Math 123: Constant Coefficient 2nd Order Homogeneous Linear D.E.s

Ryan Blair

CSU Long Beach

Tuesday December 2, 2013

Outline

(1) Types of D.E.s
(2) Solving D.E.s Using Auxiliary Equations

Types of Differential equations

Definition

A second order linear D.E. is of the form

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=R(x)
$$

If $R(x)=0$ we call the D.E. homogeneous.

Definition

If $P(x)$ and $Q(x)$ are constants then $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=R(x)$ is constant coefficient.

Solutions to Homogeneous D.E.s

Theorem

Given a homogeneous linear differential equation with solutions $f(x)$ and $g(x)$ then $a \cdot f(x)+b \cdot g(x)$ is also a solution for any constants a and b.

Solutions to Homogeneous D.E.s

Theorem

Given a homogeneous linear differential equation with solutions $f(x)$ and $g(x)$ then $a \cdot f(x)+b \cdot g(x)$ is also a solution for any constants a and b.

Theorem

Given a 2nd order homogeneous linear differential equation with linearly independent solutions $f(x)$ and $g(x)$, then the general solution is $y=C_{1} f(x)+C_{2} g(x)$ where C_{1} and C_{2} are constants.

A Motivating Example

Our goal is to solve constant-coefficient, linear, 2nd-order, homogeneous differential equations.

A Motivating Example

Our goal is to solve constant-coefficient, linear, 2nd-order, homogeneous differential equations.

What if we guess $y=e^{m x}$ as a solution to $y^{\prime \prime}+y^{\prime}-6 y=0$?

A Motivating Example

Our goal is to solve constant-coefficient, linear, 2nd-order, homogeneous differential equations.

What if we guess $y=e^{m x}$ as a solution to $y^{\prime \prime}+y^{\prime}-6 y=0$?
What if we guess $y=e^{m x}$ as a solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$?

A Motivating Example

Our goal is to solve constant-coefficient, linear, 2nd-order, homogeneous differential equations.

What if we guess $y=e^{m x}$ as a solution to $y^{\prime \prime}+y^{\prime}-6 y=0$?
What if we guess $y=e^{m x}$ as a solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$?

In this case, we get $e^{m x}\left(a m^{2}+b m+c\right)=0$. There are three possibilities for the roots of a quadratic equation.

Case 1: Distinct Roots

If $a m^{2}+b m+c$ has distinct roots m_{1} and m_{2}, then the general solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$ is

$$
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}
$$

Case 2: Repeated Roots

If $a m^{2}+b m+c$ has a repeated root m_{1}, then the general solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$ is

$$
y=c_{1} e^{m_{1} x}+c_{2} x e^{m_{1} x}
$$

Magic!

$$
e^{i \theta}=1+i \theta+\frac{(i \theta)^{2}}{2!}+\frac{(i \theta)^{3}}{3!}+\frac{(i \theta)^{4}}{4!}+\frac{(i \theta)^{5}}{5!}+\frac{(i \theta)^{6}}{6!}+\frac{(i \theta)^{7}}{7!}+\ldots
$$

Magic!

$$
\begin{aligned}
& e^{i \theta}=1+i \theta+\frac{(i \theta)^{2}}{2!}+\frac{(i \theta \theta)^{3}}{3!}+\frac{(i \theta)^{4}}{4!}+\frac{(i \theta)^{5}}{5!}+\frac{(i \theta)^{6}}{6!}+\frac{(i \theta)^{7}}{7!}+\ldots \\
& =1+i \theta-\frac{\theta^{2}}{2!}-i \frac{\theta \theta^{3}}{3!}+\frac{\theta^{4}}{4!}+i \frac{\theta \cdot \theta^{5}}{5!}-\frac{\theta^{6}}{6!}-i \frac{i \theta^{7}}{7!}+\ldots
\end{aligned}
$$

Magic!

$$
\begin{aligned}
& e^{i \theta}=1+i \theta+\frac{(i \theta)^{2}}{2!}+\frac{(i \theta)^{3}}{3!}+\frac{(i \theta)^{4}}{4!}+\frac{(i \theta)^{5}}{5!}+\frac{(i \theta)^{6}}{6!}+\frac{(i \theta)^{7}}{7!}+\ldots \\
& =1+i \theta-\frac{\theta^{2}}{2!}-i \frac{\theta^{3}}{3!}+\frac{\theta^{4}}{4!}+i \frac{\theta^{5}}{5!}-\frac{\theta^{6}}{6!}-i \frac{\theta^{7}}{7!}+\ldots \\
& =\left(1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\frac{\theta^{6}}{6!}+\ldots\right)+i\left(\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\frac{\theta^{7}}{7!}+\ldots\right)
\end{aligned}
$$

Magic!

$$
\begin{aligned}
& e^{i \theta}=1+i \theta+\frac{(i \theta \theta)^{2}}{2!}+\frac{(i \theta)^{3}}{3!}+\frac{(i \theta)^{4}}{4!}+\frac{(i \theta)^{5}}{5!}+\frac{(i \theta)^{6}}{6!}+\frac{(i \theta)^{7}}{7!}+\ldots \\
& =1+i \theta-\frac{\theta^{2}}{2!}-i \frac{\theta^{3}}{3!}+\frac{\theta^{4}}{4!}+i \frac{\theta!}{5!}-\frac{\theta^{6}}{6!}-i \theta^{\frac{\theta}{7}}+\ldots \\
& =\left(1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\frac{\theta^{6}}{6!}+\ldots\right)+i\left(\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\frac{\theta^{7}}{7!}+\ldots\right) \\
& =\cos (\theta)+i \sin (\theta)
\end{aligned}
$$

Case 3: Complex Roots

If $a m^{2}+b m+c$ has complex roots $m_{1}=\alpha+i \beta$ and $m_{2}=\alpha-i \beta$, then the general solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$ is

$$
y=c_{1} e^{\alpha x} \cos (\beta x)+c_{2} e^{\alpha x} \sin (\beta x)
$$

Auxiliary Equations

Given a linear 2nd order homogeneous constant-coefficient differential equation
$a y^{\prime \prime}+b y^{\prime}+c y=0$,
the Auxiliary Equation is
$a m^{2}+b m+c=0$.

Auxiliary Equations

Given a linear 2nd order homogeneous constant-coefficient differential equation
$a y^{\prime \prime}+b y^{\prime}+c y=0$,
the Auxiliary Equation is
$a m^{2}+b m+c=0$.
The roots of the auxiliary equation determines the general solution.

