
OPERATOR OVERLOADING

Fundamentals

 There are many operators available that work on built-in types,

like int and double.
 Operator overloading -- is the creation of new versions of these operators for

use with user-defined types.
 Operators usually refer to C++ predefined operators:

o arithmetic operators: +, -, *, /, %

o relational operators: <, <=, ==, !=, >, >=

o assignment operator: =

o logical operators: &&, ||, !

o input/output operators: <<, >>

 It is not as difficult as it sounds. Some things to note:
o An operator in C++ is just a function that is called with special

notation (usually more intuitive or familiar notation). Overloading an

operator simply involves writing a function.
o C++ already does some operator overloading implicitly on built-in

types. Consider the fact that the + operator already works for ints,

floats, doubles, and chars. There is really a different version of the +

operator for each type.

Operator overloading is done for the purpose of using familiar operator notation

on programmer-defined types (classes).

Some rules regarding operator overloading

 Overloading an operator cannot change its precedence.

 Overloading an operator cannot change its associativity.

 Overloading an operator cannot change its "arity" (i.e. number of operands)

You cannot change the number of arguments that an operator takes.

 It is not possible to create new operators -- only new versions of existing

ones.

 Operator meaning on the built-in types cannot be changed.

 The following operator can only be overloaded as member functions: =, [], ->

and ().

 The following operator cannot be overloaded: the dot operator (.), the scope

resolution operator (::), sizeof, ?: and .*.

 An overloaded operator cannot have default arguments.

Format

 An operator is just a function. This means that it must be created with a return

type, a name, and a parameter list

 The rules above give some restrictions on the parameter list

 The name of an operator is always a conjunction of the keyword operator and

the operator symbol itself. Examples:
o operator+
o operator++
o operator<<
o operator==

 So the format of an operator overload declaration is just like that of a

function, with the keyword operator as part of the name:
 returnType operatorOperatorSymbol (parameterList);

Overloading operator implementation

 Operations for C++ primitive data types (such as int, char and double) are

predefined in C++ language.

int main()

{

 int x, y = 3;

 x = y + 10; // OK (int + int), other arithmetic operators -, *, /,

%

 // also OK (int = int) -- assignment

 if (x < y) // OK (int < int), other logical operators <=, >, >=,

==, !=

 ...

 But, for user-defined data types (Classes), C++ doesn't have definitions for

those operators.

class Money

{

public:

 Money();

 Money(int d, int c);

 Money(int allc);

 double getAmount(); // Returns the amount as a double

 void printMoney(); // prints a money to cout, in the form $xx.yy

private:

 int dollar;

 int cent;

};

int main()

{

 Money m1(3, 25), m2(19, 5);

 Money m3 = m1 + m2; // SYNTAX ERROR!! operator+ is not defined for

Money

 cout << m1; // SYNTAX ERROR!! operator<< is not defined for

Money

 An Operator is essentially a function. So, we can look at expressions with

operators as function call. Those functions have operator keyword in front

of them (in prefix notation).
 x = x + 5; // infix notation, same as: x = operator+(x, 5);

cout << x; // infix notation, same as: operator<<(cout, x);

 So if you want to use familiar syntax with classes, you must write the

definition for the (overloading) operators for the class.

The Thee ways

 There are 3 ways to define overloaded operators:

1. Member function

2. Nonmember function

3. Friend function

Member function

 The first way is by class method (member function). This is the most popular

way.

Many experts advocate always overloading operators as member operators

rather than as nonmembers. It is more in the spirit of object-oriented

programming and is a bit more efficient since the definition can directly

reference member variables."

 Since the operator is applied on a (existing) class object, the number of

parameters to the operator is one less:

o Binary operators have 1 parameter, the second operand to the

operator. The first operand is the object in which the overloaded

operator is called/invoked.

o Unary operators (e.g. unary - for negative) have 0 parameter.

