Math 123: Trig Substitution and Partial Fractions

Ryan Blair

CSU Long Beach

Thursday September 5, 2013

Ryan Blair (CSULB)

Trig Sub and Partial Fractions

 → Ξ → Thursday September 5, 2013 1/8

3

Ryan Blair (CSULB)

Trig Sub and Partial Fractions

(4) E (4) E (4) Thursday September 5, 2013 2 / 8

Image: A matrix

E

590

For integrals involving $\sqrt{a^2 - x^2}$, $\sqrt{x^2 - a^2}$ or $\sqrt{x^2 + a^2}$ where *a* is a constant, we can often integrate by constructing a right triangle with one of these values as a side length.

イロト 不得下 イヨト イヨト 二日

For integrals involving $\sqrt{a^2 - x^2}$, $\sqrt{x^2 - a^2}$ or $\sqrt{x^2 + a^2}$ where *a* is a constant, we can often integrate by constructing a right triangle with one of these values as a side length.

Example:Find $\int \frac{1}{\sqrt{x^2-4}}$

イロト 不得 トイヨト イヨト 二日

For integrals involving $\sqrt{a^2 - x^2}$, $\sqrt{x^2 - a^2}$ or $\sqrt{x^2 + a^2}$ where *a* is a constant, we can often integrate by constructing a right triangle with one of these values as a side length.

Example:Find $\int \frac{1}{\sqrt{x^2-4}}$ **Example:**Find $\int \frac{x^2}{\sqrt{9-25x^2}}$

Making Hard Integrals Easy

Here is an easy integral

$$\int \frac{1}{x-3} + \frac{2}{x-4} dx$$

Here is a hard integral

$$\int \frac{3x-10}{x^2-7x+12} dx$$

Ryan Blair (CSULB)

3

A B F A B F

< □ > < 同 >

Making Hard Integrals Easy

Here is an easy integral

$$\int \frac{1}{x-3} + \frac{2}{x-4} dx$$

Here is a hard integral

$$\int \frac{3x-10}{x^2-7x+12} dx$$

But, these are algebraically the SAME!

Making Hard Integrals Easy

Here is an easy integral

$$\int \frac{1}{x-3} + \frac{2}{x-4} dx$$

Here is a hard integral

$$\int \frac{3x-10}{x^2-7x+12} dx$$

But, these are algebraically the SAME!

Key Idea: The method of partial fractions expresses rational functions $\frac{p(x)}{q(x)}$ as the sum of simple fractions that we can integrate.

Steps of Partial Fraction Expansion

When p(x) and q(x) are polynomials, we want to find

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Steps of Partial Fraction Expansion

When p(x) and q(x) are polynomials, we want to find

 $\int \frac{p(x)}{q(x)} dx$

Step 1: If $deg(p(x)) \ge deg(q(x))$, then divide. **Example:**Find $\int \frac{x^2-4x+2}{x^2-7x+12}$

Steps of Partial Fraction Expansion

When p(x) and q(x) are polynomials, we want to find

$$\int \frac{p(x)}{q(x)} dx$$

Step 1: If $deg(p(x)) \ge deg(q(x))$, then divide. **Example:**Find $\int \frac{x^2-4x+2}{x^2-7x+12}$

Step 2: Factor the denominator (sometimes this is quite hard) **Example:** Completely factor $x^3 - x$.

When the Denominator has all Distinct Linear Factors

Step 3: Depends on the factorization Recall we are interested in evaluating $\int \frac{p(x)}{q(x)}$

When the Denominator has all Distinct Linear Factors

Step 3: Depends on the factorization Recall we are interested in evaluating $\int \frac{p(x)}{q(x)}$ **Case 1:** q(x) is the product of distinct linear factors

$$q(x) = (a_1x + b_1)(a_2x + b_1)...(a_kx + b_k)$$

In this case we let

$$\frac{p(x)}{q(x)} = \frac{A_1}{(a_1x + b_1)} + \frac{A_2}{(a_2x + b_1)} + \dots + \frac{A_k}{(a_kx + b_k)}$$

and we solve algebraically for $A_1, A_2, ..., A_k$. **Example** Find $\int \frac{3x-10}{x^2-7x+12} dx$

Ryan Blair (CSULB)

When the Denominator has all Distinct Linear Factors

Step 3: Depends on the factorization Recall we are interested in evaluating $\int \frac{p(x)}{q(x)}$ **Case 1:** q(x) is the product of distinct linear factors

$$q(x) = (a_1x + b_1)(a_2x + b_1)...(a_kx + b_k)$$

In this case we let

$$\frac{p(x)}{q(x)} = \frac{A_1}{(a_1x + b_1)} + \frac{A_2}{(a_2x + b_1)} + \dots + \frac{A_k}{(a_kx + b_k)}$$

and we solve algebraically for $A_1, A_2, ..., A_k$. **Example** Find $\int \frac{3x-10}{x^2-7x+12} dx$ **Example** Find $\int \frac{1}{x^3-x} dx$

