MATH 555: INTRODUCTION TO 3-MANIFOLDS, HOMEWORK 3

THE TORUS IS PRIME

Due Thursday, 3/9

Problems (to turn in).
(1) In this problem you will prove that the torus surface $T=S^{1} \times S^{1}$ is prime. For the purposes of this problem you will view the torus as a quotient of the square disk, D^{2}, drawn bellow, according to the standard gluing conventions. Note that a^{\prime} and $a^{\prime \prime}$ are identified to a single simple closed curve, a in T. Similarly, b^{\prime} and $b^{\prime \prime}$ are identified to a single simple closed curve, b, in T.

Assume that γ is an essential separating simple closed curve in T.
i. Show that that γ can be isotoped to intersect both a and b transversely. (Hint: use a theorem from class)
ii. Show that γ can not be isotoped to be disjoint from $a \cup b$.
iii. Show that $a \cap \gamma$ is an even number of points and that $b \cap \gamma$ is an even number of points. (Hint: use that fact that γ is separating.)
iv. Show that, after repeated isotopies, we can assume that no arc of $\gamma \cap D^{2}$ has both endpoints on a single edge of ∂D^{2}.
v. By part iv. there are only 6 possible edge types in $\gamma \cap D^{2}$ according to which edges of ∂D^{2} contains their boundary points. Find additional simplifying isotopies of γ to show that we can assume that there are at most 3 edge types realized in $\gamma \cap D^{2}$.
vi. Use part v. and part iii. to conclude that γ consists of two connected components.
vii. Use part vi. and part ii. to derive a contradiction to the existence of γ and conclude that T is prime.

