Math 123: From Parametric Curves to Polar Coordinates

Ryan Blair

CSU Long Beach

Thursday November 14, 2013

Outline

(1) Parametric Curves

(2) Polar Coordinates

Parametric Curves

Definition

A parametric curve in the $x y$-plane is given by $x=f(t)$ and $y=g(t)$ for $t \in[a, b]$.

Parametric Curves

Definition

A parametric curve in the $x y$-plane is given by $x=f(t)$ and $y=g(t)$ for $t \in[a, b]$.

Theorem

Given a curve $C=(f(t), g(t))$ with $t \in[\alpha, \beta]$, then the length of C is

$$
L=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}
$$

Parametric Curves

Definition

A parametric curve in the $x y$-plane is given by $x=f(t)$ and $y=g(t)$ for $t \in[a, b]$.

Theorem
Given a curve $C=(f(t), g(t))$ with $t \in[\alpha, \beta]$, then the length of C is

$$
L=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}
$$

Example: Find the length of one arch of the cycloid.

Polar Coordinates

Standard (x, y) coordinates use distance right (x) and distance up (y) to plot points.

Polar Coordinates

Standard (x, y) coordinates use distance right (x) and distance up (y) to plot points.
Polar Coordinates (r, θ) use distance from the origin (r) and angle with the x-axis (θ).

Polar Coordinates

Standard (x, y) coordinates use distance right (x) and distance up (y) to plot points.
Polar Coordinates (r, θ) use distance from the origin (r) and angle with the x-axis (θ).

$$
\begin{gathered}
x=r \cdot \cos (\theta) \text { and } y=r \cdot \sin (\theta) \\
r^{2}=x^{2}+y^{2} \text { and } \tan (\theta)=\frac{y}{x}
\end{gathered}
$$

Polar Coordinates

Standard (x, y) coordinates use distance right (x) and distance up (y) to plot points.
Polar Coordinates (r, θ) use distance from the origin (r) and angle with the x-axis (θ).

$$
\begin{gathered}
x=r \cdot \cos (\theta) \text { and } y=r \cdot \sin (\theta) \\
r^{2}=x^{2}+y^{2} \text { and } \tan (\theta)=\frac{y}{x}
\end{gathered}
$$

Example: Derive these conversion rules.

Polar Coordinates

Standard (x, y) coordinates use distance right (x) and distance up (y) to plot points.
Polar Coordinates (r, θ) use distance from the origin (r) and angle with the x-axis (θ).

$$
\begin{gathered}
x=r \cdot \cos (\theta) \text { and } y=r \cdot \sin (\theta) \\
r^{2}=x^{2}+y^{2} \text { and } \tan (\theta)=\frac{y}{x}
\end{gathered}
$$

Example: Derive these conversion rules.
Example: Sketch the graph of $r=\cos (2 \theta)$.

Derivatives of Parametric Curves

If y is a differentiable function of x and t and x is a differentiable function of t then

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}
$$

when $\frac{d x}{d t} \neq 0$.

Derivatives of Parametric Curves

If y is a differentiable function of x and t and x is a differentiable function of t then

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}
$$

when $\frac{d x}{d t} \neq 0$.
So, if $r=f(\theta)$ is a curve in polar coordinates, then

$$
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{\frac{d r}{d \theta} \sin (\theta)+r \cos (\theta)}{\frac{d r}{d \theta} \cos (\theta)-r \sin (\theta)}
$$

Derivatives of Parametric Curves

If y is a differentiable function of x and t and x is a differentiable function of t then

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}
$$

when $\frac{d x}{d t} \neq 0$.
So, if $r=f(\theta)$ is a curve in polar coordinates, then

$$
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{\frac{d r}{d \theta} \sin (\theta)+r \cos (\theta)}{\frac{d r}{d \theta} \cos (\theta)-r \sin (\theta)}
$$

Example: Find the slope of the curve $r=\cos (2 \theta)$ at $\theta=\frac{\pi}{4}$.

Derivatives of Parametric Curves

If y is a differentiable function of x and t and x is a differentiable function of t then

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}
$$

when $\frac{d x}{d t} \neq 0$.
So, if $r=f(\theta)$ is a curve in polar coordinates, then

$$
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{\frac{d r}{d \theta} \sin (\theta)+r \cos (\theta)}{\frac{d r}{d \theta} \cos (\theta)-r \sin (\theta)}
$$

Example: Find the slope of the curve $r=\cos (2 \theta)$ at $\theta=\frac{\pi}{4}$.
Example: Find the points on the curve $r=e^{\theta}$ where the tangent line is horizontal or vertical.

Area in Polar Coordinates

The area of a sector is given by

$$
A=\frac{1}{2} r^{2} \theta
$$

Area in Polar Coordinates

The area of a sector is given by

$$
A=\frac{1}{2} r^{2} \theta
$$

For a polar curve $r=f(\theta)$ from $\theta=a$ to $\theta=b$ the area between the origin and the curve is given by

$$
A=\int_{a}^{b} \frac{1}{2}[f(\theta)]^{2} d \theta
$$

Area in Polar Coordinates

The area of a sector is given by

$$
A=\frac{1}{2} r^{2} \theta
$$

For a polar curve $r=f(\theta)$ from $\theta=a$ to $\theta=b$ the area between the origin and the curve is given by

$$
A=\int_{a}^{b} \frac{1}{2}[f(\theta)]^{2} d \theta
$$

Example: Find the area enclosed by one leaf of $r=\cos (2 \theta)$.

