Math 123: Calculus on Parametric Curves

Ryan Blair

CSU Long Beach

Tuesday November 5, 2013

Outline

Parametric Curves

2 Derivatives of parametric curves

Curves in the plane that are not graphs of functions can often be represented by parametric curves.

Definition

A parametric curve in the xy-plane is given by x = f(t) and y = g(t) for $t \in [a, b]$.

Curves in the plane that are not graphs of functions can often be represented by parametric curves.

Definition

A parametric curve in the xy-plane is given by x = f(t) and y = g(t) for $t \in [a, b]$.

Example: Find the parametric equation for the unit circle in the plane.

Curves in the plane that are not graphs of functions can often be represented by parametric curves.

Definition

A parametric curve in the xy-plane is given by x = f(t) and y = g(t) for $t \in [a, b]$.

Example: Find the parametric equation for the unit circle in the plane.

Example: Find the parametric equation for the portion of the circle of radius R in the 3rd quadrant. Give the *terminal point* and the *initial point*.

Curves in the plane that are not graphs of functions can often be represented by parametric curves.

Definition

A parametric curve in the xy-plane is given by x = f(t) and y = g(t) for $t \in [a, b]$.

Example: Find the parametric equation for the unit circle in the plane.

Example: Find the parametric equation for the portion of the circle of radius R in the 3rd quadrant. Give the *terminal point* and the *initial point*.

Example: All graphs of functions in can be represented as a parametric curve.

Awesome Examples

Cycloid:

$$(t-\sin(t),1-\cos(t))$$

An Epitrochiod:

$$(11\cos(t) - 6\cos(\frac{11}{6}t), 11\sin(t) - 6\sin(\frac{11}{6}t))$$

Wolfram Breaker:

$$(sin(t) + \frac{1}{2}sin(5t) + \frac{1}{4}cos(2.3t), cos(t) + \frac{1}{2}cos(5t) + \frac{1}{4}sin(2.3t))$$

Derivatives of Parametric Curves

If y is a differentiable function of x and t and x is a differentiable function of t then

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$

when $\frac{dx}{dt} \neq 0$.

Derivatives of Parametric Curves

If y is a differentiable function of x and t and x is a differentiable function of t then

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$

when $\frac{dx}{dt} \neq 0$.

Example: Derive this formula from the chain rule.

Derivatives of Parametric Curves

If y is a differentiable function of x and t and x is a differentiable function of t then

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$

when $\frac{dx}{dt} \neq 0$.

Example: Derive this formula from the chain rule.

Example: Find the points on the cycloid with horizontal tangent

lines.

Area and Parametric curves

Theorem

If the graph of y = F(x) on [a, b] is parameterized by x = f(t) and y = g(t) for $t \in [\alpha, \beta]$ then

$$A = \int_{a}^{b} y dx = \int_{a}^{\beta} g(t)f'(t)dt$$

Area and Parametric curves

Theorem

If the graph of y = F(x) on [a, b] is parameterized by x = f(t) and y = g(t) for $t \in [\alpha, \beta]$ then

$$A = \int_{a}^{b} y dx = \int_{\alpha}^{\beta} g(t)f'(t)dt$$

Example: Find the area under one arch of the cycloid.

Arc length for parameterized curves

Theorem

Given a curve C = (f(t), g(t)) with $t \in [\alpha, \beta]$, then the length of C is

$$L = \int_{\alpha}^{\beta} \sqrt{\frac{dx^2}{dt} + \frac{dy^2}{dt}}$$

Arc length for parameterized curves

Theorem

Given a curve C = (f(t), g(t)) with $t \in [\alpha, \beta]$, then the length of C is

$$L = \int_{\alpha}^{\beta} \sqrt{\frac{dx^2}{dt} + \frac{dy^2}{dt}}$$

Example: Derive this formula from the definition of integral and the Pythagorean theorem.

Arc length for parameterized curves

Theorem

Given a curve C = (f(t), g(t)) with $t \in [\alpha, \beta]$, then the length of C is

$$L = \int_{\alpha}^{\beta} \sqrt{\frac{dx^2}{dt} + \frac{dy^2}{dt}}$$

Example: Derive this formula from the definition of integral and the Pythagorean theorem.

Example: Find the length of one arch of the cycloid.