Math 123: Sequences Part II and Introduction to Series

Ryan Blair

CSU Long Beach

Tuesday October 1, 2013

Ryan Blair (CSULB)

Math 123: Sequences and Series

3

Ryan Blair (CSULB)

Math 123: Sequences and Series

Tuesday October 1, 2013 2 / 9

- 2

996

・ロト ・四ト ・ヨト ・ヨト

Convergence and Divergence

Definition

A **sequence** is an ordered set of real numbers, equivalently, a **sequence** is an function from the positive integers to the real numbers.

If $\lim_{n\to\infty}a_n$ does not exist or is infinite we say it **diverges**.

Examples of sequences that diverge

$$a_n = (-1)^n$$

$$a_n = 2^n$$

Convergence and Divergence

Definition

A **sequence** is an ordered set of real numbers, equivalently, a **sequence** is an function from the positive integers to the real numbers.

If $\lim_{n\to\infty}a_n$ does not exist or is infinite we say it **diverges**.

Examples of sequences that diverge

$$a_n = (-1)^n$$

$$a_n = 2^n$$

Exercise: If $r \in \mathbb{R}$, when does $a_n = r^n$ converge and diverge? (this is called a geometric sequence)

Alternating Sequences

An **alternating** sequence is of the form $a_n = (-1)^n b_n$ where $b_n \ge 0$ for all n.

Theorem

Given an alternating sequence a_n , if $\lim_{n\to\infty} |a_n| = 0$ then $\lim_{n\to\infty} a_n = 0$.

3

프 문 문 프 문

Image: Image:

Alternating Sequences

An **alternating** sequence is of the form $a_n = (-1)^n b_n$ where $b_n \ge 0$ for all n.

Theorem

Given an alternating sequence a_n , if $\lim_{n\to\infty} |a_n| = 0$ then $\lim_{n\to\infty} a_n = 0$.

Exercise: Prove the above theorem using our limit rules and the squeeze theorem.

Definition

- A sequence is **increasing** if $a_n \leq a_{n+1}$ for all *n*.
- A sequence is **decreasing** if $a_n \ge a_{n+1}$ for all *n*.
- If a sequence is decreasing or increasing we say it is monotonic.

글 돈 옷 글 돈

Definition

- A sequence is **increasing** if $a_n \leq a_{n+1}$ for all *n*.
- A sequence is **decreasing** if $a_n \ge a_{n+1}$ for all *n*.
- If a sequence is decreasing or increasing we say it is monotonic.

Definition

A sequence is **bounded above** if there exists a constant M such that $a_n \leq M$ for all n.

A sequence is **bounded below** if there exists a constant *m* such that $a_n > m$ for all *n*.

A sequence is **bounded** if it is both bounded above and bounded below.

Theorem

Every increasing sequence that is bounded above converges. Similarly, every decreasing sequence that is bounded below converges.

Ryan Blair (CSULB)

Math 123: Sequences and Series

Tuesday October 1, 2013 6 / 9

글 돈 옷 글 돈

Image: Image:

Theorem

Every increasing sequence that is bounded above converges. Similarly, every decreasing sequence that is bounded below converges.

Example: Suppose $a_1 = \sqrt{2}$ and $a_n = \sqrt{2 + a_{n-1}}$, show that $\{a_n\}$ converges and find its limit

프 문 문 프 문

Theorem

Every increasing sequence that is bounded above converges. Similarly, every decreasing sequence that is bounded below converges.

Example: Suppose $a_1 = \sqrt{2}$ and $a_n = \sqrt{2 + a_{n-1}}$, show that $\{a_n\}$ converges and find its limit **Example:** Suppose $a_1 = 1$ and $a_n = 3 - \frac{1}{a_{n-1}}$, show that $\{a_n\}$ converges and find its limit

Ryan Blair (CSULB)

