Math 123: Approximate Integration

Ryan Blair

CSU Long Beach
Tuesday September 6, 2016

Outline

(1) Approximating Definite Integrals

Definition

(Definite Integral)If f is a function defined for $a \leq x \leq b$, we divide the interval $[a, b]$ into n subintervals of equal width $\Delta x=\frac{b-a}{n}$. We let $x_{0}(=a), x_{1}, x_{2}, \ldots, x_{n}(=b)$ be the endpoints of these subintervals and we let $x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}$ be any sample points in these subintervals. Then the definite integral of f from a to b is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

provided that this limit exists. If it does exist, we say that f is integrable on $[a, b]$.

Picking Sample points and Approx. Integrals

$\int_{a}^{b} f(x) d x$ is approximated by each of the following

$$
\begin{gathered}
R_{n}=f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\ldots+f\left(x_{n}\right) \Delta x \\
L_{n}=f\left(x_{0}\right) \Delta x+f\left(x_{1}\right) \Delta x+\ldots+f\left(x_{n-1}\right) \Delta x \\
M_{n}=f\left(\frac{1}{2}\left(x_{0}+x_{1}\right)\right) \Delta x+f\left(\frac{1}{2}\left(x_{1}+x_{2}\right)\right) \Delta x+\ldots+f\left(\frac{1}{2}\left(x_{n-1}+x_{n}\right)\right) \Delta x
\end{gathered}
$$

Picking Sample points and Approx. Integrals

$\int_{a}^{b} f(x) d x$ is approximated by each of the following

$$
\begin{gathered}
R_{n}=f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\ldots+f\left(x_{n}\right) \Delta x \\
L_{n}=f\left(x_{0}\right) \Delta x+f\left(x_{1}\right) \Delta x+\ldots+f\left(x_{n-1}\right) \Delta x
\end{gathered}
$$

$M_{n}=f\left(\frac{1}{2}\left(x_{0}+x_{1}\right)\right) \Delta x+f\left(\frac{1}{2}\left(x_{1}+x_{2}\right)\right) \Delta x+\ldots+f\left(\frac{1}{2}\left(x_{n-1}+x_{n}\right)\right) \Delta x$
Example Find R_{4} for $\int_{0}^{1} x^{2} d x$ (is this an under estimate or an over estimate?)

Picking Sample points and Approx. Integrals

$\int_{a}^{b} f(x) d x$ is approximated by each of the following

$$
\begin{gathered}
R_{n}=f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\ldots+f\left(x_{n}\right) \Delta x \\
L_{n}=f\left(x_{0}\right) \Delta x+f\left(x_{1}\right) \Delta x+\ldots+f\left(x_{n-1}\right) \Delta x
\end{gathered}
$$

$M_{n}=f\left(\frac{1}{2}\left(x_{0}+x_{1}\right)\right) \Delta x+f\left(\frac{1}{2}\left(x_{1}+x_{2}\right)\right) \Delta x+\ldots+f\left(\frac{1}{2}\left(x_{n-1}+x_{n}\right)\right) \Delta x$
Example Find R_{4} for $\int_{0}^{1} x^{2} d x$ (is this an under estimate or an over estimate?)
Example Find L_{4} for $\int_{0}^{1} x^{2} d x$ (is this an under estimate or an over estimate?)

Picking Sample points and Approx. Integrals

$\int_{a}^{b} f(x) d x$ is approximated by each of the following

$$
\begin{gathered}
R_{n}=f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\ldots+f\left(x_{n}\right) \Delta x \\
L_{n}=f\left(x_{0}\right) \Delta x+f\left(x_{1}\right) \Delta x+\ldots+f\left(x_{n-1}\right) \Delta x
\end{gathered}
$$

$M_{n}=f\left(\frac{1}{2}\left(x_{0}+x_{1}\right)\right) \Delta x+f\left(\frac{1}{2}\left(x_{1}+x_{2}\right)\right) \Delta x+\ldots+f\left(\frac{1}{2}\left(x_{n-1}+x_{n}\right)\right) \Delta x$
Example Find R_{4} for $\int_{0}^{1} x^{2} d x$ (is this an under estimate or an over estimate?)
Example Find L_{4} for $\int_{0}^{1} x^{2} d x$ (is this an under estimate or an over estimate?)
Example Find M_{4} for $\int_{1}^{2} e^{x^{2}} d x$ (is this an under estimate or an over estimate?)

Approximating by Trapezoids

Recall that the area of a trapezoid with parallel sides of length a and b and of height h is

$$
A=\frac{1}{2}(a+b) h
$$

When we use trapezoids to approximate the area under the curve, we get

$$
T_{n}=\frac{1}{2} \Delta x\left(f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\ldots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)
$$

Approximating by Trapezoids

Recall that the area of a trapezoid with parallel sides of length a and b and of height h is

$$
A=\frac{1}{2}(a+b) h
$$

When we use trapezoids to approximate the area under the curve, we get

$$
T_{n}=\frac{1}{2} \Delta x\left(f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\ldots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)
$$

Example Show T_{n} is the average of L_{n} and R_{n}

Approximating by Trapezoids

Recall that the area of a trapezoid with parallel sides of length a and b and of height h is

$$
A=\frac{1}{2}(a+b) h
$$

When we use trapezoids to approximate the area under the curve, we get

$$
T_{n}=\frac{1}{2} \Delta x\left(f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\ldots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)
$$

Example Show T_{n} is the average of L_{n} and R_{n} Example Find T_{4} for $\int_{0}^{1} x^{2} d x$

Simpson's Rule

First, find a useful formula for the area under the parabola $A x^{2}+B x+C$ from $x=-h$ to $x=h$.
We can use this to show that

$$
\begin{gathered}
S_{n}=\frac{1}{3} \Delta x\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\ldots\right. \\
\left.\ldots+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)
\end{gathered}
$$

is an approximation of $\int_{a}^{b} f(x) d x$.

Simpson's Rule

First, find a useful formula for the area under the parabola $A x^{2}+B x+C$ from $x=-h$ to $x=h$.
We can use this to show that

$$
\begin{gathered}
S_{n}=\frac{1}{3} \Delta x\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\ldots\right. \\
\left.\ldots+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)
\end{gathered}
$$

is an approximation of $\int_{a}^{b} f(x) d x$.
Example Find S_{4} for $\int_{0}^{1} x^{2} d x$

