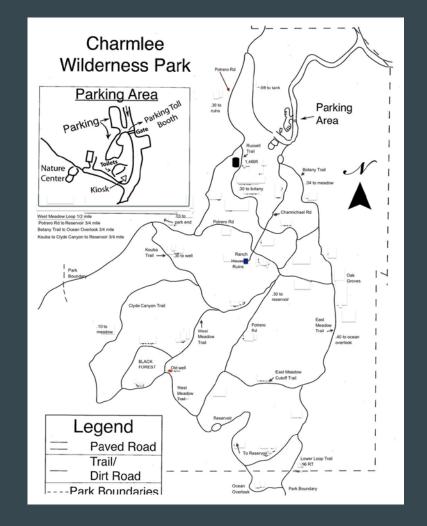


Potrero Rd.

Charmlee Park Vanguard Species


• • •

Dominique Vitti, Alex Paz, Keith Cunningham, Indalecio Chavez

Charmlee Park:

Charmlee Wilderness
 Park is located in the
 Santa Monica
 Mountains and is
 home to native plant
 displays, a nature
 center, and 8 miles of
 hiking trails.

Study Objective:

- Determine how much mechanical disturbance there was since the last field study of this area (2014 & 2016).
- Mechanical disturbance involves invasive plants taking over, such as grasslands.

Process:

- Our field study consisted of us going off trail to find CSS species amongst the grasses.
- Gathered samples of about 90
 CSS species, while recording
 various data about these plants:
 height, elevation, longitude, and
 latitude, etc.
- Captured 3 pictures of each plant (two far away from different angles, and one close-up).

Hypothesis:

H_o: California Sage Scrub species cannot tolerate conditions out in the grasslands.

H_A: California Sage Scrub species can tolerate conditions out in the grasslands.

Original Study v. Our Study

Our Study:

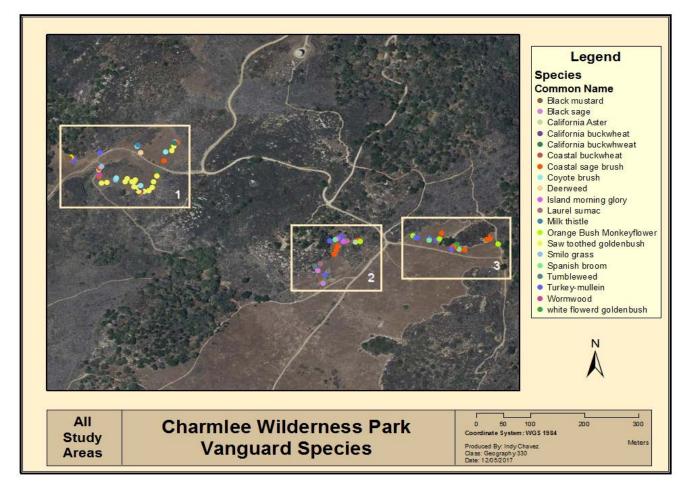
- North & South Patches
- 90 Total Samples
- Mid-Fall Season (Dry)

2014 & 2016 Study:

- Southwestern Patch
- 130 Total Samples
 Combined
- Early Spring (Wet)Increased Observance

Field Study Areas

North Patch (blue):


- N orth Patch was on average a more dramatic incline than South Patch.
- This was a larger area with CSS primarily on the borders.

South Patch (white):

 More monospecific patches than the South Patch

Visual
Representation of
Species
Encountered:

Legend

Species Common Name

- Black mustard
- Black sage
- California Aster
- California buckwheat
- California buckwhweat
- Coastal buckwheat
- Coastal sage brush
- Coyote brush
- Deerweed
- Deerweed
- Island morning glory
 Laurel sumac
- Milk thistle
- Orange Bush Monkeyflower
- Saw to othed goldenbush
- Smilo grass
- Spanish broom
- Tumbleweed
- Turkey-mullein
- Wormwood
- white flowerd golden bush

Study Area

Charmlee Wilderness Park Vanguard Species

Legend

Species Common Name

- Black mustard
- Black sage
- California Aster
- California buckwheat
- California buckwhweat
- Coastal buckwheat
- Coastal sage brush
- Coyote brush
- Deerweed
- Island morning glory Laurel sumac
- Milk thistle
- Orange Bush Monkeyflower
 Saw toothed goldenbush
- Smilo grass
- Spanish broom
- Tumbleweed
- Turkey-mullein
- Wormwood
- white flowerd golden bush

