MATH 550, HOMEWORK 1

DEFINITION OF TOPOLOGY, OPEN SETS, AND CLOSED SETS

Due end of day, Thursday, Sept. 6th Note that problems marked with a Q have appeared on past comprehensive exams.

Reading. Read $\S 12, \S 13$ of Munkres.
Problems.
(1) Munkres $\S 13$ exercise 6.
(2) Munkres $\S 13$ exercise 8 . (You may use standard facts about the real and rational numbers.)
(3) Q: Let (X, τ) be a topological space and let $D \subset X$. Prove that $\bar{D}=X$ if and only if D has non-trivial intersection with every non-empty element of τ.
(4) Q: Let τ denote the collection of the empty set and all subsets of \mathbb{R} that contain the element 0 .
(a) Prove τ is a topology on \mathbb{R}.
(b) Find the interior of the rational numbers, \mathbb{Q}, as a subset of (\mathbb{R}, τ).
(c) Find the interior of $(1,5)$ as a subset of (\mathbb{R}, τ).
(d) Find the closure of $[-1,2]$ as a subset of (\mathbb{R}, τ).
(e) Find the closure of $(1,5)$ as a subset of (\mathbb{R}, τ).

