Math 123: Series

Ryan Blair

CSU Long Beach

Thursday October 3, 2013

Ryan Blair (CSULB)

Math 123: Series

Thursday October 3, 2013 1 / 8

E

590

イロト イポト イヨト イヨト

Ryan Blair (CSULB)

Math 123: Series

Thursday October 3, 2013 2 / 8

596

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 二 臣

$$\lim_{n \to \infty} \frac{\ln(n)}{n} = 0$$

$$\lim_{n \to \infty} n^{\frac{1}{n}} = 1$$

$$\lim_{n \to \infty} x^{\frac{1}{n}} = 1 \text{ if } x > 0$$

$$\lim_{n \to \infty} x^n = 0 \text{ if } |x| < 1$$

$$\lim_{n \to \infty} (1 + \frac{x}{n})^n = e^x$$

$$\lim_{n \to \infty} \frac{x^n}{n!} = 0$$

<□▶ <□▶ < □▶ < □▶ < □▶ = □ - つへ⊙

Series

Series in terms of Sequences

Roughly, an infinite series $\sum_{i=1}^{\infty} a_i$ denotes the sum of the terms in the sequence $\{a_i\}_{i=1}^{\infty}$.

Definition

The **n-th partial sum** for a sequence $\{a_i\}_{i=1}^{\infty}$ is

$$S_n = \sum_{i=1}^n a_i = a_1 + a_2 + a_3 + \dots + a_n$$

Definition

A Series

$$\sum_{i=1}^{\infty} a_i = lim_{n \to \infty} S_n$$

Ryan Blair (CSULB)

イロト 不得 トイヨト イヨト 二日

Series

Series in terms of Sequences

Roughly, an infinite series $\sum_{i=1}^{\infty} a_i$ denotes the sum of the terms in the sequence $\{a_i\}_{i=1}^{\infty}$.

Definition

The **n-th partial sum** for a sequence $\{a_i\}_{i=1}^{\infty}$ is

$$S_n = \sum_{i=1}^n a_i = a_1 + a_2 + a_3 + \dots + a_n$$

Definition

A Series

$$\sum_{i=1}^{\infty} a_i = \lim_{n \to \infty} S_n$$

Exercise: Given a constant r find $\sum_{i=0}^{\infty} r^i$ when it exists.

Ryan Blair (CSULB)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのぐ

Series

Series in terms of Sequences

Roughly, an infinite series $\sum_{i=1}^{\infty} a_i$ denotes the sum of the terms in the sequence $\{a_i\}_{i=1}^{\infty}$.

Definition

The **n-th partial sum** for a sequence $\{a_i\}_{i=1}^{\infty}$ is

$$S_n = \sum_{i=1}^n a_i = a_1 + a_2 + a_3 + \dots + a_n$$

Definition

A Series

$$\sum_{i=1}^{\infty} a_i = \lim_{n \to \infty} S_n$$

Exercise: Given a constant r find $\sum_{i=0}^{\infty} r^i$ when it exists. **Exercise:** Use partial sums to find $\sum_{i=1}^{\infty} \frac{1}{i^2+i}$.

Ryan Blair (CSULB)

First tests for convergence

Theorem

If a series $\sum_{i=1}^{\infty} a_i$ converges then $\lim_{n\to\infty} a_i = 0$.

Theorem

If $\lim_{n\to\infty} a_i \neq 0$ or does not exist, then $\sum_{i=1}^{\infty} a_i$ does not converge.

Image: Image:

First tests for convergence

Theorem

If a series $\sum_{i=1}^{\infty} a_i$ converges then $\lim_{n\to\infty} a_i = 0$.

Theorem

If $\lim_{n\to\infty} a_i \neq 0$ or does not exist, then $\sum_{i=1}^{\infty} a_i$ does not converge.

Exercise: Determine the convergence or divergence of $\sum_{i=1}^{\infty} ln(\frac{i^2+1}{2i^2+1})$

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

First tests for convergence

Theorem

If a series $\sum_{i=1}^{\infty} a_i$ converges then $\lim_{n\to\infty} a_i = 0$.

Theorem

If $\lim_{n\to\infty} a_i \neq 0$ or does not exist, then $\sum_{i=1}^{\infty} a_i$ does not converge.

Exercise: Determine the convergence or divergence of $\sum_{i=1}^{\infty} ln(\frac{i^2+1}{2i^2+1})$ **Exercise:** Determine the convergence or divergence of $\sum_{i=1}^{\infty} \frac{e^i}{i^2}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Integral Test

Theorem

Let f be a continuous, positive, decreasing function on $[c, \infty]$. If $a_i = f(i)$, then

- If $\int_{c}^{\infty} f(x) dx$ is convergent, then $\sum_{i=c}^{\infty} a_i$ is convergent.
- If $\int_{c}^{\infty} f(x) dx$ is divergent, then $\sum_{i=c}^{\infty} a_i$ is divergent.