Example

// filename: money.h -- Header file for class Money

#ifndef MONEY_H

#define MONEY_H

#include <iostream>

using namespace std;

class Money

{

public:

 Money() : dollar(0), cent(0) {}

 Money(int d, int c) : dollar(d), cent(c) {}

 Money(int allc);

 Money operator+(const Money & mo2) const;

 Money operator-(const Money & mo2) const; // binary -

 Money operator-() const; // unary -

 bool operator==(const Money & mo2) const;

 bool operator<=(const Money & mo2) const;

 int getDollars() const { return dollar; }

 int getCents() const { return cent; }

 // friend functions

 friend ostream& operator<<(ostream& out, const Money & m);

 friend istream& operator>>(istream& in, Money & m);

 friend bool operator>(const Money &, const Money &);

private:

 int dollar;

 int cent;

};

// prototypes of overloaded operators implemented as

// regular functions

bool operator<(const Money &, const Money &);

bool operator!=(const Money &, const Money &);

#endif

__

// filename: money.cpp -- Implementation file for class Money

#include "money.h"

Money::Money(int allc)

{

 dollar = allc / 100;

 cent = allc % 100;

}

Money Money::operator+(const Money & m2) const

{

 int total = (dollar * 100 + cent) +

 (m2.dollar * 100 + m2.cent);

 Money local(total);

 return local;

}

Money Money::operator-(const Money & m2) const // *this - mo2

{

 int diff = (dollar * 100 + cent) -

 (m2.dollar * 100 + m2.cent);

 Money local(diff);

 return local;

}

Money Money::operator-() const // unary -

{

 int neg = - (dollar * 100 + cent);

 Money local(neg);

 return local;

}

bool Money::operator==(const Money & m2) const

{

 int thistotal = (dollar * 100 + cent);

 int m2total = (m2.dollar * 100 + m2.cent);

 return (thistotal == m2total);

}

bool Money::operator<=(const Money & m2) const

{

 int thistotal = (dollar * 100 + cent);

 int m2total = (m2.dollar * 100 + m2.cent);

 return (thistotal <= m2total);

 /*

 if (*this < m2 || *this == m2)

 return true;

 else

 return false;

 */

}

// no keyword "friend" in the function definition

ostream& operator<<(ostream& out, const Money & m)

{

 out << "$" << m.dollar // dollar private in m -- OK

 << "." << m.cent; // cent private in m -- OK

 return out;

}

istream& operator>>(istream& in, Money & m)

{

 char dollarSign;

 double moneyAsDouble;

 in >> dollarSign; // first eat up '$'

 in >> moneyAsDouble; // xx.yy

 m.dollar = static_cast<int>(moneyAsDouble);

 m.cent = static_cast<int>(moneyAsDouble * 100) % 100;

 return in;

}

// friend function

bool operator>(const Money & m1, const Money & m2)

{

 int thistotal = m1.dollar * 100 + m1.cent;

 int m2total = m2.dollar * 100 + m2.cent;

 return (thistotal > m2total);

}

bool operator<(const Money & m1, const Money & m2) // note: 2 arguments and

NO Money::

{

 int thistotal = m1.getDollars() * 100 + m1.getCents();

 int m2total = m2.getDollars() * 100 + m2.getCents();

 return (thistotal < m2total);

}

bool operator!=(const Money & m1, const Money & m2)

{

 int thistotal = m1.getDollars() * 100 + m1.getCents();

 int m2total = m2.getDollars() * 100 + m2.getCents();

 return (thistotal != m2total);

}

__

_

// filename: myMoneyApp.cpp
//

// An application program which uses Money objects (defined in

// "money.h").

