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Trig Substitution

Trig Substitution

For integrals involving
√
a2 − x2,

√
x2 − a2 or

√
x2 + a2 where a is a

constant, we can often integrate by constructing a right triangle with
one of these values as a side length.

Example:Find
∫

1√
x2−4

Example:Find
∫

x2√
9−25x2
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Partial Fraction Expansion

Making Hard Integrals Easy

Here is an easy integral ∫
1

x − 3
+

2

x − 4
dx

Here is a hard integral ∫
3x − 10

x2 − 7x + 12
dx

But, these are algebraically the SAME!

Key Idea: The method of partial fractions expresses rational
functions p(x)

q(x)
as the sum of simple fractions that we can integrate.
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Partial Fraction Expansion

Steps of Partial Fraction Expansion

When p(x) and q(x) are polynomials, we want to find∫
p(x)

q(x)
dx

Step 1: If deg(p(x)) ≥ deg(q(x)), then divide.

Example:Find
∫

x2−4x+2
x2−7x+12

Step 2: Factor the denominator (sometimes this is quite hard)
Example: Completely factor x3 − x .
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Partial Fraction Expansion

When the Denominator has all Distinct Linear Factors

Step 3: Depends on the factorization
Recall we are interested in evaluating

∫ p(x)
q(x)

Case 1: q(x) is the product of distinct linear factors

q(x) = (a1x + b1)(a2x + b1)...(akx + bk)

In this case we let

p(x)

q(x)
=

A1

(a1x + b1)
+

A2

(a2x + b1)
+ ... +

Ak

(akx + bk)

and we solve algebraically for A1,A2, ...,Ak .
Example Find

∫
3x−10

x2−7x+12
dx

Example Find
∫

1
x3−x dx
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Partial Fraction Expansion

When the Denominator has Repeated Linear Factors

Step 3: Case 2: q(x) is the product of linear factors, some of which
are repeated

Example:

x2 − 3x + 4

(x − 2)2(x + 3)3
=

A1

(x − 2)
+

A2

(x − 2)2
+

A3

(x + 3)
+

A4

(x + 3)2
+

A5

(x + 3)3

Key Idea: If (x − a) appears n times in the factorization, we need n
fractions on the right, one for each power.
Example:

∫
x2+2

(x−1)2(x+2)
dx

Example:
∫

x2+1
(x−3)(x−2)2dx

Ryan Blair (CSULB) Trig Sub and Partial Fractions Thursday September 5, 2013 7 / 8



Partial Fraction Expansion

When the Denominator has Repeated Linear Factors

Step 3: Case 2: q(x) is the product of linear factors, some of which
are repeated

Example:

x2 − 3x + 4

(x − 2)2(x + 3)3
=

A1

(x − 2)
+

A2

(x − 2)2
+

A3

(x + 3)
+

A4

(x + 3)2
+

A5

(x + 3)3

Key Idea: If (x − a) appears n times in the factorization, we need n
fractions on the right, one for each power.

Example:
∫

x2+2
(x−1)2(x+2)

dx

Example:
∫

x2+1
(x−3)(x−2)2dx

Ryan Blair (CSULB) Trig Sub and Partial Fractions Thursday September 5, 2013 7 / 8



Partial Fraction Expansion

When the Denominator has Repeated Linear Factors

Step 3: Case 2: q(x) is the product of linear factors, some of which
are repeated

Example:

x2 − 3x + 4

(x − 2)2(x + 3)3
=

A1

(x − 2)
+

A2

(x − 2)2
+

A3

(x + 3)
+

A4

(x + 3)2
+

A5

(x + 3)3

Key Idea: If (x − a) appears n times in the factorization, we need n
fractions on the right, one for each power.
Example:

∫
x2+2

(x−1)2(x+2)
dx

Example:
∫

x2+1
(x−3)(x−2)2dx

Ryan Blair (CSULB) Trig Sub and Partial Fractions Thursday September 5, 2013 7 / 8



Partial Fraction Expansion

When the Denominator has Repeated Linear Factors

Step 3: Case 2: q(x) is the product of linear factors, some of which
are repeated

Example:

x2 − 3x + 4

(x − 2)2(x + 3)3
=

A1

(x − 2)
+

A2

(x − 2)2
+

A3

(x + 3)
+

A4

(x + 3)2
+

A5

(x + 3)3

Key Idea: If (x − a) appears n times in the factorization, we need n
fractions on the right, one for each power.
Example:

∫
x2+2

(x−1)2(x+2)
dx

Example:
∫

x2+1
(x−3)(x−2)2dx

Ryan Blair (CSULB) Trig Sub and Partial Fractions Thursday September 5, 2013 7 / 8



Partial Fraction Expansion

When the Denominator has all Irreducible Quadratic
Factors

Irreducible Quadratics can not be factored into linear factors (over
the reals).

x2 + 1, 2x2 − 2x + 4,−3x2 + x − 1

Question: How do we find a partial fraction expansion if the
denominator contains irreducible quadratics

x2 − 3x + 4

(x2 + 1)(2x2 − 2x + 4)
=

Ax + B

(x2 + 1)
+

Cx + D

(2x2 − 2x + 4)

Key Idea: For each irreducible quadratic factor we add one fraction
to the right with numerator Ax + B .

Example:
∫

1
(x−1)(x2+1)

dx

Example:
∫

x+1
x3+4x

dx
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