Integral Test

Theorem

Let f be a continuous, positive, decreasing function on $[c, \infty]$. If $a_i = f(i)$, then

- If $\int_{c}^{\infty} f(x) dx$ is convergent, then $\sum_{i=c}^{\infty} a_i$ is convergent.
- If $\int_{c}^{\infty} f(x) dx$ is divergent, then $\sum_{i=c}^{\infty} a_i$ is divergent.

Show that $\sum_{i=1}^{\infty} \frac{1}{i^p}$ is convergent for p > 1.

イロト 不得 トイヨト イヨト ヨー シタウ

Integral Test

Theorem

Let f be a continuous, positive, decreasing function on $[c, \infty]$. If $a_i = f(i)$, then

- If $\int_{c}^{\infty} f(x) dx$ is convergent, then $\sum_{i=c}^{\infty} a_i$ is convergent.
- If $\int_{c}^{\infty} f(x) dx$ is divergent, then $\sum_{i=c}^{\infty} a_i$ is divergent.

Show that $\sum_{i=1}^{\infty} \frac{1}{i^{p}}$ is convergent for p > 1. Determine if $\sum_{i=2}^{\infty} \frac{1}{i\ln(i)}$ is convergent or divergent.

イロト 不得 トイヨト イヨト ヨー シタウ

The Direct Comparison Test

Theorem

Let $\sum_{i=1}^{\infty} a_i$ and $\sum_{i=1}^{\infty} b_i$ be positive series.

- If $a_i \leq b_i$ for all i and $\sum_{i=1}^{\infty} b_i$ converges, then $\sum_{i=1}^{\infty} a_i$ converges.
- If $a_i \leq b_i$ for all i and $\sum_{i=1}^{\infty} a_i$ diverges, then $\sum_{i=1}^{\infty} b_i$ diverges.

The Direct Comparison Test

Theorem

Let $\sum_{i=1}^{\infty} a_i$ and $\sum_{i=1}^{\infty} b_i$ be positive series.

• If $a_i \leq b_i$ for all i and $\sum_{i=1}^{\infty} b_i$ converges, then $\sum_{i=1}^{\infty} a_i$ converges.

• If $a_i \leq b_i$ for all i and $\sum_{i=1}^{\infty} a_i$ diverges, then $\sum_{i=1}^{\infty} b_i$ diverges.

Determine if $\sum_{i=1}^{\infty} \frac{1}{i!}$ is convergent or divergent.

▲ロト ▲掃 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

The Direct Comparison Test

Theorem

Let $\sum_{i=1}^{\infty} a_i$ and $\sum_{i=1}^{\infty} b_i$ be positive series.

• If $a_i \leq b_i$ for all i and $\sum_{i=1}^{\infty} b_i$ converges, then $\sum_{i=1}^{\infty} a_i$ converges.

• If $a_i \leq b_i$ for all i and $\sum_{i=1}^{\infty} a_i$ diverges, then $\sum_{i=1}^{\infty} b_i$ diverges.

Determine if $\sum_{i=1}^{\infty} \frac{1}{i!}$ is convergent or divergent. Determine if $\sum_{i=2}^{\infty} \frac{\sqrt{i}}{2i-1}$ is convergent or divergent.

Limit Comparison Test

Theorem

Let $\sum_{i=1}^{\infty} a_i$ and $\sum_{i=1}^{\infty} b_i$ be positive series. If

$$lim_{i
ightarrow\infty}rac{a_i}{b_i}=C$$

where C is a finite positive constant, then either both $\sum_{i=1}^{\infty} a_i$ and $\sum_{i=1}^{\infty} b_i$ converge or both $\sum_{i=1}^{\infty} a_i$ and $\sum_{i=1}^{\infty} b_i$ diverge.

Limit Comparison Test

Theorem

Let $\sum_{i=1}^{\infty} a_i$ and $\sum_{i=1}^{\infty} b_i$ be positive series. If

$$\mathit{lim}_{i
ightarrow\infty}rac{a_i}{b_i}=C$$

where C is a finite positive constant, then either both $\sum_{i=1}^{\infty} a_i$ and $\sum_{i=1}^{\infty} b_i$ converge or both $\sum_{i=1}^{\infty} a_i$ and $\sum_{i=1}^{\infty} b_i$ diverge.

Determine if $\sum_{i=1}^{\infty} \frac{i+2}{(i+1)^3}$ is convergent or divergent.

Limit Comparison Test

Theorem

Let $\sum_{i=1}^{\infty} a_i$ and $\sum_{i=1}^{\infty} b_i$ be positive series. If

$$lim_{i
ightarrow\infty}rac{a_i}{b_i}=C$$

where C is a finite positive constant, then either both $\sum_{i=1}^{\infty} a_i$ and $\sum_{i=1}^{\infty} b_i$ converge or both $\sum_{i=1}^{\infty} a_i$ and $\sum_{i=1}^{\infty} b_i$ diverge.

Determine if $\sum_{i=1}^{\infty} \frac{i+2}{(i+1)^3}$ is convergent or divergent. Determine if $\sum_{i=1}^{\infty} \frac{2i^2-1}{i^23^i}$ is convergent or divergent.