THE ADVANCEMENT OF NATIVE SHRUBS INTO NON-NATIVE GRASSLANDS IN LA JOLLA VALLEY CA

Presented by Jade Dean California State University, Long Beach Department of Geography SCAS 2013

INTRODUCTION

TYPE CONVERSION Diverse Plant Community

A (Homogenous) Non-Native Grassland

Is there a driving force behind this?

TYPES OF DISTURBANCES

Photo Credit: LA Times

OBJECTIVES OF THE STUDY

Geosciences Diversity Enhancement Program's (GDEP) Results

- Eliminate fire, soil composition, slope, and aspect
- Expand on studies about advancing boundaries and pioneer species

Samantha's Results:

Recovery vs. Stable: Leading Native Species											
	Artemesia californica	Eriogonum fasciculatum	Baccharis pilularis	Mimulus aurantiacus	Nassella pulchra	Melica imperfecta	Other				
Recovery	31	13	6	10	13	8	39				
Stable	7	3	0	2	4	0	35				
Chi Square Probability	0.00010	0.01242	0.01431	0.02092	0.02905	0.00468	Difference ≥ 0.05				

Nancy's Results:

Time	CSS loss	CSS recovery	NET GAIN	YEARS	LOSS/YEAR	GAIN/YEAR	NETGAIN/YEAR	GAIN/LOSS
1947-1970	116,551	430,659	314,108	23	5,067	18,724	13,657	3.70
1970-1983	139,370	353,918	214,548	13	10,721	27,224	16,504	2.54
1983-2000	182,618	260,866	78,248	17	7,940	11,342	4,603	1.43
1947-2000	88,051	674,955	586,904	53	6,773	12,735	11,074	7.67
							All with are	in square mears.

OBJECTIVES OF THE STUDY

• Analyze advancing boundaries of CSS

- Incorporate more aerial images
- Digitize advancing boundaries
- Choose boundaries for field work
 - o 17 boundaries with 2 points each = 34 points total
- Identify, if any, pioneer species in the grasslands
 - Broaden the sampling range
 - o Belt versus quadrat method
 - o Determine if results are significant
 - o Chi Square Analysis
 - o Spearman's Rank Order Correlation

IDENTIFY ADVANCING BOUNDARIES

0.1 0.2 Miles

IDENTIFY ADVANCING BOUNDARIES

FIELD WORK

STATISTICAL ANALYSIS

Chi Square Analysis

- Distance and Diversity
 - Determine if there is a significant relationship between distance from the boundary and species type
- Spearman's Rank Order Correlation Coefficient
 - Distance and Maturity
 - Determine if there is a significant relationship between distance from the boundary and species maturity, as indicated by height.

RESULTS: CHI SQUARE ANALYSIS

	A	В	С	D	E	F	G	Н	I	3	К	L	М	N	0	P
1	X2			Enter data in	yello	w cells										
2		Dirt		Purple Sage		Coyote Brush		CA Sage Brush	ו	*		Cell	0	O sq.	E	O sq./E
3		a		b		С		d								
4	Obs	90	1	39	1	96	1	46		271		a	90	8100	93.887	86.274
5	Exp	93.887		42.989		88.728		45.396				b	39	1521	42.989	35.381
6		е		f		g		h				C	96	9216	88.728	103.868
7	Obs	71	2	31	2	92	2	28		222		d	46	2116	45.396	46.612
8	Exp	76.911		35.216		72.685		37.188				e	71	5041	76.911	65.543
9		i		j		k		I				f	31	961	35.216	27.289
10	Obs	54	3.000	55	3	29	3	34		172		g	92	8464	72.685	116.447
11	Exp	59.589		27.284		56.315		28.812				h	28	784	37.188	21.082
12		4		n		0		p				i	54	2916	59.589	48.935
13	Obs	58	4.000	0	4	41	4	24		123		j	55	3025	27.284	110.870
14	Exp	42.613		19.511		40.272		20.604				k	29	841	56.315	14.934
15												I	34	1156	28.812	40.122
16	*	273		125		258		132		788		m	58	3364	42.6	78.943
17												n	0	0	19.5	0.000
18												0	41	1681	40.3	41.742
19												р	24	576	20.6	27.956
20																
21																865.998
22															X ² calc	77.998
23															alpha	0.001
24	1	Percentage	e of expe	cted counts <	5			0.00	%						df	9
25	1	(if > 20%)	collapse	data rows)											X ² crit	27.877
26	<u> </u>	Number of	expected	d counts < 2				0							nroh	0.000
27	t	(if there are	any co	llanse rows)				v							0.00	0.000
28	<u> </u>		, unj, ou	(apoc (000)												

RESULTS: CHI SQUARE ANALYSIS

Spe Dista	pecies: Dirt stance:		Purple Sage		Coyote Brush		CA Sage Brush	Tota	als
1 –	1 – 5 m 90		39		96		46	27	1
6 –	6 – 10 m 71		31		92		28	22	2
11 –	15 m	54	55		29		34	17	2
16 –	20 m	58	0		41		24	12	3
То	tals	273	12	5	258		132	78	8
	Sum(Obs^2/E)			X^2 calc			Alpha		
	865.9	77.		0.05					
	Degrees of Freedo			X^2	crit		Prob. Value		
	9			16.919			<0.001		

What does this mean?

