Math 123: Calculus on Parametric Curves

Ryan Blair

CSU Long Beach

Tuesday November 5, 2013

Outline

(1) Parametric Curves
(2) Derivatives of parametric curves

Parametric Curves

Curves in the plane that are not graphs of functions can often be represented by parametric curves.

Definition

A parametric curve in the $x y$-plane is given by $x=f(t)$ and $y=g(t)$ for $t \in[a, b]$.

Parametric Curves

Curves in the plane that are not graphs of functions can often be represented by parametric curves.

Definition

A parametric curve in the $x y$-plane is given by $x=f(t)$ and $y=g(t)$ for $t \in[a, b]$.

Example: Find the parametric equation for the unit circle in the plane.

Parametric Curves

Curves in the plane that are not graphs of functions can often be represented by parametric curves.

Definition

A parametric curve in the xy-plane is given by $x=f(t)$ and $y=g(t)$ for $t \in[a, b]$.

Example: Find the parametric equation for the unit circle in the plane.
Example: Find the parametric equation for the portion of the circle of radius R in the 3rd quadrant. Give the terminal point and the initial point.

Parametric Curves

Curves in the plane that are not graphs of functions can often be represented by parametric curves.

Definition

A parametric curve in the xy-plane is given by $x=f(t)$ and $y=g(t)$ for $t \in[a, b]$.

Example: Find the parametric equation for the unit circle in the plane.
Example: Find the parametric equation for the portion of the circle of radius R in the 3rd quadrant. Give the terminal point and the initial point.
Example: All graphs of functions in can be represented as a parametric curve.

Awesome Examples

Cycloid:

$$
(t-\sin (t), 1-\cos (t))
$$

An Epitrochiod:

$$
\left(11 \cos (t)-6 \cos \left(\frac{11}{6} t\right), 11 \sin (t)-6 \sin \left(\frac{11}{6} t\right)\right)
$$

Wolfram Breaker:

$$
\left(\sin (t)+\frac{1}{2} \sin (5 t)+\frac{1}{4} \cos (2.3 t), \cos (t)+\frac{1}{2} \cos (5 t)+\frac{1}{4} \sin (2.3 t)\right)
$$

Derivatives of Parametric Curves

If y is a differentiable function of x and t and x is a differentiable function of t then

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}
$$

when $\frac{d x}{d t} \neq 0$.

Derivatives of Parametric Curves

If y is a differentiable function of x and t and x is a differentiable function of t then

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}
$$

when $\frac{d x}{d t} \neq 0$.
Example: Derive this formula from the chain rule.

Derivatives of Parametric Curves

If y is a differentiable function of x and t and x is a differentiable function of t then

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}
$$

when $\frac{d x}{d t} \neq 0$.
Example: Derive this formula from the chain rule.
Example: Find the points on the cycloid with horizontal tangent lines.

Area and Parametric curves

Theorem

If the graph of $y=F(x)$ on $[a, b]$ is parameterized by $x=f(t)$ and $y=g(t)$ for $t \in[\alpha, \beta]$ then

$$
A=\int_{a}^{b} y d x=\int_{\alpha}^{\beta} g(t) f^{\prime}(t) d t
$$

Area and Parametric curves

Theorem
If the graph of $y=F(x)$ on $[a, b]$ is parameterized by $x=f(t)$ and $y=g(t)$ for $t \in[\alpha, \beta]$ then

$$
A=\int_{a}^{b} y d x=\int_{\alpha}^{\beta} g(t) f^{\prime}(t) d t
$$

Example: Find the area under one arch of the cycloid.

Arc length for parameterized curves

Theorem

Given a curve $C=(f(t), g(t))$ with $t \in[\alpha, \beta]$, then the length of C is

$$
L=\int_{\alpha}^{\beta} \sqrt{\frac{d x^{2}}{d t}+\frac{d y^{2}}{d t}}
$$

Arc length for parameterized curves

Theorem

Given a curve $C=(f(t), g(t))$ with $t \in[\alpha, \beta]$, then the length of C is

$$
L=\int_{\alpha}^{\beta} \sqrt{\frac{d x^{2}}{d t}+\frac{d y^{2}}{d t}}
$$

Example: Derive this formula from the definition of integral and the Pythagorean theorem.

Arc length for parameterized curves

Theorem

Given a curve $C=(f(t), g(t))$ with $t \in[\alpha, \beta]$, then the length of C is

$$
L=\int_{\alpha}^{\beta} \sqrt{\frac{d x^{2}}{d t}+\frac{d y^{2}}{d t}}
$$

Example: Derive this formula from the definition of integral and the Pythagorean theorem. Example: Find the length of one arch of the cycloid.

