Charmlee Wilderness Park:

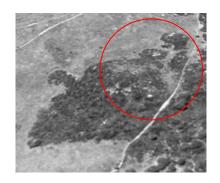
Potential Role of Coyote Brush

Background: Charmlee Wilderness Park

- 530 acre park on the coastal bluffs in Malibu
- Many different species including many patches of coyote brush of different ages
- Observance of type conversion of CSS to mostly non-native grassland due to disturbance

Coyote brush
"...facilitates the
establishment of other
CSS species."
U.S. Department of
Agriculture

Background: Baccharis pilularis


- Second pioneer species → grows after disturbance event
 - Often found in recently cleared/burned/flooded areas
- Perennial shrub; part of the Sunflower Family
- Small drought-resistant, fire-retardant leaves and a large root system

Introduction

Does *Baccharis pilularis* facilitate the development of CSS species over time?

Top: 1990, 2002, 2007 Bottom: 2013, 2016

Images from Google Earth

Introduction continued...

 Will patches of different ages show different proportions of native vs. non-native species?

Yellow circles: 1989

Green circles: 1994

Pink circles: 2002

Image from Google Earth, Edits by Dr. Rodrigue

Hypotheses

- Null hypothesis: There is no significant difference in the proportions of native vs. non-native species between the three areas having different ages.
- Alternate hypothesis: There is a significant difference in the proportions of native vs. non-native species between the three areas having different ages.

Data Collection Methods

• Quadrats (1 m) and sample

collection

GPS

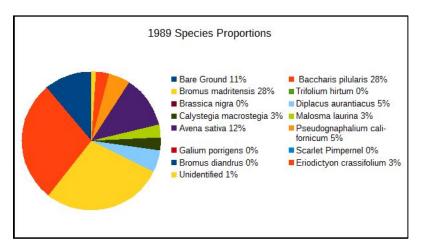
Chi square test

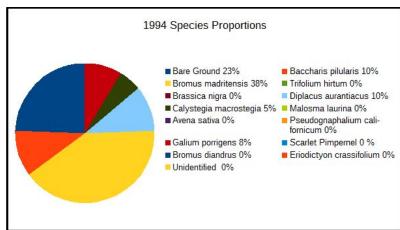
Data Processing and Analysis Methods

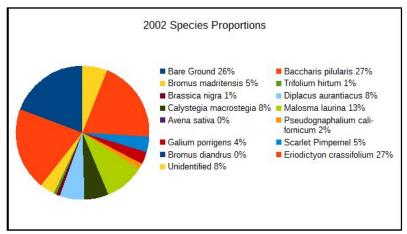
		1989	200	200 2	2002	1989	1989	1994	1994
		Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
Bare ground		15	25	50	2	16	1	35	10
Coyote brush	Baccharis pilularis	35	40		40		50	20	
Red brome	Bromus madritensis	10			15	25	49	45	30
Small head clover	Trifolium hirtum			2					
Black mustard	Brassica nigra					2			
Sticky monkey-flower	Diplacus aurantiacus				25	15			20
Island morning glory	Calystegia macrostegia		5		15	10			10

- Listed identified species in a table
- Total proportions of native and non-native species calculated for each age group
- Total % bare ground and unidentified species also calculated

Data Processing and Analysis Methods


Laurel sumac	Malosma laurina	10		40					
Wild oats	Avena sativa	20				15			
Ladies' tobacco	Pseudognaphalium californicum		5			15			
Graceful bedstraw	Galium porrigens		10		3				15
Anagallis arvensis	Scarlet pimpernel		15						
Ripgut brome	Bromus diandrus								
Bicolored yerba santa	Eriodictyon crassifolium	10		8					
Unidentified						2			15
SUM		100	100	100	100	100	100	100	100


Data Processing and Analysis Methods


	1989	1994	2002
Total % native	145	70	191
% native / # of patches	48.33	35.0	63.67
total % non-native	121	94	32
% non-native / # of patches	40.33	47.0	10.67
total % bare ground	32	45	77
% bare ground / # of patches	10.67	22.5	25.67
total % unidentified	2	15	0
% unidentified / # of patches	0.67	7.5	0