#include <iostream>

using namespace std;

#include "money.h"

int main()

{

 Money m1(2, 98), m2(15, 2), m3;

 m3 = m1 + m2; // member function operator+

 cout << m1 << " + " << m2 << " = " << m3 << endl;

 if (m1 != m2)

 cout << "Not equals.\n";

 else

 cout << "Equals.\n";

 if (m1 > m2)

 cout << "Greaterthan.\n";

 else

 cout << "NOT Greaterthan.\n";

 bool ans = m1 > m2;

 cout << ans << endl; // prints 0 (false) or 1 (true)

 system("pause");

 return 0;

}

Run time ouput

$2.98 + $15.2 = $18.0

Not equals.

NOT Greaterthan.

0

Top-level (Nonmember) function

 Another way to overload operators is by regular, non-member functions.

 Since the operator is NOT a class method, all operands involved in the

operator become the parameters:

o Binary operators have 2 parameters, the second operand to the

operator. The first operand is the object in which the overloaded

operator is called/invoked.

o Unary operators have 1 parameter.

 Also the operator cannot access private members in the parameter objects.

class Money

{

public:

 Money();

 Money(int d, int c);

 Money(int allc);

 int getDollars() const;

 int getCents() const;

 ...

 // note: NO method for operator<

private:

 int dollar;

 int cent;

};

// Definition of regular, non-member functions.

// mo1 < mo2

bool operator<(const Money & m1, const Money & m2) // note: 2

arguments and NO Money::

{

 int thistotal = m1.getDollars() * 100 + m1.getCents();

 int m2total = m2.getDollars() * 100 + m2.getCents();

 return (thistotal < m2total);

}

Friend function

 Yet another way is to use friend function. Friend functions are declared

within a class, but they are NOT class methods.

 A friend function is actually a regular function which has a privilege to access

private members in the parameter objects.

class Money

{

public:

 Money();

 Money(int d, int c);

 Money(int allc);

 Money operator+(const Money & mo2) const;

 ...

 // friend functions

 friend ostream& operator<<(ostream& out, const Money & m); // to be able

to do cout << obj

 friend istream& operator>>(istream& in, Money & m); // to be able to do

cint >> obj

private:

 int dollar;

 int cent;

};

// no keyword "friend" in the function definition

ostream& operator<<(ostream& out, const Money & m)

{

 out << "$" << m.dollar // dollar private in m -- OK

 << "." << m.cent; // cent private in m -- OK

 return out;

}

istream& operator>>(istream& out, Money & m)

{

 char dollarsign;

 double moneyAsDouble;

 in >> dollarSign; // first eat up '$'

 in >> moneyAsDouble; // xx.yy

 m.dollar = static_cast<int>(moneyAsDouble);

 m.cent = static_cast<int>(moneyAsDouble * 100) % 100;

 return in;

}

Important Remarks

 For all 3 ways for operator overloading, they are all called the same

way (i.e., infix notation).

int main()

{

 Money m1(2, 98), m2(15, 2), m3;

 m3 = m1 + m2; // member function operator+

 if (m1 == m2) // member function operator==

 cout << "same amount";

 bool ans = m1 < m2; // non-member function operator<

 cout << p1; // friend function operator<<

 Remember parameters to the operators are POSITIONAL: the order of

1st/2nd parameter DOES matter.

int main()

{

 Money m1(2, 98), m2(15, 2), m3;

 m3 = m1 * 0.8; // (a) 1st arg Money, 2nd arg double

m3 = 1.7 * m1; // (b) 1st arg double, 2nd arg Money

 So for operators WHOSE 1st ARGUMENT IS NOT A CLASS OBJECT, you

must write them as friend or regular functions.

class Money

{

public:

 Money();

 Money(int d, int c);

 Money(int allc);

 Money operator+(const Money & mo2) const;

 ...

 Money operator*(double r) const; // for usage case (a), class method

works

private:

 int dollar;

 int cent;

};

// ANOTHER operator*, for usage case (b).

// It has to be a friend or regular function.

// Here is implemented as a regular function.

Money operator*(double r, const Money & m); // prototype only here

.....

