Math 123: Constant Coefficient 2nd Order Homogeneous Linear D.E.s

Ryan Blair

CSU Long Beach
Thursday December 5, 2013

Outline

(1) Solving D.E.s Using Auxiliary Equations

Motivation

Our goal is to solve constant-coefficient, linear, 2nd-order, homogeneous differential equations.

Given a linear 2nd order homogeneous constant-coefficient differential equation
$a y^{\prime \prime}+b y^{\prime}+c y=0$,
the Auxiliary Equation is
$a m^{2}+b m+c=0$.

Motivation

Our goal is to solve constant-coefficient, linear, 2nd-order, homogeneous differential equations.

Given a linear 2nd order homogeneous constant-coefficient differential equation
$a y^{\prime \prime}+b y^{\prime}+c y=0$,
the Auxiliary Equation is
$a m^{2}+b m+c=0$.

The roots of the auxiliary equation determines the general solution.

Case 1: Distinct Roots

If $a m^{2}+b m+c$ has distinct roots m_{1} and m_{2}, then the general solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$ is

$$
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}
$$

Case 2: Repeated Roots

If $a m^{2}+b m+c$ has a repeated root m_{1}, then the general solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$ is

$$
y=c_{1} e^{m_{1} x}+c_{2} x e^{m_{1} x}
$$

Magic!

$$
e^{i \theta}=\cos (\theta)+i \sin (\theta)
$$

Case 3: Complex Roots

If $a m^{2}+b m+c$ has complex roots $m_{1}=\alpha+i \beta$ and $m_{2}=\alpha-i \beta$, then the general solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$ is

$$
y=c_{1} e^{\alpha x} \cos (\beta x)+c_{2} e^{\alpha x} \sin (\beta x)
$$

