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© Types of D.Es

@ Solving D.E.s Using Auxiliary Equations
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A second order linear D.E. is of the form

y'+ P(x)y’+ Q(x)y = R(x)
If R(x) =0 we call the D.E. homogeneous.

If P(x) and Q(x) are constants then y” + P(x)y’ + Q(x)y = R(x) is
constant coefficient.
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and b.

Given a homogeneous linear differential equation with solutions f(x)
and g(x) then a- f(x)+ b- g(x) is also a solution for any constants a

«O>» «Fr «=»>» «E=)» =] Q>



Types of D.E.s

Solutions to Homogeneous D.E.s

Theorem

Given a homogeneous linear differential equation with solutions f(x)

and g(x) then a- f(x) + b- g(x) is also a solution for any constants a
and b.

Theorem

Given a 2nd order homogeneous linear differential equation with
linearly independent solutions f(x) and g(x), then the general
solution is y = Cif(x) + Gg(x) where C; and G, are constants.
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Our goal is to solve constant-coefficient, linear, 2nd-order,
homogeneous differential equations.
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Our goal is to solve constant-coefficient, linear, 2nd-order,
homogeneous differential equations.

What if we guess y = ™ as a solution to y” + y' — 6y = 07

«O> «F>r «=» «E» Q>



Solving D.E.s Using Auxiliary Equations

A Motivating Example

Our goal is to solve constant-coefficient, linear, 2nd-order,
homogeneous differential equations.

What if we guess y = ™ as a solution to y” + y' — 6y = 07

What if we guess y = ™ as a solution to ay” + by’ + cy = 07
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Solving D.E.s Using Auxiliary Equations

A Motivating Example

Our goal is to solve constant-coefficient, linear, 2nd-order,
homogeneous differential equations.

What if we guess y = ™ as a solution to y” + y' — 6y = 07
What if we guess y = ™ as a solution to ay” + by’ + cy = 07

In this case, we get €™ (am? + bm + c) = 0. There are three
possibilities for the roots of a quadratic equation.
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If am? 4 bm + ¢ has distinct roots m; and m,, then the general
solution to ay” + by’ +cy =0 is

y = cie™ + e™
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ay" + by +cy=0is

If am? 4+ bm + ¢ has a repeated root my, then the general solution to
y =ce™

+ coxe™x
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e’ = cos(0) + isin(0)



If am? + bm + ¢ has complex roots m; = a + i3 and m, = a — i3,
then the general solution to ay” + by’ + cy =0 is

y = cie®cos(fx) + c,e**sin(x)
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Given a linear 2nd order homogeneous constant-coefficient
differential equation

ay” + by’ + cy =0,
the Auxiliary Equation is

am?+bm+c=0.
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Auxiliary Equations

Given a linear 2nd order homogeneous constant-coefficient
differential equation

ay” + by’ +cy =0,
the Auxiliary Equation is
am? + bm + ¢ = 0.

The roots of the auxiliary equation determines the general
solution.
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