

By: Group X² (Devon Sharp, Kyle Drake, Jon Meier, and Mary Bunting)

Location of Study Area

- Charmlee Wilderness Park
- Malibu, CA
- End of Potrero Road at the Reservoir

Hypothesis

 CSS invades firebreaks where mustard-dominated habitat has been mechanically disturbed, thus destroying the allelopathic compounds that were once used to dominate the area.

Data Collection

- Six 30 meter transects
- Identified vegetation at every meter
- Collected samples and pictures of species

Species Encountered

- Artemisia californica
- Baccharis pilularis
- Amaranthus albus
- Conyza canadensis
- Sisymbrium officinale
- Bromus diandrus
- Malosma laurina
- Acourtia microcephala
- Adenostoma fasciculatum
- Asclepias fascicularis

Invasive/ Non-native

Chi-Squared Calculations

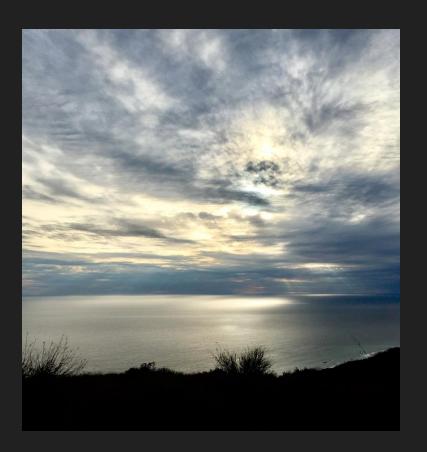
2 X 2 Chi-Squared analysis
comparing Artemisia californica
with other species within each
transect AND within Charmlee park
as a whole

$$X^2 = \sum \frac{(o-e)^2}{e}$$

North Transect Results

Transect 1					
X ² calc	1.573				
alpha	0.05				
df	1				
X ² crit	3.841				
prob	0.210				
Effect Size	0.064				
Power	0.240				

Transe	ect 2	
X ² calc	0.726	
alpha	0.05	
df	1	
X ² crit	3.841	
prob	0.394	
Effect Size	0.044	
Power	0.137	


Transect 3					
_					
X ² calc	2.434				
alpha	0.05				
df	1				
X ² crit	3.841				
prob	0.119				
Effect Size	0.08				
power	0.345				

South Transect Results

Transect 1		Transect 2		Transect 3		
	2		- 0		- 0	
	X ² calc	0.022	X ² calc	0.042	X ² calc	0.249
	alpha	0.05	alpha	0.05	alpha	0.05
	df	1	df	1	df	1
	X ² crit	3.841	X ² crit	3.841	X ² crit	3.841
	prob	0.882	prob	0.838	prob	0.618
	Effect Size	0.008	Effect Size	0.01	Effect Size	0.025
	Power	0.048	power	0.052	power	0.08

Conclusion

- No significant evidence that CSS is invading mechanically disturbed habitats
- Accept the null hypothesis
- Suggestions for future study?

Struggles

- Initial problems finding the site to transect
- Multiple GPS issues in the field
- Additional technology uncertainty
- Trying to identify dead critters
- Limited daylight

Questions?