Sequences

Must Know Theorems Regarding Limits

$$\begin{array}{ll} & \lim_{n \to \infty} \frac{\ln(n)}{n} = 0 \\ & \lim_{n \to \infty} n^{\frac{1}{n}} = 1 \\ & \lim_{n \to \infty} x^{\frac{1}{n}} = 1 \text{ if } x > 0 \\ & \lim_{n \to \infty} x^n = 0 \text{ if } |x| < 1 \\ & \lim_{n \to \infty} (1 + \frac{x}{n})^n = e^x \\ & \lim_{n \to \infty} \frac{x^n}{n!} = 0 \end{array}$$

990

(日) (四) (三) (三) (三)

Series

Series in terms of Sequences

Roughly, an infinite series $\sum_{i=1}^{\infty} a_i$ denotes the sum of the terms in the sequence $\{a_i\}_{i=1}^{\infty}$.

Definition

The **n-th partial sum** for a sequence $\{a_i\}_{i=1}^{\infty}$ is

$$S_n = \sum_{i=1}^n a_i = a_1 + a_2 + a_3 + \dots + a_n$$

Definition

A Series

$$\sum_{i=1}^{\infty} a_i = lim_{n \to \infty} S_n$$

Ryan Blair (CSULB)

Series

Series in terms of Sequences

Roughly, an infinite series $\sum_{i=1}^{\infty} a_i$ denotes the sum of the terms in the sequence $\{a_i\}_{i=1}^{\infty}$.

Definition

The **n-th partial sum** for a sequence $\{a_i\}_{i=1}^{\infty}$ is

$$S_n = \sum_{i=1}^n a_i = a_1 + a_2 + a_3 + \dots + a_n$$

Definition

A Series

$$\sum_{i=1}^{\infty} a_i = lim_{n \to \infty} S_n$$

Exercise: Given a constant *r* find $\sum_{i=0}^{\infty} r^i$ when it exists.

Ryan Blair (CSULB)

Series

Series in terms of Sequences

Roughly, an infinite series $\sum_{i=1}^{\infty} a_i$ denotes the sum of the terms in the sequence $\{a_i\}_{i=1}^{\infty}$.

Definition

The **n-th partial sum** for a sequence $\{a_i\}_{i=1}^{\infty}$ is

$$S_n = \sum_{i=1}^n a_i = a_1 + a_2 + a_3 + \dots + a_n$$

Definition

A Series

$$\Sigma_{i=1}^{\infty} a_i = lim_{n \to \infty} S_n$$

Exercise: Given a constant r find $\sum_{i=0}^{\infty} r^i$ when it exists. **Exercise:** Use partial sums to find $\sum_{i=1}^{\infty} \frac{1}{i^2+i}$.

Ryan Blair (CSULB)

3

First tests for convergence

Theorem

If a series $\sum_{i=1}^{\infty} a_i$ converges then $\lim_{n\to\infty} a_i = 0$.

Theorem

If $\lim_{n\to\infty} a_i \neq 0$ or does not exist, then $\sum_{i=1}^{\infty} a_i$ does not converge.

Ryan Blair (CSULB)

Math 123: Sequences and Series

∰ ▶ ৰ ≣ ▶ ৰ ≣ ▶ া≣ প ৭.৫ Tuesday October 1, 2013 9 / 9

First tests for convergence

Theorem

If a series $\sum_{i=1}^{\infty} a_i$ converges then $\lim_{n\to\infty} a_i = 0$.

Theorem

If $\lim_{n\to\infty} a_i \neq 0$ or does not exist, then $\sum_{i=1}^{\infty} a_i$ does not converge.

Exercise: Determine the convergence or divergence of $\sum_{i=1}^{\infty} ln(\frac{i^2+1}{2i^2+1})$

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < < = < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

First tests for convergence

Theorem

If a series $\sum_{i=1}^{\infty} a_i$ converges then $\lim_{n\to\infty} a_i = 0$.

Theorem

If $\lim_{n\to\infty} a_i \neq 0$ or does not exist, then $\sum_{i=1}^{\infty} a_i$ does not converge.

Exercise: Determine the convergence or divergence of $\sum_{i=1}^{\infty} ln(\frac{i^2+1}{2i^2+1})$ **Exercise:** Determine the convergence or divergence of $\sum_{i=1}^{\infty} \frac{e^i}{i^2}$.