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Syllabus Highlights

Syllabus Highlights

Course Webpage:
http://www.csulb.edu/∼rblair/Math123F17/index.html

Here you will find

1 Lecture slides
2 Course Calendar
3 A link to WebAssign
4 Instructions for accessing WebAssign
5 A copy of the syllabus
6 A link to Beachboard (where your quiz, homework and test

scores are posted)
7 Other useful links
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Syllabus Highlights

Text

Required Text: Stewart, Essential Calculus: Early Transcendentals,
Second Edition + Supplemental Materials (These are available in a
bundle from the book store or for free online).

Required Homework Platform: A subscription to WebAssign.
Homework for today: Log in to WebAssign!!!!
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Syllabus Highlights

Redesigned Calc. Sequence

Big Changes

1 Coordinated homeworks, exams and content.
2 More emphasis an test preparation.
3 Mandatory supplemental instruction for students that are not

exempt (However, all students are welcome).
4 Collaborative work in Activity Sections.

Goal: Get more students to pass Math 123!!!
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Syllabus Highlights

Grading

1 7% Webassign
2 6% Show your work
3 7% Activity Assignments
4 10% Maintenance and Improvement
5 15% Midterm 1
6 15% Midterm 2
7 15% Midterm 3
8 25% Final
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Syllabus Highlights

Homework

1 Online on WebAssign (http://www.webassign.net/)
2 Class key is csulb 7761 9948.
3 Access Code is sold online at the webassign web page or with the

text book package from the library.
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Syllabus Highlights

Exams

Mark your calendars

1 Midterm 1: September 27
2 Midterm 2: October 25
3 Midterm 3: November 29
4 Final: December 13
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Syllabus Highlights

Classroom Decorum:

1 No Talking
2 No Texting
3 Cellphone Ringers Off
4 Laptops and cell phones only used for class activities.
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Syllabus Highlights

Adding the Course

Speak to me about adding the class after class.

Space is limited.
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Syllabus Highlights

Grading

Grades will be computed by the following absolute scale:
1 A 85 − 100%
2 B 75 − 85%
3 C 65 − 75%
4 D 55 − 65%
5 F 0 − 55%
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Syllabus Highlights

Be Aware

1 Accommodations because of a disability
2 Withdraw
3 Academic Integrity
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Review of Integration

Fundamental Theorem of Integration

If F ′(x) = f (x), then by definition F (x) is an antiderivative of f (x)
and

∫
f (x)dx = F (x) + c .

Examples: Evaluate
∫

exdx .

Theorem

(Fundamental Theorem of Calculus, Part 2) If f is continuous on
[a, b], then ∫ b

a

f (x)dx = F (b) − F (a)

Where F is any antiderivative of f .

Examples: Evaluate
∫ 1

0
x2 + 1dx .
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Review of Integration

U-Substitution for definite integrals

Theorem

If u = g(x) is a differentiable function and f is continuous, then∫
f (g(x))g ′(x)dx =

∫
f (u)du

Examples: Evaluate
∫

xex2dx .
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Integration By Parts

Integration by Parts

∫
u(x)v ′(x)dx = u(x)v(x) −

∫
u′(x)v(x)dx

Exercise: Derive the above equality by using the product rule to find
the derivative of u(x)v(x).
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Integration By Parts

Integration by Parts

∫
u(x)v ′(x)dx = u(x)v(x) −

∫
u′(x)v(x)dx

Example: Find
∫

xexdx .
Key: Let u be the function that gets simpler as you differentiate.
Example: Derive the above formula from the product rule for
derivatives and the fundamental theorem of calculus.
Example: Find

∫
x2sin(x)dx .

Key: Multiple iterations may be necessary.
Example: Find

∫
cos(x)exdx .

Key: If the original integral reappears then we are done!
Example: Find

∫
ln(x)dx .

Key: Sometimes by-parts can be used to integrate functions we know
how to differentiate.
Example: Find

∫
(2x + 1)ln(x)dx .
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