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Types of D.E.s

Types of Differential equations

Definition

A second order linear D.E. is of the form

y ′′ + P(x)y ′ + Q(x)y = R(x)

If R(x) = 0 we call the D.E. homogeneous.

Definition

If P(x) and Q(x) are constants then y ′′ + P(x)y ′ + Q(x)y = R(x) is
constant coefficient.
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Types of D.E.s

Solutions to Homogeneous D.E.s

Theorem

Given a homogeneous linear differential equation with solutions f (x)
and g(x) then a · f (x) + b · g(x) is also a solution for any constants a
and b.

Theorem

Given a 2nd order homogeneous linear differential equation with
linearly independent solutions f (x) and g(x), then the general
solution is y = C1f (x) + C2g(x) where C1 and C2 are constants.
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Solving D.E.s Using Auxiliary Equations

A Motivating Example

Our goal is to solve constant-coefficient, linear, 2nd-order,
homogeneous differential equations.

What if we guess y = emx as a solution to y ′′ + y ′ − 6y = 0?

What if we guess y = emx as a solution to ay ′′ + by ′ + cy = 0?

In this case, we get emx(am2 + bm + c) = 0. There are three
possibilities for the roots of a quadratic equation.
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Solving D.E.s Using Auxiliary Equations

Case 1: Distinct Roots

If am2 + bm + c has distinct roots m1 and m2, then the general
solution to ay ′′ + by ′ + cy = 0 is

y = c1em1x + c2em2x

.
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Solving D.E.s Using Auxiliary Equations

Case 2: Repeated Roots

If am2 + bm + c has a repeated root m1, then the general solution to
ay ′′ + by ′ + cy = 0 is

y = c1em1x + c2xem1x

.
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Solving D.E.s Using Auxiliary Equations

Magic!

e iθ = 1 + iθ + (iθ)2
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Solving D.E.s Using Auxiliary Equations

Case 3: Complex Roots

If am2 + bm + c has complex roots m1 = α + iβ and m2 = α− iβ,
then the general solution to ay ′′ + by ′ + cy = 0 is

y = c1eαxcos(βx) + c2eαxsin(βx)

.
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Solving D.E.s Using Auxiliary Equations

Auxiliary Equations

Given a linear 2nd order homogeneous constant-coefficient
differential equation

ay ′′ + by ′ + cy = 0,

the Auxiliary Equation is

am2 + bm + c = 0.

The roots of the auxiliary equation determines the general
solution.
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