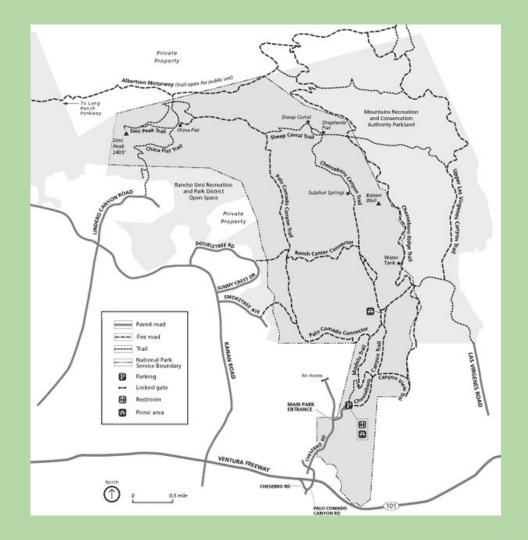


Leidy Tercero-gio, Jessica Mercado, Brandon La Beet, Stephanie Wilmot


BACKGROUND

- Scott Eckhardt's hypothesis
- CSS expansion into exotic grasslands where there was no fire history

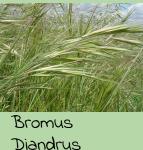
NAMED TRAILS MAP

HYPOTHESIS

Null Hypothesis: There is no significant difference in the floristic composition (diversity) of CSS as compared to when Scott Eckhardt performed his transects in these areas.

Alternative Hypothesis: There is a significant difference in the floristic composition (diversity) of CSS as compared to when Scott Eckhardt performed his transects in these areas.

METHODS


- 10 m transect with 1 m intervals
- GPS application Status and Toolbox

Californica

rhamnus ilicifolia

Lupinus Citrinus

Artemisia dracunculus

Bromus

Sterilis

SPECIES ENCOUNTERED

eriogonum cinereum

isocoma menziesii

Cicutarium

Erodium

Phacelia Hubbyi

RESULTS - ATTEMPTED CHI-SQUARE

	Α	В	С	D	E	F	G	Н	I	J	K	- t
3	1000 m	а		b		8269				F PARTY NAMES	The second particles	1200 1200 1800
4	Obs	122		0		122		8	122	14884	117.643	126.519
5	Exp	117.643	-	4.357	(t	0	0	4.357	0.000
6		С		d					40	1600	44.357	36.071
7	Obs	40		6		46		(6	36	1.643	21.913
8	Exp	44.357		1.643							1 6	
9				la l								184.502
LO	*	162		6		168					X ² palo	16.502
11											alpha	0.05
12			3								df X ²	1
13				Yate's X	2 (ove	er)correcti	on fo	r continuit	12.932		X ² ont	3.841
L4							р	rob (Yates	0.000		prob	0.000
15		11		Pirie-Hamo	len X	correction	n for	continuity	16.480			
16		-			10000	prob	Piri	e-Hamder	0.000		Yule's Q	1.000
17											k (min r or c)	2
18							2	Cramér's p	hi or V (effe	ct size mea	sure) φ _e or w	0.313
19				-					Pearson's	C (effect s	ize measure)	0.299
20							15				ncentrality (λ)	16.502
21											1 6	
22										Estimate	d power (1-β)	0.982
23									Corre	ected Pow	er (Rodrigue)	0.982
24												
25 26				Fisher	's Ex	act Test	(2	alternative	calculation of	f probabilit	y for N ≤ 100)	#NUM!
26												

RESULTS: TRANSECT 6

Spring 2017

Species	Totals
Brassica nigra	5
Erodium cicutarium	3
Bromus sterilis	7
Avena fatua	3
Lupinus citrinus	2
Phacelia hubbyi	1

Eckhardt's data

Species	Totals
Eriogonum cinereum	13
Marrubium vulgare	27
Artemisia californica	12
Haplopappus venetus	1
Salvia leucophylla	9
Malacothamnus fasciculatus	2

RESULTS: TRANSECT 7

Spring 2017

Species	Totals
Avena fatua	4
Rhamnus ilicifolia	1
Bromus sterilis	3
Phacelia hubbyi	3
dirt	1
Brassica nigra	7
Bromus diandrus	3

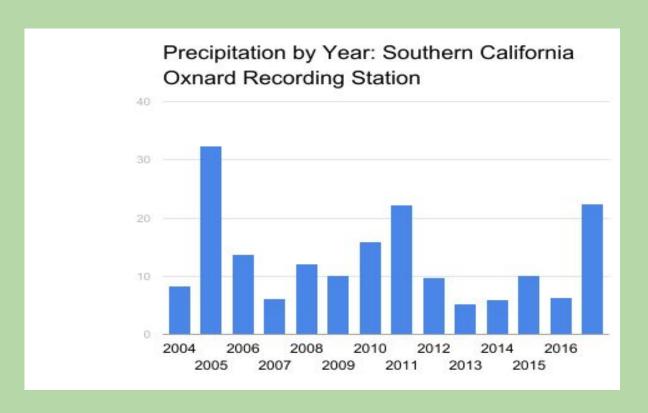
Eckhardt's data

Species	Totals
Eriogonum cinereum	22
Haplopappus venetus	2
Salvia leucophylla	10
Malacothamnus fasiculatus	5
Artemesia californica	15

RESULTS: TRANSECT 2

Spring 2017

Species	Totals
Artemisia dracunculus	1
Salvia leucophylla	6
Brassica nigra	2
Rhamnus ilicifolia	3
Unidentified grass	4
dirt	1
Baccharis pilularis	1
Bromus diandrus	1
Avena fatua	3


Eckhardt's data

Species	Totals
Haplopappus venetus	122
Salvia leucophylla	40

DISCUSSION

- A 2x2 chi square test was attempted for the cheesboro assessment area but no significant correlating data to Eckhardt's study could be found.
- Environmental factors believed to be responsible for the significant difference in plant populations include: Seasonal difference, precipitation difference and wildfire occurrence.

DISCUSSION: PRECIPITATION

DISCUSSION: WILDFIRE

- 2006 Ventura County experienced severe Wildfires in which burned 162,702 acres of brush in areas neighboring transect zones. 2009 and 2013 also had significant fires in Ventura County that burned 17,500 and 28,000 acres respectively.
- No similar wildfire events have occurred in 2017.

CONCLUSION

We reject the null hypothesis

• For future research on this sites we will need to try different data collection methods in order to get significant results.