Math 123: Trig Substitution and Partial Fractions

Ryan Blair
CSU Long Beach

Thursday September 5, 2013

Outline

(1) Trig Substitution

(2) Partial Fraction Expansion

Trig Substitution

For integrals involving $\sqrt{a^{2}-x^{2}}, \sqrt{x^{2}-a^{2}}$ or $\sqrt{x^{2}+a^{2}}$ where a is a constant, we can often integrate by constructing a right triangle with one of these values as a side length.

Trig Substitution

For integrals involving $\sqrt{a^{2}-x^{2}}, \sqrt{x^{2}-a^{2}}$ or $\sqrt{x^{2}+a^{2}}$ where a is a constant, we can often integrate by constructing a right triangle with one of these values as a side length.

Example:Find $\int \frac{1}{\sqrt{x^{2}-4}}$

Trig Substitution

For integrals involving $\sqrt{a^{2}-x^{2}}, \sqrt{x^{2}-a^{2}}$ or $\sqrt{x^{2}+a^{2}}$ where a is a constant, we can often integrate by constructing a right triangle with one of these values as a side length.

Example:Find $\int \frac{1}{\sqrt{x^{2}-4}}$
Example:Find $\int \frac{x^{2}}{\sqrt{9-25 x^{2}}}$

Making Hard Integrals Easy

Here is an easy integral

$$
\int \frac{1}{x-3}+\frac{2}{x-4} d x
$$

Here is a hard integral

$$
\int \frac{3 x-10}{x^{2}-7 x+12} d x
$$

Making Hard Integrals Easy

Here is an easy integral

$$
\int \frac{1}{x-3}+\frac{2}{x-4} d x
$$

Here is a hard integral

$$
\int \frac{3 x-10}{x^{2}-7 x+12} d x
$$

But, these are algebraically the SAME!

Making Hard Integrals Easy

Here is an easy integral

$$
\int \frac{1}{x-3}+\frac{2}{x-4} d x
$$

Here is a hard integral

$$
\int \frac{3 x-10}{x^{2}-7 x+12} d x
$$

But, these are algebraically the SAME!
Key Idea: The method of partial fractions expresses rational functions $\frac{p(x)}{q(x)}$ as the sum of simple fractions that we can integrate.

Steps of Partial Fraction Expansion

When $p(x)$ and $q(x)$ are polynomials, we want to find

$$
\int \frac{p(x)}{q(x)} d x
$$

Steps of Partial Fraction Expansion

When $p(x)$ and $q(x)$ are polynomials, we want to find

$$
\int \frac{p(x)}{q(x)} d x
$$

Step 1: If $\operatorname{deg}(p(x)) \geq \operatorname{deg}(q(x))$, then divide.
Example:Find $\int \frac{x^{2}-4 x+2}{x^{2}-7 x+12}$

Steps of Partial Fraction Expansion

When $p(x)$ and $q(x)$ are polynomials, we want to find

$$
\int \frac{p(x)}{q(x)} d x
$$

Step 1: If $\operatorname{deg}(p(x)) \geq \operatorname{deg}(q(x))$, then divide.
Example:Find $\int \frac{x^{2}-4 x+2}{x^{2}-7 x+12}$
Step 2: Factor the denominator (sometimes this is quite hard) Example: Completely factor $x^{3}-x$.

When the Denominator has all Distinct Linear Factors

Step 3: Depends on the factorization Recall we are interested in evaluating $\int \frac{p(x)}{q(x)}$

When the Denominator has all Distinct Linear Factors

Step 3: Depends on the factorization
Recall we are interested in evaluating $\int \frac{p(x)}{q(x)}$
Case 1: $q(x)$ is the product of distinct linear factors

$$
q(x)=\left(a_{1} x+b_{1}\right)\left(a_{2} x+b_{1}\right) \ldots\left(a_{k} x+b_{k}\right)
$$

In this case we let

$$
\frac{p(x)}{q(x)}=\frac{A_{1}}{\left(a_{1} x+b_{1}\right)}+\frac{A_{2}}{\left(a_{2} x+b_{1}\right)}+\ldots+\frac{A_{k}}{\left(a_{k} x+b_{k}\right)}
$$

and we solve algebraically for $A_{1}, A_{2}, \ldots, A_{k}$.
Example Find $\int \frac{3 x-10}{x^{2}-7 x+12} d x$

When the Denominator has all Distinct Linear Factors

Step 3: Depends on the factorization
Recall we are interested in evaluating $\int \frac{p(x)}{q(x)}$
Case 1: $q(x)$ is the product of distinct linear factors

$$
q(x)=\left(a_{1} x+b_{1}\right)\left(a_{2} x+b_{1}\right) \ldots\left(a_{k} x+b_{k}\right)
$$

In this case we let

$$
\frac{p(x)}{q(x)}=\frac{A_{1}}{\left(a_{1} x+b_{1}\right)}+\frac{A_{2}}{\left(a_{2} x+b_{1}\right)}+\ldots+\frac{A_{k}}{\left(a_{k} x+b_{k}\right)}
$$

and we solve algebraically for $A_{1}, A_{2}, \ldots, A_{k}$.
Example Find $\int \frac{3 x-10}{x^{2}-7 x+12} d x$
Example Find $\int \frac{1}{x^{3}-x} d x$