Money operator*(double r, const Money & m)

{

 int total = m.toAllCents() * r;

 Money local(total);

 return local;

}

 Also for the reason above, the operator<< and operator>> are often

implemented as friend functions.

int main()

{

 Money m1(2, 98);

 cout << m1;

}

 Automatic Type Promotion
 If an operator is expecting a class object but received a different type,

if there is a constructor in the class which can convert it to the class,

the conversion/promotion is automatically applied by the compiler.

Example: Suppose the operator+ is implemented as a member function in

Money. Then in the application:

int main()

{

 Money m1(3, 25), m2;

 m2 = m1 + 6; // 2nd operand is int, not Money.

 // This int is promoted to a Money object by

 // the Money constructor which has one int argument

 // if it is defined (and in our example, it is).

Overloading Other Operators

 Operator[] -- index operator

// A class with an array of five double's.

class DoubleArray5

{

public:

 DoubleArray5(double initvalue);

 ...

 double& operator[](int index) const; // index is the parameter

private:

 int ar[5];

};

// NOTE: return by reference(&)

double& DoubleArray5operator[](int index) const

{

 if (index <= 0 || index > 5)

 {

 cout << "ILLEGAL INDEX.\n";

 exit(1);

 }

 else

 return ar[index];

}

int main()

{

 DoubleArray5 myarray(0.0);

 double d = myarray[2]; // myarray.operator[](2)

 myarray[1] = 5.7; // can be used on the LHS of =

 ...

}

 Operator++ and operator-- -- increment/decrement operators

// A counter class

class Counter

{

public:

 Counter(int c = 0); // initializes 'count' to c

 ...

 Counter operator++(); // pre-increment

 Counter operator++(int i); // post-increment

private:

 int count;

};

Counter Counter::operator++()

{

 // First, increment 'count'.

 count++;

 // Second, create a local object with the new count.

 Counter local(count);

 // Third, return the local object.

 return local;

}

Counter Counter::operator++(int i) // param value is IGNORED!!

{

 // First, create a local object with the current count.

 Counter local(count);

 // Second, increment count.

 count++;

 // Third, return the local object.

 return local;

}

 Operator= -- assignment operator

This operator will be discussed later in conjunction with pointers.

 Type conversion

Conversion Routine in Destination Routine in source

Basic to basic
(float to int)

Built in Built in

Basic to class
(int to obj)

Constructor

Class to Basic
(obj to int)

 Operator function

Class to class
(obj to otherObj)

Constructor Operator function

o Example: Class to basic and basic to class

 Metric system vs English system

const float MTF=3.280833;
Class Es
{

int feet;
int inches;
public:

Es(int f, float i)
{

feet=f;
inches=i;

}
//basic to class
Es(float m) //m is a metric value
{

float fi=MTF *m;
feet=fi;
inches=12*(fi-feet)

}
//class to basic
operator float()
{

}
//In Main

Es e(2,3.0);
float y;

float ff=inches/12;
ff+=feet;
return ff/MTF;

y=e; //class to basic

e=y; //basic to class

o Example: Class to class - Polar to Cartesian

Polar p;
Cartesian c;
p=c;
//or
c=p;

Class Cartesian
{

double x;
double y;
public:

Cartesian()
{x=0;y=0;}
Cartesian(doubly x, double y)
{

this.x=x;
this.y=y;

}
//added constructor
Cartesian(Polar p)
{

}
};
Class Polar
{

double r=P.getRadius();
double a=p.getAngle();
x=r*cos(a;)
y=r*cos(a);

double radius;
double angle;
public:

Polar()
{

radius=0;
angle=0;

}
Polar (double r, double a)
{

radius=r;
angle=a;

}

15

operator Cartesian()
{

double x=Radius*cos(angle);
double y=radius*sin(angle);
return Cartesian(x,y);

}
};

//In the main

Polar p(10,.5);

Cartesian c;

c=p;

