Math 123: Trig Substitution

Ryan Blair
CSU Long Beach

Wednesday Sept. 6, 2017

Outline

(1) Trig Substitution

A Motivating Example

Find $\int_{-1}^{1} \sqrt{1-x^{2}} d x$ in two different ways.
Method One: Geometric.

Method Two: Using Trigonometric identities.

A Motivating Example

Find $\int_{-1}^{1} \sqrt{1-x^{2}} d x$ in two different ways.
Method One: Geometric. Since $y=\sqrt{1-x^{2}}$ is the top half of the unit circle, use definition of integral as area under the curve.

Method Two: Using Trigonometric identities.

A Motivating Example

Find $\int_{-1}^{1} \sqrt{1-x^{2}} d x$ in two different ways.
Method One: Geometric. Since $y=\sqrt{1-x^{2}}$ is the top half of the unit circle, use definition of integral as area under the curve.

Method Two: Using Trigonometric identities. Make the substitution $x=\sin (\theta)$ and use $\cos ^{2}(\theta)+\sin ^{2}(\theta)=1$.

Trig Substitution

For integrals involving $\sqrt{a^{2}-x^{2}}, \sqrt{x^{2}-a^{2}}$ or $\sqrt{x^{2}+a^{2}}$ where a is a constant, we can often integrate by constructing a right triangle with one of these values as a side length.

Trig Substitution

For integrals involving $\sqrt{a^{2}-x^{2}}, \sqrt{x^{2}-a^{2}}$ or $\sqrt{x^{2}+a^{2}}$ where a is a constant, we can often integrate by constructing a right triangle with one of these values as a side length.

Method Three: Find $\int_{-1}^{1} \sqrt{1-x^{2}} d x$ by building the relevant right triangle and making a substitution.

Trig Substitution

For integrals involving $\sqrt{a^{2}-x^{2}}, \sqrt{x^{2}-a^{2}}$ or $\sqrt{x^{2}+a^{2}}$ where a is a constant, we can often integrate by constructing a right triangle with one of these values as a side length.

Method Three: Find $\int_{-1}^{1} \sqrt{1-x^{2}} d x$ by building the relevant right triangle and making a substitution.

Example:Find $\int \frac{1}{x^{2} \sqrt{x^{2}+9}}$
Example:Find $\int \frac{1}{\sqrt{x^{2}-4}}$

