MATH 550, HOMEWORK 2

BASIS, ORDER TOPOLOGY, SUBSPACE TOPOLOGY, PRODUCT TOPOLOGY AND CLOSED SETS

Due end of day, Thursday, Sept. 21th Note that problems marked with a Q have appeared on past comprehensive exams.

Reading. Read $\S14,\,\S15,\,\S16$ and $\S17$ of Munkres. Problems.

- (1) Munkres $\S16$ exercise 4.
- (2) Munkres $\S16$ exercise 9.
- (3) Given a set X, prove that $\mathbb{B} = \{\{x\} | x \in X\}$ is a basis for the discrete topology on X.
- (4) Let \mathbb{R}^2 have the order topology induced by the dictionary order on \mathbb{R}^2 . Let $S^1 \subset \mathbb{R}^2$ be the standard unit circle. What is the better known name for the subspace topology induced on S^1 ? Prove your answer.
- (5) Q: Assume X and Y are topological spaces and that $A \subset X$ and $B \subset Y$. Let $X \times Y$ have the product topology. Prove that $\overline{A \times B} = \overline{A} \times \overline{B}$.
- (6) Q: Are the following true or false. Give a proof or counter example.
 - (a) $\overline{int(A)} \subset int(\overline{A})$.
 - (b) $int(\overline{A}) \subset \overline{int(A)}$.
 - (c) $\overline{A_1 \cup A_2 \cup A_3 \cup \ldots} = \overline{A_1} \cup \overline{A_2} \cup \overline{A_3} \cup \ldots$
 - (d) $\overline{A-B} = \overline{A} \overline{B}$.