Study Area

Charmlee Wilderness Park Vanguard Species

Coordinate System: WGS 1984

Produced By: Indy Chavez Class: Geography 330 Date: 12/05/2017

Meters

Legend

Species

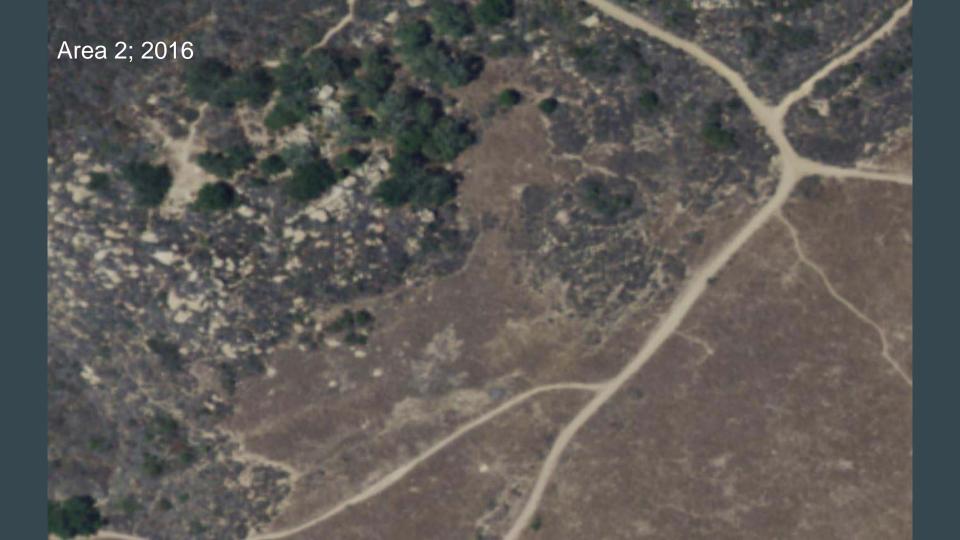
Common Name

- Black mustard
- Black sage
- California Aster
- California buckwheat
- California buckwhweat
- Coastal buckwheat
- Coastal sage brush
- Coyote brush Deerweed
- Island morning glory
- Laurel sumac
- Milk thistle
- Orange Bush Monkeyflower
- Saw to othed goldenbush
- Smilo grass
- Spanish broom
- Tumbleweed
- Turkey-mullein
- Wormwood
- white flowerd golden bush

Study Area

Charmlee Wilderness Park Vanguard Species

0 10 20 Coordinate System: WGS 1984


Produced By: Indy Chavez Class: Geography 330 Date: 12/05/2017

Meters

Chi-Square Analysis

- 7 species in common between S14, F16, and F17
 - a. Eriogonum fasciculatum var. Foliosom → California buckwheat
 - b. Artemisia californica → Coastal sagebrush
 - c. Baccharis pilularis → Coyote brush
 - d. $lsocoma menzeissii \rightarrow W$ hite flowered goldenbrush
 - e. Croton setigar → Turkey mullein
 - f. Mimulus aurantiacus → Organge Bush Monkeyflower
 - g. Salvia mellifera \rightarrow Black sage
- Changes in species population tested
 - a. Old = S14 + F16
 - b. New = F17

Chi-Square Results:

Significant: $X^2_{Calc} > X^2_{Calc}$

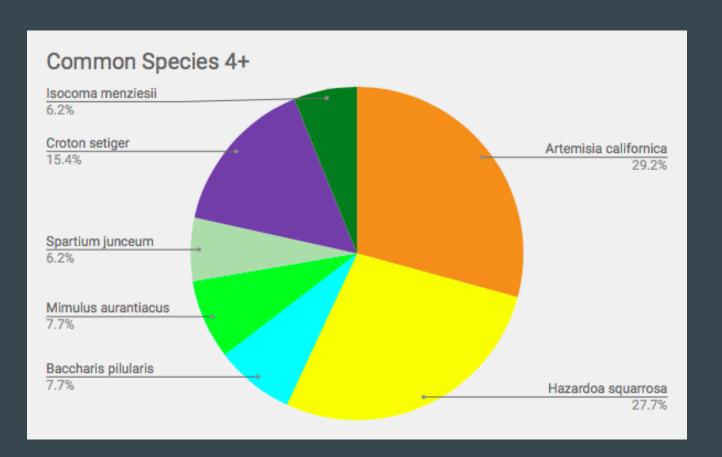
- 1. California Buckwheat
- 2. Coyote Bush
- 3. White flowered goldenbush
- 4. Orange Bush Monkeyflower

CSS species can tolerate conditions out in grasslands.