 There is a significant relationship between the species observed and the distance from the CSS boundary.

RESULTS: SPEARMAN'S RANKS CORRELATION COEFFICIENT

	Avg. Distance from	Avg.	Difference	
Species	Boundary (m) &	Height (m) &	between	D^2
	Rank Distance	Rank Height	Ranks (d)	
Dirt	1: 17.5 – 20	1: 1.75 - 2		
CA Sagebrush	2: 15 – 17.5	2: 1.5 - 1.75		
Coyote Brush	3: 12.5 - 15	3: 1.25 - 1.5		
Purple Sage	4: 10 – 12.5	4: 1 - 1.25	= Rank	
Ashy Leafed	5: 7.5 - 10	5: 0.75 - 1	Distance –	= d ^2
Buckwheat	6: 5 – 7.5	6: 0.5 - 0.75	Rank Height	
Arroyo Lupine	7: 2.5 - 5	7: 0.25 - 0.5		
Laurel Sumac	8:0-2.5	8: 0 – 0.25		
Sticky Monkey Flower				

Example: Transect 7, Purple Sage

- Average Rank Distance: 6
- Average Rank Height: 4

RESULTS: SPEARMAN'S RANKS CORRELATION COEFFICIENT

Species	Avg. Distance from Boundary (m)	Rank Distance	Avg. Height (m)	Rank Height	Difference Between Ranks (d)	D^2
Dirt	8.29	6	0	8	-2	4
CA Sage Brush	7.81	7	1.14	4	3	9
Coyote Brush	7.37	4	0.77	5	-1	1
Purple Sage	4.62	6	0.82	5	1	1
Ashy Leafed Buckwheat	9.5	3	1.6	2	1	1
Arroyo Lupine	14	4	0.33	7	-3	9
Laurel Sumac	15.5	5	0.6	6	-1	1
Sticky Monkey Flower	1	8	0.75	6	2	4

RESULTS: SPEARMAN'S RANKS CORRELATION COEFFICIENT

	Sum of d^2	R	Degrees of Freedom	Significance
With Dirt	30	0.64	6	>5%
Without Dirt	26	0.54	5	>5%

What does this mean?

- Both R values suggest a positive correlation.
- Significance levels are greater than 5%, so we have to reject the hypothesis.

References

- **Bowler, P.A.** 2000. Ecological Restoration of Coastal Sage Scrub and its Potential Role in Habitat Conservation Plans. *Environmental Management* 26(1): 85-96.
- Coffin, D.P. and W.K. Lauenroth. 1994. Successional Dynamics of a Semiarid Grassland: Effects of Soil Texture and Disturbance Size. Vegetatio 110: 67-82.
- Fleming, G.E., J.E. Diffendorfer, and P.H. Zedler. 2009. The Relative Importance of Disturbance and Exotic-Plant Abundance in California Coastal Sage Scrub. *Ecological Applications* 19(8): 2210-227.
- Freudenberuger, D.O., B.E. Fish, and J.E. Keeley. 1987. Distribution and Stability of Grasslands in the Los Angeles Basin. *Bulletin of Southern California Academy of Sciences* 86(1): 13-26.
- Hobbs, E.R. 1986. Characterizing the Boundary Between California Annual Grassland and Coastal Sage Scrub with Different Profiles. *Vegetatio* 65(2): 115-26.
- Hufford, K.M., S.J. Mazer, and M.D. Camara. 2008. Local Adaptation and Effects of Grazing Among Seedling of Two Native California Bunchgrass Species: Implications of Restoration. *Restoration Ecology* 16(1): 59-69.
- **Keeley, J.E.** 2008. Fire Severity and Ecosystem Responses Following Crown Fires in California Shrublands. *Ecological Applications* 18(6): 1530-46.
- ------. 2001. Fire and Invasive Species in Mediterranean-Climate Ecosystems of California. Pages 81–94 in K.E.M. Galley and T.P. Wilson (eds.). Proceedings of the Invasive Species Workshop: the Role of Fire in the Control and Spread of Invasive Species. Fire Conference 2000: the First National Congress on Fire Ecology, Prevention, and Management. Miscellaneous Publication No. 11, Tall Timbers Research Station, Tallahassee, FL.
- **Rhodes, H.** 1977. The Santa Monica Mountains State Parks. State of California The Resources Agency. Department of Parks and Recreation.
- Stromberg, M.R. and J.R. Griffin. 1996. Long-Term Patterns in Coastal California Grasslands in Relation to Cultivation, Gophers, and Grazing. *Ecological Applications* 6(4): 1189-211.
- Stylinski, C.D. and E.B. Allen. 1999. Lack of Native Species Recovery Following Severe Exotic Disturbance in Southern Californian Shrublands. *The Journal of Applied Ecology* 36(4): 544-54.
- Talluto, M.V., K.N. Suding, and P.A. Bowler. 2006. Factors Affecting Understory Establishment in Coastal Sage Scrub Restoration. *Madrono* 53(1): 55-59.
- Westman, W.E. 1981. Factors Influencing the Distribution of Californian Coastal Sage Scrub. *Ecology* 62(2): 439-55.
- ------. 1981. Diversity Relations and Succession in Californian Coastal Sage Scrub. Ecology 62(1): 170-84.

ACKNOWLEDGEMENTS

QUESTIONS?

