MATH 123 PRACTICE MIDTERM 2 NAME (PRINTED): DISCUSSION TIME: Please turn off all electronic devices. You may use both sides of a 8.5×11 sheet of paper for notes while you take this exam. No calculators, no course notes, no books, no help from your neighbors. Show all work—the grading will be based on your work shown as well as the end result. Remember to put your name at the top of this page. Good luck. | Problem | Score (out of) | |---------|----------------| | 1 | (10) | | 2 | (10) | | 3 | (10) | | 4 | (10) | | 5 | (10) | | 6 | (10) | | 7 | (10) | | Total | (70) | 1. (10 pts) Find the volume of the solid obtained by rotating the region bounded by the circle of radius 1 centered at (2,0) about the y-axis. - 2. (10 pts) Write down the integral representing the the volume of the solid obtained by rotating the region bounded by $y=x^2$, $y=-\sqrt{x}+2$ and the x-axis about the x-axis using the: - A) Shell Method B) Disk Method 3. (10 pts) Solve the following D.E. $$\frac{dy}{dx} = \frac{(x+1)tan(y)}{(x^2+1)sec^2(y)}$$ 4. (10 pts) Solve y' - 3y = 0. 5. A 60 lb cable is 90 ft long and hangs vertically from the top of a tall building. There is a leaky bucket containing 120 lb of water tied to the end of the cable. If the water leaks out at a constant rate and half the water is gone by the time the cable is lifted to the top of the building, how much work is required to lift the cable and bucket **two-thirds** of the way to the top of the building. 6. (10 pts) Find two distinct, linearly independent functions f(x) and g(x) that are solutions to the following D.E. $$y'' + 4y' + 4y = 0$$ - A) Show that f(x) and g(x) are solutions - B) Show that f(x) and g(x) are linearly independent. - C) Find the general solution to the above D.E. 7. (10 pts) Find the length of the curve $y = x^2$ from x = 0 to x = 1.