# Math 123: Sequences Part II and Introduction to Series 

Ryan Blair

CSU Long Beach
Tuesday October 1, 2013

## Outline

## (1) Sequences

## (2) Series

## Convergence and Divergence

## Definition

A sequence is an ordered set of real numbers, equivalently, a sequence is an function from the positive integers to the real numbers.

If $\lim _{n \rightarrow \infty} a_{n}$ does not exist or is infinite we say it diverges.

Examples of sequences that diverge

$$
\begin{gathered}
a_{n}=(-1)^{n} \\
a_{n}=2^{n}
\end{gathered}
$$

## Convergence and Divergence

## Definition

A sequence is an ordered set of real numbers, equivalently, a sequence is an function from the positive integers to the real numbers.

If $\lim _{n \rightarrow \infty} a_{n}$ does not exist or is infinite we say it diverges.

Examples of sequences that diverge

$$
\begin{gathered}
a_{n}=(-1)^{n} \\
a_{n}=2^{n}
\end{gathered}
$$

Exercise: If $r \in \mathbb{R}$, when does $a_{n}=r^{n}$ converge and diverge? (this is called a geometric sequence)

## Alternating Sequences

An alternating sequence is of the form $a_{n}=(-1)^{n} b_{n}$ where $b_{n} \geq 0$ for all $n$.

## Theorem

Given an alternating sequence $a_{n}$, if $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$ then $\lim _{n \rightarrow \infty} a_{n}=0$.

## Alternating Sequences

An alternating sequence is of the form $a_{n}=(-1)^{n} b_{n}$ where $b_{n} \geq 0$ for all $n$.

## Theorem

Given an alternating sequence $a_{n}$, if $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$ then $\lim _{n \rightarrow \infty} a_{n}=0$.

Exercise: Prove the above theorem using our limit rules and the squeeze theorem.

## Monotonic Sequences

## Definition

A sequence is increasing if $a_{n} \leq a_{n+1}$ for all $n$.
A sequence is decreasing if $a_{n} \geq a_{n+1}$ for all $n$.
If a sequence is decreasing or increasing we say it is monotonic.

## Monotonic Sequences

## Definition

A sequence is increasing if $a_{n} \leq a_{n+1}$ for all $n$.
A sequence is decreasing if $a_{n} \geq a_{n+1}$ for all $n$.
If a sequence is decreasing or increasing we say it is monotonic.

## Definition

A sequence is bounded above if there exists a constant $M$ such that $a_{n} \leq M$ for all $n$.
A sequence is bounded below if there exists a constant $m$ such that $a_{n} \geq m$ for all $n$.
A sequence is bounded if it is both bounded above and bounded below.

## Monotonic Sequences

## Theorem <br> Every increasing sequence that is bounded above converges. Similarly, every decreasing sequence that is bounded below converges.

## Monotonic Sequences

## Theorem <br> Every increasing sequence that is bounded above converges. Similarly, every decreasing sequence that is bounded below converges.

Example: Suppose $a_{1}=\sqrt{2}$ and $a_{n}=\sqrt{2+a_{n-1}}$, show that $\left\{a_{n}\right\}$ converges and find its limit

## Monotonic Sequences

## Theorem

Every increasing sequence that is bounded above converges. Similarly, every decreasing sequence that is bounded below converges.

Example: Suppose $a_{1}=\sqrt{2}$ and $a_{n}=\sqrt{2+a_{n-1}}$, show that $\left\{a_{n}\right\}$ converges and find its limit
Example: Suppose $a_{1}=1$ and $a_{n}=3-\frac{1}{a_{n-1}}$, show that $\left\{a_{n}\right\}$ converges and find its limit

## Must Know Theorems Regarding Limits

(1) $\lim _{n \rightarrow \infty} \frac{\ln (n)}{n}=0$
(2) $\lim _{n \rightarrow \infty} n^{\frac{1}{n}}=1$
(3) $\lim _{n \rightarrow \infty} x^{\frac{1}{n}}=1$ if $x>0$
(9) $\lim _{n \rightarrow \infty} x^{n}=0$ if $|x|<1$
(5) $\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}$
(6) $\lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0$

## Series in terms of Sequences

Roughly, an infinite series $\sum_{i=1}^{\infty} a_{i}$ denotes the sum of the terms in the sequence $\left\{a_{i}\right\}_{i=1}^{\infty}$.

