MATH 550, HOMEWORK 1

DEFINITION OF TOPOLOGY, OPEN SETS, AND CLOSED SETS

Due end of day, Thursday, Sept. 6th Note that problems marked with a Q have appeared on past comprehensive exams.

Reading. Read $\S12,\,\S13$ of Munkres. Problems.

- (1) Munkres §13 exercise 6.
- (2) Munkres §13 exercise 8. (You may use standard facts about the real and rational numbers.)
- (3) Q: Let (X, τ) be a topological space and let $D \subset X$. Prove that $\overline{D} = X$ if and only if D has non-trivial intersection with every non-empty element of τ .
- (4) Q: Let τ denote the collection of the empty set and all subsets of \mathbb{R} that contain the element 0.
 - (a) Prove τ is a topology on \mathbb{R} .
 - (b) Find the interior of the rational numbers, \mathbb{Q} , as a subset of (\mathbb{R}, τ) .
 - (c) Find the interior of (1,5) as a subset of (\mathbb{R},τ) .
 - (d) Find the closure of [-1,2] as a subset of (\mathbb{R},τ) .
 - (e) Find the closure of (1,5) as a subset of (\mathbb{R},τ) .