Math 123: Volumes

Ryan Blair

CSU Long Beach

Tuesday September 17, 2013

Outline

(1) Review

(2) Intro to Volumes

(3) Volumes of Rotation

Area between Curves

Find the area between the following curve and the x-axis

$$
y=4-x^{2}
$$

by integrating with respect to x.

Area between Curves

Find the area between the following curve and the x-axis

$$
y=4-x^{2}
$$

by integrating with respect to x.
(1) Sketch the graphs and label roots of $4-x^{2}$.
(2) Draw rectangles representing the infinitesimal area
(3) Integrate the infinitesimal area with respect to x to find the total area.

Volume Basics

Same idea as areas: Cut up into "small pieces" of infinitesimal "volume elements" and then add up using the definite integral.

Volume Basics

Same idea as areas: Cut up into "small pieces" of infinitesimal "volume elements" and then add up using the definite integral.

Find the volume of a cylinder of height H and radius R by

Exercise 1: Slicing into horizontal disks.

Volume Basics

Same idea as areas: Cut up into "small pieces" of infinitesimal "volume elements" and then add up using the definite integral.

Find the volume of a cylinder of height H and radius R by

Exercise 1: Slicing into horizontal disks.
Exercise 2: Slicing into vertical rectangles.

Volume Basics

Same idea as areas: Cut up into "small pieces" of infinitesimal "volume elements" and then add up using the definite integral.

Find the volume of a cylinder of height H and radius R by

Exercise 1: Slicing into horizontal disks.
Exercise 2: Slicing into vertical rectangles.
Exercise 3: Slicing into vertical ... shells.

Volume of a Paraboloid

Find the volume of the solid obtained by rotating the region bounded by $y=x^{2}, x=0$ and $y=4$ about the y-axis by

Exercise 1: Slicing into horizontal disks.

Volume of a Paraboloid

Find the volume of the solid obtained by rotating the region bounded by $y=x^{2}, x=0$ and $y=4$ about the y-axis by

Exercise 1: Slicing into horizontal disks.
Exercise 2: Slicing into vertical shells.

Volumes of solids of rotation

Replace all x 's with y 's in the following formulas to get other valid expressions for volume.
Disks:
Vol $=\int_{a}^{b} \pi(\text { radius in terms of } x)^{2} d x$

Shells:

Vol $=\int_{a}^{b} 2 \pi($ radius in terms of $x)($ height in terms of $x) d x$

Washers:

$\mathrm{Vol}=$
$\int_{a}^{b} \pi(\text { outer radius in terms of } x)^{2}-\pi(\text { inner radius in terms of } x)^{2} d x$

Volumes of solids of rotation

Replace all x 's with y 's in the following formulas to get other valid expressions for volume.
Disks:
Vol $=\int_{a}^{b} \pi(\text { radius in terms of } x)^{2} d x$

Shells:

Vol $=\int_{a}^{b} 2 \pi($ radius in terms of $x)($ height in terms of $x) d x$

Washers:

$\mathrm{Vol}=$
$\int_{a}^{b} \pi(\text { outer radius in terms of } x)^{2}-\pi(\text { inner radius in terms of } x)^{2} d x$
Exercise: Find the volume of the object obtained by rotating the region bounded by the lines $y=x, y=1$ and $x=0$ about the x-axis.