## Definition

The $\boldsymbol{n}$-th partial sum for a sequence $\left\{a_{i}\right\}_{i=1}^{\infty}$ is

$$
S_{n}=\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+a_{3}+\ldots+a_{n}
$$

Definition
A Series

$$
\sum_{i=1}^{\infty} a_{i}=\lim _{n \rightarrow \infty} S_{n}
$$

## Series in terms of Sequences

Roughly, an infinite series $\sum_{i=1}^{\infty} a_{i}$ denotes the sum of the terms in the sequence $\left\{a_{i}\right\}_{i=1}^{\infty}$.

## Definition

The $\boldsymbol{n}$-th partial sum for a sequence $\left\{a_{i}\right\}_{i=1}^{\infty}$ is

$$
S_{n}=\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+a_{3}+\ldots+a_{n}
$$

Definition
A Series

$$
\sum_{i=1}^{\infty} a_{i}=\lim _{n \rightarrow \infty} S_{n}
$$

Exercise: Given a constant $r$ find $\sum_{i=0}^{\infty} r^{i}$ when it exists.

## Series in terms of Sequences

Roughly, an infinite series $\sum_{i=1}^{\infty} a_{i}$ denotes the sum of the terms in the sequence $\left\{a_{i}\right\}_{i=1}^{\infty}$.

## Definition

The $\boldsymbol{n}$-th partial sum for a sequence $\left\{a_{i}\right\}_{i=1}^{\infty}$ is

$$
S_{n}=\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+a_{3}+\ldots+a_{n}
$$

## Definition

A Series

$$
\sum_{i=1}^{\infty} a_{i}=\lim _{n \rightarrow \infty} S_{n}
$$

Exercise: Given a constant $r$ find $\sum_{i=0}^{\infty} r^{i}$ when it exists.
Exercise: Use partial sums to find $\sum_{i=1}^{\infty} \frac{1}{i^{2}+i}$.

## First tests for convergence

> Theorem
> If a series $\sum_{i=1}^{\infty} a_{i}$ converges then $\lim _{n \rightarrow \infty} a_{i}=0$.

## Theorem

If $\lim _{n \rightarrow \infty} a_{i} \neq 0$ or does not exist, then $\sum_{i=1}^{\infty} a_{i}$ does not converge.

## First tests for convergence

Theorem
If a series $\sum_{i=1}^{\infty} a_{i}$ converges then $\lim _{n \rightarrow \infty} a_{i}=0$.

Theorem
If $\lim _{n \rightarrow \infty} a_{i} \neq 0$ or does not exist, then $\sum_{i=1}^{\infty} a_{i}$ does not converge.
Exercise: Determine the convergence or divergence of $\sum_{i=1}^{\infty} \ln \left(\frac{i^{2}+1}{2 i^{2}+1}\right)$

## First tests for convergence

Theorem
If a series $\sum_{i=1}^{\infty} a_{i}$ converges then $\lim _{n \rightarrow \infty} a_{i}=0$.

Theorem
If $\lim _{n \rightarrow \infty} a_{i} \neq 0$ or does not exist, then $\sum_{i=1}^{\infty} a_{i}$ does not converge.
Exercise: Determine the convergence or divergence of $\sum_{i=1}^{\infty} \ln \left(\frac{i^{2}+1}{2 i^{2}+1}\right)$
Exercise: Determine the convergence or divergence of $\sum_{i=1}^{\infty} \frac{e^{i}}{i^{2}}$.

