Math 123: Taylor and Maclaurin Series

Ryan Blair

CSU Long Beach

Tuesday October 29, 2013

Ryan Blair (CSULB)

Math 123: Taylor and Maclaurin Series

- - ≣ → Tuesday October 29, 2013 1/8

< 口 > < 同

DQC

3

Ryan Blair (CSULB)

Math 123: Taylor and Maclaurin Series

Tuesday October 29, 2013 2 / 8

臣

590

・ロト ・四ト ・ヨト ・ヨト

Taylor Series

Definition

The **Taylor series** generated by a function f at x = a is $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = f(a) + f'(a)(x-a) + \frac{f''(a)}{2} (x-a)^2 + \dots$

Taylor Series

Definition

The **Taylor series** generated by a function f at x = a is $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = f(a) + f'(a)(x-a) + \frac{f''(a)}{2} (x-a)^2 + \dots$

Exercise: Verify that the Taylor series of e^x at x = 0 is $\sum_{k=0}^{\infty} \frac{x^k}{k!}$

Taylor Series

Definition

The **Taylor series** generated by a function f at x = a is $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = f(a) + f'(a)(x-a) + \frac{f''(a)}{2} (x-a)^2 + \dots$

Exercise: Verify that the Taylor series of e^x at x = 0 is $\sum_{k=0}^{\infty} \frac{x^k}{k!}$ **Exercise:** Verify that the Taylor series of e^x at x = 0 is $\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$

Taylor Series

Definition

The **Taylor series** generated by a function f at x = a is $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = f(a) + f'(a)(x-a) + \frac{f''(a)}{2} (x-a)^2 + \dots$

Exercise: Verify that the Taylor series of e^x at x = 0 is $\sum_{k=0}^{\infty} \frac{x^k}{k!}$ **Exercise:** Verify that the Taylor series of e^x at x = 0 is $\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$

Theorem

If
$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$$
 has radius of convergence R, then

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = f(x)$$

for all x in (a - R, a + R)

Taylor Series are closely related to approximations

Example: Graph the following functions side-by-side:

• e^{x} • 1 • 1 + x• $1 + x + \frac{x^{2}}{2}$ • $1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6}$

Taylor Series are closely related to approximations

Example: Graph the following functions side-by-side:

• e^{x} • 1 • 1 + x• $1 + x + \frac{x^{2}}{2}$ • $1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6}$

Core Idea: A Taylor Series is the LIMIT of successively better polynomial approximations!

Problem: Find the Taylor series for f(x) = ln(x+1) at x = 0.

Trick: No trick, just substitute into the formula for Taylor series and find the pattern.

• • • • • • • • •

Problem: Find the Taylor series for f(x) = ln(x+1) at x = 0.

Trick: No trick, just substitute into the formula for Taylor series and find the pattern.

Answer: $\sum_{k=1}^{\infty} (-1)^{k-1} \frac{x^k}{k}$

イロト イポト イヨト イヨト 二日

Problem: Find the Taylor series for f(x) = ln(x) at x = 1.

Trick: Save yourself time and use the Taylor Series we just found.

3

イロト イポト イヨト イヨト

Problem: Find the Taylor series for f(x) = ln(x) at x = 1.

Trick: Save yourself time and use the Taylor Series we just found.

Answer: $\sum_{k=1}^{\infty} (-1)^{k-1} \frac{(x-1)^k}{k}$

イロト 不得下 イヨト イヨト 二日

Problem: Find the first 3 terms of the Taylor series for f(x) = xsin(3x) at x = 0.

Trick: Use the fact that you know that Taylor Series for sin(x).

イロト イポト イヨト イヨト 二日

Problem: Find the first 3 terms of the Taylor series for $f(x) = e^x sin(x)$ at x = 0.

Trick: Use the fact that you know that Taylor Series for sin(x) and you know the Taylor Series for e^{x} .

3