		-0.31	#DIV/0!	0.31	0.379	#DIV/0!	0.621
4	Erodium spp	0.13	0.40	0.27	0.26	-0.28	-0.14	0.14		0.42	0.39	0.47		-0.66	-0.36	0.29	0.255	0.360	0.614
5	Hirschfeldia incana	0.00	0.00	0.23	0.08	0.00	-0.23	-0.23		0.00	0.30	0.30		#DIV/0!	-0.76	-0.76	#DIV/0!	0.223	0.223
6	Hordeum murinum	0.06	0.30	0.00	0.12	-0.25	0.06	0.30		0.36	0.16	0.32		-0.68	0.34	0.93	0.249	0.634	0.823
7	Leaf litter	0.23	0.00	0.00	0.08	0.23	0.23	0.00		0.30	0.30	0.00		0.77	0.77	#DIV/0!	0.780	0.780	#DIV/0!
8	Festuca perennis	0.00	0.16	0.25	0.13	-0.16	-0.25	-0.09		0.26	0.30	0.40		-0.61	-0.81	-0.23	0.272	0.210	0.410
9												z	critical 2-tailed 1	for alpha					
10												α	= 0.10	-1.64					
11				(1)								α	= 0.05	-1.96					
12	~~											α	= 0.01	-2.58					
13	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,																		
14	n	2 number of guadrats for each field (6 in total): Your number might vary. If you did a different number, enter it for the appropriate field below																	
15	n North field	2	-							200	\$c								
16	n Middle field	2																	
17	n South field	2																	
-																			

Visual Differences

- Field 1 Species *Bromus* diandrus (50%)
- Field 2 Species Avena spp. (50%)
- Field 3 Species Hordeum murinum (50%)

Z-test of difference of proportions (2017)

T-Test of Soil Compaction

- 3 Soil compaction readings collected per quadrat
 - o 6 per field
- NO significant differences of soil compaction, despite high p-value
 - Effect size: 0.346-0.602 (weak)
 - Power: 0.08-0.157 < 0.8 (Underpowered)
 - o Prob-value: P > alpha (0.05)

	N vs S Fields	N vs Middle Fields	Middle vs S Fields
T-based on PVE	-1.043	-0.62	-0.599
T-Critical	2.228	2.228	2.228
P-based on PVE	0.322	0.549	0.562
Cohen's d (effect size)	-0.602	-0.358	-0.346
Power	0.157	0.087	0.08

Conclusion

- There is no significant differences in CSS in the Western parts of the Sepulveda Basin
- Sources of error
- Larger sample size needed
- T-test shows higher chance of Type II Error

References

- Engelberg, K., Laris, P., Nagy, S., and Scott Eckardt. 2014. Comparing the Long-Term Impacts of Different Anthropogenic Disturbance Regimes on California Sage Scrub Recovery. Professional Geographer. **66**:468-479.
- Laris, P., S. Brennan, and K. Engelberg. 2016 The Coyote Brush Invasion of Southern California Grasslands and the Legacy of 'Mechanical Disturbance. Geographical Review. 1-20.
- U.S. Army Corps of Engineers Los Angeles District, and Tetra Tech, Inc. "Sepulveda Dam Basin." *Sepulveda Basin Wildlife*. Los Angeles County, Aug. 2011. Web. 23 Apr. 2017. 43-48.
 - http://sepulvedabasinwildlife.org/pdf/Final%20Sepulveda%20Dam%20Master%20Plan.pdf.