1	X ²	Enter data	and <i>alpha</i> in yel	low cells	only	Outputs in blue cells							
2	VAR 1	VA	VAR 2			Cell	0	O sq.	E	O sq./E			
3		а	b										
4	Obs	30	5		35	a	30	900	24.161	37.250			
5	Exp	24.161	10.839			b	5	25	10.839	2.306			
6		С	d			c	76.996359	5928.4394	82.835	71.569			
7	Obs	76.99635947	43	119	9.996	d	43	1849	37.161	49.756			
8	Exp	82.835	37.161										
9										160.882			
10	*	106.9963595	48	154	1.996				X ² calc	5.886			
11									alpha	0.05			
12									df	1			
13			Yate's X ²	Yate's X ² (over)correctio			4.921		X ² crit	3.841			
14						prob (Yates)	0.027		prob	0.015			
15			Pirie-Hamd	en X ² corr	ection f	for continuity)	5.879						
16						Pirie-Hamden	0.015		Yule's Q	0.540			

1	X ²	Enter data	a and	alpha in yel	low c	ells only		Outputs in blue cells						
2	VAR 1	VAR 2				*		Cell	0	O sq.	E	O sq./E		
3		а		b										
4	Obs	1		4		5		а	1	1	3.452	0.290		
5	Exp	3.452		1.548				b	4	16	1.548	10.333		
6		С		d				С	105.99636	11235.228	103.545	108.506		
7	Obs	105.9963595		44		149.996		d	44	1936	46.452	41.678		
8	Exp	103.545		46.452										
9												160.807		
10	*	106.9963595		48		154.996					X ² calc	5.810		
11											alpha	0.05		
12											df	1		
13				Yate's X ² (over)correction for continuity					3.682		X ² crit	3.841		
14				prob (Yates)					0.055		prob	0.016		
15				Pirie-Hamden X ² correction for continuity)					5.826					
16						pro	b Piri	e-Hamden	0.016		Yule's Q	-0.812		

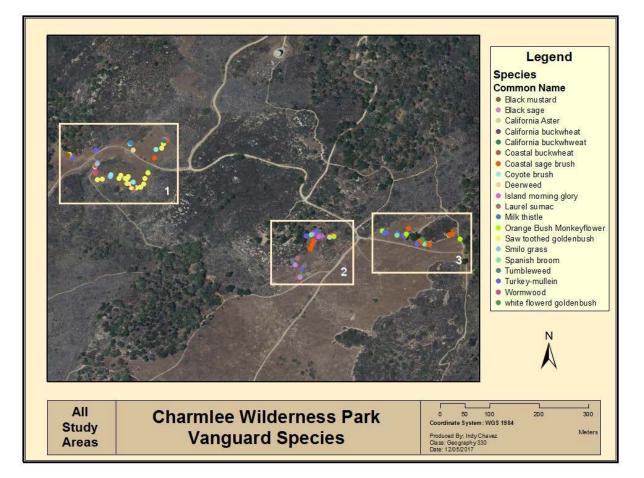
Chi-Square results cont.


Not significant: X²Calc < X²Calc

- 1. Coastal Sagebrush
- 2. Turkey Mullein
- 3. Black Sage

CSS species cannot tolerate conditions out in grasslands.

1	X ²	Enter data a	nd <i>alpha</i> in yel	llow cells only		Outputs in blue cells						
2	VAR 1	VAF	2	*	Cell	0	O sq.	E	O sq./E			
3		а	b									
4	Obs	59.0165644	19	78.0166	a	59.016564	3482.9549	53.856	64.672			
5	Exp	53.856	24.161		b	19	361	24.161	14.942			
6		С	d		С	47.979795	2302.0607	53.140	43.320			
7	Obs	47.97979507	29	76.9798	d	29	841	23.839	35.278			
8	Exp	53.140	23.839									
9									158.211			
10	*	106.9963595	48	154.996				X ² calc	3.215			
11								alpha	0.05			
12								df	1			
13			Yate's X ²	over)correction	on for continuity	2.622		X ² arit	3.841			
14					prob (Yates)	0.105		prob	0.073			
15			Pirie-Hamo	len X ² correctio	n for continuity)	3.211						
16				pro	b Pirie-Hamden	0.073		Yule's Q	0.305			


1	X ²	Enter da	ta and alpha i	yellow	cells only		Outputs in blue cells						
2	VAR 1	VAR 2			*		Cell	0	O sq.	E	O sq./E		
3		a		b									
4	Obs	14.0368098		10	24.0368		а	14.03681	197.03203	16.593	11.874		
5	Exp	16.593	7.	444			b	10	100	7.444	13.434		
6		С		d			C	92.95955	8641.4779	90.403	95.588		
7	Obs	92.95954967		38	130.96		d	38	1444	40.556	35.605		
8	Exp	90.403	40	556									
9											156.501		
10	*	106.9963595		48	154.996					X ² _{calc}	1.505		
11										alpha	0.05		
12										df	1		
13			Yate	Yate's X ² (over)correctio			continuity	0.974		X ² crit	3.841		
14								0.324		prob	0.220		
14						pr	ob (Yates)	0.324		prob			

Suggestions for Further Research

- Try best to sample in the same vicinity as older studies
- Come prepared with more knowledge of non-CSS species.
- Make distinctions between study areas different landscapes
- Rather than set a specific number of samples to shoot for, attempt to gather all samples in one patch

Questions?