- Chi square analysis to see if a significant difference existed between:
 - % Native vs. Non-native species
 - Age of patch (1989, 1994, 2002)

Results

A	В	C	D	E	F	G		1	J	K	L
X ²	Enterda	ata an	d alpha in yell	owcel	ls only			Outpu	ts in blue	cells	
native		non			*		Cell	0	O sq.	E	O sq./
	а		b		-						
Obs	48		40	4 9	88	- 1	a	48	2304	52.800	43.63
Exp	52.800		35.200		51		b	40	1600	35.200	45.45
	С		d				С	35	1225	49.200	24.89
Obs	35		47	4	82		d	47	2209	32.800	67.34
Exp	49.200		32.800				е	64	4096	45.000	91.02
	e		f				f	11	121	30.000	4.03
Obs	64		11		75	1					
Exp	45.000		30.000								
1 9	4				i i						276.39
*	147		98		245	- 1	T			X ² oalo	31.39
			12							alpha	0.0
	- F				21						
	-7					-				df X ²	5.99
F	Percentage of expected counts < 5 0.00 %					%				prob	0.00
	(if > 20%, coll								-		
	Number of ex				0					k (min r or c)	
	(if there are a						Cramér's pl	ni or V (effe	ct size me	asure) φ or w	0.35
									N	ncentrality (λ)	31.39
(q: ratio of Typ	e II to	Type I error pr	obak	1.05				~		
	3373								Estimate	ed power (1-β)	1.00
	- 1							Corre	acted now	er (Rodrigue)	0.99

Results:

Significant difference between proportion of native vs. non-native species.

Effect size small (larger sample needed).

• P-value: 0.00

Power: 0.999

• X^2 crit $< X^2$ calc

Effect size: 0.358

Discussion

Type I error

Largely underpowered datasets

P-value: 0.00

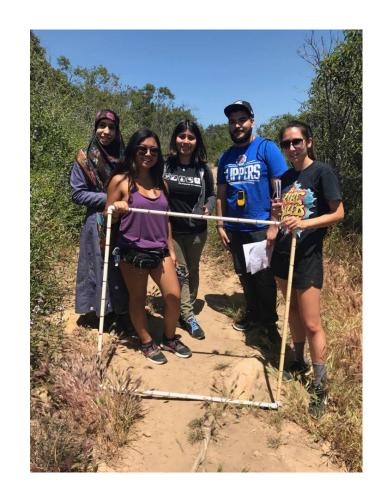
X² crit < X² calc

Power: 0.999

• Effect size: 0.360

Overall pattern of study was significant

- Reject null hypothesis
- Non-native species dominated affected study area
 - % non-native decreases with age
 - Bare ground increases with age



Conclusions

- Multiple events of disturbance (i.e. droughts, fires, etc.) → type conversion of CSS to grassland
- Proportion of non-native species decreased with age of patch.
 Proportion of native species fluctuated.
- Proportion of bare ground increased with age of patch. Reflective of drought?
- Effect size small, some species unidentified → Larger, more accurate sample may lead to stronger results

Challenges

- The presence of long thorny plants made it challenging to reach the precise location
- Estimating the species proportions is not perfectly accurate
- Difficulty in identifying species especially when dead/dormant

References

- Bell, David T., and Muller, Cornelius H. 1973. Dominance of California annual grasslands by Brassica nigra. American Midland Naturalist 90, 2: 277- 299.
- Stinson, Kristina A.; Campbell, Stuart A.; Powell, Jeff R.; Wolfe, Benjamin E.; Callaway, Ragan R.; Thelen, Giles C.; Hallett, Steven G.; Prati, Daniel; and Klironomos, John N. 2006. Invasive Plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLOS Biology 4, 5: e140. doi: 10.1371/journal.pbio.0040140.
- Laris, P., Brennan, S., Engleberg, K., Dean, J., Rodrigue, C., Langdon, S., et al. (2015). Recovering from the Second Wave?: Post-grazing CSS and Grass Dynamics in La Jolla Valley. *CSULB Department of Geography.*