

Similarities between Java and C++

Before diving too deeply into differences, let's start by reviewing what is the
same, or at least nearly the same.

Note that there are a few "forward references" below to material you will read
in the next few sections of this web site. It is not important while reading this
material to fully understand what is described in those forward references –
just a basic intuitive idea will suffice for now. You will see and understand
that material very shortly.

1. Comments: Comments are identical in C++ and Java, both the single-

line // style as well as the potentially multiline /* … */.

2. Primitive Types: The Java and C++ primitive types are nearly identical.
The major differences are:

a. The Boolean data type is called boolean in Java; it is called bool in C++.

b. Java has both byte (a signed integer whose values can range from -128 to

127) and char. C++ has traditionally only had char, although newer

versions starting with C++11 have additional variations of the char data

type including char16_t and char32_t. Note that C++ variables of

type char can be treated as integers in which case they can hold values in

the -128 to 127 range.

c. The integral types (e.g., int, long, char, etc.) can optionally be declared to

be "unsigned" in C++. For example:

d. int counter1 = 0; // range of values: -231 ≤ counter1
≤ 231-1

e. unsigned int counter2 = 0; // range of values: 0 ≤ counter2
≤ 232-1

unsigned char val = 0; // range of values: 0 ≤ val

≤ 255

f. In Java, the sizes of the primitive types are a part of the language

specification, hence they are guaranteed to be the same on all platforms.

While the sizes of the C++ primitive types tend to be fairly consistent across

platforms, there is no guarantee that, for example, a C++ int on machine A

will be allocated the same number of bits as it will on machine B. (In 2.c, for

example, I was simply assuming the currently common assignment of 4 bytes

(32 bits) to int variables.)

3. Relational and Arithmetic Operators: No significant differences.

4. Control constructs: The major Java and C++ control constructs

(e.g., if, for, while, switch, etc.) are essentially identical. Minor

differences occasionally appear for newer variations such as Java's "for
each" construct that will be mentioned in the section on Arrays.

5. main: Execution of a C++ or Java program is the same in that the

runtime system will look for an appropriate entry point named main and

initiate execution of your program by causing control to start at the first

statement of the identified main function. The primary differences

include:

a. Every Java class is allowed to have a main method, and the

runtime system decides which to run based on how you launch
the program. In C++, there must be exactly one entry point

called main, and it must be a function declared at global scope

outside all classes. (See Identifiers at global scope in the
navigation panel on the left.)

b. The prototype for all Java main methods must be:

public static void main(String[] args)

whereas the prototype for the one C++ main function can

be either:

int main()

or

int main(int argc, char* argv[])

If the latter, argv plays the same role as does args in the Java

case. Because the C++ runtime system cannot determine the
length of an array (as will be described in

the Arrays section), argc contains the length of the argv array

on entry to main. You will learn about the differences between

Java's "String[] args" and C++'s "char* argv[]" in

the Character strings section.

c. Note that the C++ main method must return an integer value.

Typically you just "return 0;", but you can return other values

(typically error codes) which might be retrievable for use by the
host operating system.

As a comparative example (output to the screen using std::cout will

be discussed in the Keyboard/Screen I/O section):

Java C++

public class Example

{

 public static void main(String[]

args)

 {

 for (int i=0 ; i<args.length ;

i++)

 System.out.println(args[i]);

 }

}

#include <iostream>

using namespace std;

int main(int argc, char*

argv[])

{

 for (int i=1 ; i<argc ;

i++)

 cout << argv[i] <<

'\n';

 return 0;

}

If I execute the Java program from a linux command line as:

java Example chris book pat

I will see the same output as I would if I executed the C++ program
from a linux command line as:

example chris book pat

This common output would be:

chris

book

pat

Notes:

i. This assumes the C++ program was compiled and linked into an

executable program called "example".

j. The for loop in the C++ code starts at i=1 because the name of

the program launched ("example" in this case) is stored in

argv[0].

k. The "#include" directive you see in the C++ code is very roughly

analogous to Java's "import" statement. Some differences

include the fact that "import" is a statement that the Java

compiler handles, whereas "#include" is handled by a

"preprocessor". (You will read about the preprocessor in
the Separate compilation section.)