When the Denominator has Repeated Linear Factors

Step 3: Case 2: $q(x)$ is the product of linear factors, some of which are repeated

Example:

$$
\frac{x^{2}-3 x+4}{(x-2)^{2}(x+3)^{3}}=\frac{A_{1}}{(x-2)}+\frac{A_{2}}{(x-2)^{2}}+\frac{A_{3}}{(x+3)}+\frac{A_{4}}{(x+3)^{2}}+\frac{A_{5}}{(x+3)^{3}}
$$

When the Denominator has Repeated Linear Factors

Step 3: Case 2: $q(x)$ is the product of linear factors, some of which are repeated

Example:

$\frac{x^{2}-3 x+4}{(x-2)^{2}(x+3)^{3}}=\frac{A_{1}}{(x-2)}+\frac{A_{2}}{(x-2)^{2}}+\frac{A_{3}}{(x+3)}+\frac{A_{4}}{(x+3)^{2}}+\frac{A_{5}}{(x+3)^{3}}$
Key Idea: If $(x-a)$ appears n times in the factorization, we need n fractions on the right, one for each power.

When the Denominator has Repeated Linear Factors

Step 3: Case 2: $q(x)$ is the product of linear factors, some of which are repeated

Example:

$\frac{x^{2}-3 x+4}{(x-2)^{2}(x+3)^{3}}=\frac{A_{1}}{(x-2)}+\frac{A_{2}}{(x-2)^{2}}+\frac{A_{3}}{(x+3)}+\frac{A_{4}}{(x+3)^{2}}+\frac{A_{5}}{(x+3)^{3}}$
Key Idea: If $(x-a)$ appears n times in the factorization, we need n fractions on the right, one for each power.
Example: $\int \frac{x^{2}+2}{(x-1)^{2}(x+2)} d x$

When the Denominator has Repeated Linear Factors

Step 3: Case 2: $q(x)$ is the product of linear factors, some of which are repeated

Example:

$\frac{x^{2}-3 x+4}{(x-2)^{2}(x+3)^{3}}=\frac{A_{1}}{(x-2)}+\frac{A_{2}}{(x-2)^{2}}+\frac{A_{3}}{(x+3)}+\frac{A_{4}}{(x+3)^{2}}+\frac{A_{5}}{(x+3)^{3}}$
Key Idea: If $(x-a)$ appears n times in the factorization, we need n fractions on the right, one for each power.
Example: $\int \frac{x^{2}+2}{(x-1)^{2}(x+2)} d x$
Example: $\int \frac{x^{2}+1}{(x-3)(x-2)^{2}} d x$

When the Denominator has all Irreducible Quadratic

Factors

Irreducible Quadratics can not be factored into linear factors (over the reals).

$$
x^{2}+1,2 x^{2}-2 x+4,-3 x^{2}+x-1
$$

Question: How do we find a partial fraction expansion if the denominator contains irreducible quadratics

Key Idea: For each irreducible quadratic factor we add one fraction to the right with numerator $A x+B$.

When the Denominator has all Irreducible Quadratic

Factors

Irreducible Quadratics can not be factored into linear factors (over the reals).

$$
x^{2}+1,2 x^{2}-2 x+4,-3 x^{2}+x-1
$$

Question: How do we find a partial fraction expansion if the denominator contains irreducible quadratics

$$
\frac{x^{2}-3 x+4}{\left(x^{2}+1\right)\left(2 x^{2}-2 x+4\right)}=\frac{A x+B}{\left(x^{2}+1\right)}+\frac{C x+D}{\left(2 x^{2}-2 x+4\right)}
$$

Key Idea: For each irreducible quadratic factor we add one fraction to the right with numerator $A x+B$.

When the Denominator has all Irreducible Quadratic

Factors

Irreducible Quadratics can not be factored into linear factors (over the reals).

$$
x^{2}+1,2 x^{2}-2 x+4,-3 x^{2}+x-1
$$

Question: How do we find a partial fraction expansion if the denominator contains irreducible quadratics

$$
\frac{x^{2}-3 x+4}{\left(x^{2}+1\right)\left(2 x^{2}-2 x+4\right)}=\frac{A x+B}{\left(x^{2}+1\right)}+\frac{C x+D}{\left(2 x^{2}-2 x+4\right)}
$$

Key Idea: For each irreducible quadratic factor we add one fraction to the right with numerator $A x+B$.
Example: $\int \frac{1}{(x-1)\left(x^{2}+1\right)} d x$

When the Denominator has all Irreducible Quadratic

Factors

Irreducible Quadratics can not be factored into linear factors (over the reals).

$$
x^{2}+1,2 x^{2}-2 x+4,-3 x^{2}+x-1
$$

Question: How do we find a partial fraction expansion if the denominator contains irreducible quadratics

$$
\frac{x^{2}-3 x+4}{\left(x^{2}+1\right)\left(2 x^{2}-2 x+4\right)}=\frac{A x+B}{\left(x^{2}+1\right)}+\frac{C x+D}{\left(2 x^{2}-2 x+4\right)}
$$

Key Idea: For each irreducible quadratic factor we add one fraction to the right with numerator $A x+B$.
Example: $\int \frac{1}{(x-1)\left(x^{2}+1\right)} d x$
Example: $\int \frac{x+1}{x^{3}+4 x} d x$