Step 3: Case 2: q(x) is the product of linear factors, some of which are repeated

Example:

$$\frac{x^2 - 3x + 4}{(x - 2)^2(x + 3)^3} = \frac{A_1}{(x - 2)} + \frac{A_2}{(x - 2)^2} + \frac{A_3}{(x + 3)} + \frac{A_4}{(x + 3)^2} + \frac{A_5}{(x + 3)^3}$$

Image: Image:

Step 3: Case 2: q(x) is the product of linear factors, some of which are repeated

Example:

$$\frac{x^2 - 3x + 4}{(x - 2)^2(x + 3)^3} = \frac{A_1}{(x - 2)} + \frac{A_2}{(x - 2)^2} + \frac{A_3}{(x + 3)} + \frac{A_4}{(x + 3)^2} + \frac{A_5}{(x + 3)^3}$$

Key Idea: If (x - a) appears *n* times in the factorization, we need *n* fractions on the right, one for each power.

Step 3: Case 2: q(x) is the product of linear factors, some of which are repeated

Example:

$$\frac{x^2 - 3x + 4}{(x - 2)^2(x + 3)^3} = \frac{A_1}{(x - 2)} + \frac{A_2}{(x - 2)^2} + \frac{A_3}{(x + 3)} + \frac{A_4}{(x + 3)^2} + \frac{A_5}{(x + 3)^3}$$

Key Idea: If (x - a) appears *n* times in the factorization, we need *n* fractions on the right, one for each power. **Example:** $\int \frac{x^2+2}{(x-1)^2(x+2)} dx$

▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 = • • ○ � () ●

Step 3: Case 2: q(x) is the product of linear factors, some of which are repeated

Example:

$$\frac{x^2 - 3x + 4}{(x - 2)^2(x + 3)^3} = \frac{A_1}{(x - 2)} + \frac{A_2}{(x - 2)^2} + \frac{A_3}{(x + 3)} + \frac{A_4}{(x + 3)^2} + \frac{A_5}{(x + 3)^3}$$

Key Idea: If (x - a) appears *n* times in the factorization, we need *n* fractions on the right, one for each power. **Example:** $\int \frac{x^2+2}{(x-1)^2(x+2)} dx$ **Example:** $\int \frac{x^2+1}{(x-3)(x-2)^2} dx$

A = A = A = ØQQ
A

Irreducible Quadratics can not be factored into linear factors (over the reals).

$$x^{2} + 1, 2x^{2} - 2x + 4, -3x^{2} + x - 1$$

Question: How do we find a partial fraction expansion if the denominator contains irreducible quadratics

Key Idea: For each irreducible quadratic factor we add one fraction to the right with numerator Ax + B.

Irreducible Quadratics can not be factored into linear factors (over the reals).

$$x^{2} + 1, 2x^{2} - 2x + 4, -3x^{2} + x - 1$$

Question: How do we find a partial fraction expansion if the denominator contains irreducible quadratics

$$\frac{x^2 - 3x + 4}{(x^2 + 1)(2x^2 - 2x + 4)} = \frac{Ax + B}{(x^2 + 1)} + \frac{Cx + D}{(2x^2 - 2x + 4)}$$

Key Idea: For each irreducible quadratic factor we add one fraction to the right with numerator Ax + B.

Irreducible Quadratics can not be factored into linear factors (over the reals).

$$x^{2} + 1, 2x^{2} - 2x + 4, -3x^{2} + x - 1$$

Question: How do we find a partial fraction expansion if the denominator contains irreducible quadratics

$$\frac{x^2 - 3x + 4}{(x^2 + 1)(2x^2 - 2x + 4)} = \frac{Ax + B}{(x^2 + 1)} + \frac{Cx + D}{(2x^2 - 2x + 4)}$$

Key Idea: For each irreducible quadratic factor we add one fraction to the right with numerator Ax + B. **Example:** $\int \frac{1}{(x-1)(x^2+1)} dx$

Irreducible Quadratics can not be factored into linear factors (over the reals).

$$x^{2} + 1, 2x^{2} - 2x + 4, -3x^{2} + x - 1$$

Question: How do we find a partial fraction expansion if the denominator contains irreducible quadratics

$$\frac{x^2 - 3x + 4}{(x^2 + 1)(2x^2 - 2x + 4)} = \frac{Ax + B}{(x^2 + 1)} + \frac{Cx + D}{(2x^2 - 2x + 4)}$$

Key Idea: For each irreducible quadratic factor we add one fraction to the right with numerator Ax + B.

Example:
$$\int \frac{1}{(x-1)(x^2+1)} dx$$

Example:
$$\int \frac{x+1}{x^3+4x} dx$$

Ryan Blair (CSULB)

Thursday September 5, 2013 8 /