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Lie Bracket

Lie brackets of vector fields.

Let M be a smooth manifold. Then a smooth vector field V on M acts as
a "first order differential operator” on smooth functions f : M — R by
taking f — V(f) = Lyf.

If V and W are both smooth vector fields on M, we can use them to
operate in succession on smooth functions, taking f — V(W(f)).

No single vector field can accomplish this composite operation, as is borne
out by the appearance of second derivatives in the local coordinate
expression of V(W(f)).
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Lie Bracket

But if we take (VW — WV)(f), then we claim that there is a single vector
field on M which can accomplish the same thing. We call it the Lie
bracket of V and W, and write

[V, W] = VW — WV.

To confirm this, we will work in local coordinates and watch the second
derivative terms disappear, as follows.
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Supposing that V = v % and W =w %, we have

[V, W]f = V(WF) — W(VF)
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This shows that [V, W] = VW — WV is indeed a vector field, gives its

expression in local coordinates, and reveals that

[V, W] = Ly W.
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Review: Why is p:ps = prys ? Let M be a smooth manifold, V a
smooth vector field on it, and {¢:} the associated local flow. Fixing a
point xeM define the curves

a(t) = ‘Pt@s(X) and ﬁ(t) = QDtJrs(X)’ with

a(0) = ¢s(x) = B(0).
Then o(t) = V(a(t)) and B'(t) = V(5(t)).

Hence both «(t) and ((t) are integral curves of the smooth vector field V
with «(0) = (0). By uniqueness of solutions, we have a(t) = 3(t), and
hence p;ps = @t4s, as desired.
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A vector field is invariant under its own flow.

A vector field V on the smooth manifold M is said to be invariant under
the diffeomorphism h of M if h,V = V.

If {¢¢} is the local flow of V/, we claim that V is invariant under each of
the local diffeomorphisms ;. Fixing a point x in M, we must show that

()« V(x) = V(6:(x))-

Recall that if V is a tangent vector to M at x, and f : M — N a smooth
map, one of the several definitions of £,V is to take a smooth curve a(s)
in M with a(0) = x and o/(0) = V, and then £,V = £ |, _ofa(s).
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Now in our case above, we can choose a(s) = ¢s(x), since
%|5:ogps(x) = V/(x). Then, using the fact that ¢;ps = pris,
d
() V(x) = —ls=0pees(x)

d d
= £|s:0§0s+t(x) = £|s:0%0580t(x)

= V(pe(x)).

This shows that the vector field V' is invariant under its own flow ;.
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Theorem

A vector field W is invariant under the flow of a vector field V' if and only
if LyW = 0.

Proof.

Suppose first that W is invariant under the flow ¢, of V:

()« W(x) = W(pe(x))-

Then

(Ly W)(X) =defn lime—o[(p—)« W (#:(x)) = W(x)]/t = 0,

because the numerator of this difference quotient is identically zero.
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Next suppose that Ly W = 0. Let us define

W(t, x) = (o—t)« W(pt(x)),

so that if x is held fixed and t varies, we have a curve of tangent vectors
at x. If we show that this curve has the constant value W(x), then we will

have that
(pe)« W(x) = W(pe(x)),

which will confirm that W is invariant under the flow ¢; of V.
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To begin, we write

0= (LyW)(x) = Tlecol- ) W(e(x)) = oo W(t,)

Thus the curve W(t, x) has zero derivative at t = 0. We want to show
that it has zero derivative for all t, which will imply that it is constant. To
that end, we write

0= (LyW)(s(x)) = lemolio e W(e(i5(x)

B %h:o(@ft)* W (pers(x))

- %“:0(@5)*(@7#5)* W (pe+s(x))
- %h‘:s(%ps)*(@ﬂ’)* W(pr(x))
= %‘T:S(‘PS)* W(Tv X)

= (s) s W, ).
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In the last step above, we used the linearity of (s). to interchange it with
4|0, and so learn that

d
(@s)*z lr=s W(7,x) = 0.

Then, since the linear map (¢s)« is an isomorphism, we must have
%|T=5 W(T, X) - 0

This was our goal, since now W(t,x) is constant, with value

W(0,x) = W(x), and hence, as indicated above, W is invariant under the
flow @ of V.
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Definition
A real vector space V = {U, V, W, ...} is a real Lie algebra if it has a

product
[, ]:VxV—=V

which is bilinear and satisfies
(1) [V, V] =0, or equivalently, [V, W] = —[W, V]
(2) [U,[V,W]] +[V,[W,U]] + [W,[U, V]] =0,

known as the Jacobi identity.
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Thus the space VF(M) of smooth vector fields on a smooth manifold M
forms a real Lie algebra.

The subspace of smooth divergence-free vector fields on M forms a Lie
subalgebra.

So does the subspace of smooth vector fields on M which are tangent to
oM.
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Example The goal of this example is to compute the Lie algebra of the Lie
group S3 of unit quaternions.

Notational convention. Name a tangent vector to S3 at the point u by
the name of a quaternion orthogonal to u. For example, at the identity 1 ,
any imaginary quaternion ai + bj 4+ ck will denote a tangent vector there.

(a) Consider the vector fields X, Y and Z on S3 given by
X, =ui,Yy, = uj, Z, = uk.

Show that the corresponding flows are given by
ot(u) = u(cos(t) + isin(t))

() = u(cos(t) + jsin(t)).
Ct(u) = u(cos(t) + ksin(t)).

Ryan Blair (U Penn) Math 600 Day 10: Lee Brackets of Vector Fie Thursday October 14, 2010 15 / 16



Lie Bracket

(b) Compute the Lie bracket [X, Y] directly from the definition,
[X, Y]1 = (Lx Y)1 = lime—o(((¢-¢)« Y )1 — Y1) /8,
and show that [X, Y] =2Z. Conclude by symmetry that
[Y,Z] =2X

and
[Z,X] =2Y.
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