Math 123: First Order D.E.s and Slope Fields

Ryan Blair
CSU Long Beach

Thursday November 21, 2013

Outline

(1) First Order Differential Equations

(2) Slope Fields

Types of Differential equations

Definition

A differential equation is any equation involving a function, its derivatives.

Definition

If the n-th derivative is the largest derivative that appears in the differential equation, we say it is an nth order differential equation.

Definition

A first order differential equation $\frac{d y}{d x}=F(x, y)$ together with and initial condition $y(a)=b$ is an initial value problem

Types of Differential equations

Definition

A differential equation is any equation involving a function, its derivatives.

Definition

If the n-th derivative is the largest derivative that appears in the differential equation, we say it is an nth order differential equation.

Definition

A first order differential equation $\frac{d y}{d x}=F(x, y)$ together with and initial condition $y(a)=b$ is an initial value problem

Example: Solve the initial value problem $y^{\prime}=\frac{1}{2} y$ and $y(0)=2$

Types of Differential equations

Definition

A differential equation is any equation involving a function, its derivatives.

Definition

If the n-th derivative is the largest derivative that appears in the differential equation, we say it is an nth order differential equation.

Definition

A first order differential equation $\frac{d y}{d x}=F(x, y)$ together with and initial condition $y(a)=b$ is an initial value problem

Example: Solve the initial value problem $y^{\prime}=\frac{1}{2} y$ and $y(0)=2$
Example: Solve the initial value problem $\frac{d y}{d x}=\frac{x e^{x}}{\cos (y)}$ and $y(0)=0$

Slope Fields (Direction Fields)

Definition

Given a first order D.E. $\frac{d y}{d x}=F(x, y)$ a slope field is a function that assigns the slope $F(x, y)$ to each point in the plane.

Slope Fields (Direction Fields)

Definition

Given a first order D.E. $\frac{d y}{d x}=F(x, y)$ a slope field is a function that assigns the slope $F(x, y)$ to each point in the plane.

Example: Sketch the slope field for $y^{\prime}=(y-1)(y-3)$.

Slope Fields (Direction Fields)

Definition

Given a first order D.E. $\frac{d y}{d x}=F(x, y)$ a slope field is a function that assigns the slope $F(x, y)$ to each point in the plane.

Example: Sketch the slope field for $y^{\prime}=(y-1)(y-3)$. Example: Sketch the solution for the IVP $y^{\prime}=(y-1)(y-3)$ and $y(0)=2$. What about $y(0)=0$.

Slope Fields (Direction Fields)

Definition

Given a first order D.E. $\frac{d y}{d x}=F(x, y)$ a slope field is a function that assigns the slope $F(x, y)$ to each point in the plane.

Example: Sketch the slope field for $y^{\prime}=(y-1)(y-3)$. Example: Sketch the solution for the IVP $y^{\prime}=(y-1)(y-3)$ and $y(0)=2$. What about $y(0)=0$.
Example: Find $\lim _{x \rightarrow \infty} y(x)$ if $y(x)$ is a solution to the IVP $y^{\prime}=(y-1)(y-3)$ and $y(0)=0$.

Slope Fields Using Dfield

Here we will be using the free internet software Dfield.
Example: Determine the limits as x goes to infinity for solutions to $y^{\prime}=\left(\frac{1}{2} y(5-y)(\mathrm{A}\right.$ Verhulst Equation).
Example: Determine the initial values for which solutions to $y^{\prime}=x^{2}+y^{2}-4$ are always increasing.

