

1

C++ Input/Output

Standard input and output in C++ is done through the use of streams. Streams are

generic places to send or receive data. Keyboard, screen, file, network, it's all the

same after setup. It's a stream.

In C++, I/O is done through classes and functions found in <iostream>.

There are two variables (among others) defined in <iostream>. cout is used for

output, cin for input.

Important Point

cout and cin are not key words in the C++ language. They are variables,

instances of classes, that have been declared in <iostream>. cout is a variable

of type ostream. cin is a variable of type istream.

C++ allows us to change the meaning of standard operators in various situations.

(We'll spend a lot of time on this later.) For now, the standard shifting

operators « and » have been overloaded for use in I/O.

cout << "Hello world!\n";

« is sometimes called the output operator, sometimes the insertion operator (it inserts

something into the stream)

We don't need to tell the type of the data to be output, that happens automatically

(we'll find out how later)

int i = 7;

double d = 3.4;

cout << i;

cout << d;

Output operations can be chained:

cout << i << " " << d << "\n";

The input operator (or extraction operator) «

2

cin >> i;

cin >> d;

Note that address operators (&) are not needed here like they are with the standard C

input function scanf(). (And there was much rejoicing.)

The cin input stream can be chained as well, but usually isn't.

Note that output goes to cout, input comes from cin. It may be possible to get input

from cout or send output to cin depending on the library implementation, but it

shouldn't do anything useful.

To get an entire line from cin, there exists a function, called getline, that takes the

stream (cin) as first argument, and the string variable as second. For example:

// cin with strings

#include <iostream>

#include <string>

using namespace std;

int main ()

{

 string mystr;

 cout << "What's your name? ";

 getline (cin, mystr);

 cout << "Hello " << mystr << ".\n";

 cout << "What is your favorite team? ";

 getline (cin, mystr);

 cout << "I like " << mystr << " too!\n";

 return 0;

}

Note:

string name;

cout << "Enter your name: " << flush;

cin >> name;

 // read string until the next separator

 // (space, newline, tab)

3

getchar() - This function reads in a character. It returns the character as the ASCII
value of that character. This function will wait for a key to be pressed before
continuing with the program.

//Example waits for a character input, then outputs the character

#include <cstdio>

#include <iostream>

using namespace std;

int main()

{

 char a_char;

 cout<<"Enter y or n: ";

 a_char=getchar();

 cout<<a_char;

}

Output Formatting

Formatting program output is an essential part of any serious application.

Surprisingly, most C++ textbooks don't give a full treatment of output formatting.

The purpose of this section is to describe the full range of formatting abilities

available in C++.

Formatting in the standard C++ libraries is done through the use of manipulators,

special variables or objects that are placed on the output stream. Most of the standard

manipulators are found in <iostream> and so are included automatically. The standard

C++ manipulators are not keywords in the language, just like cin and cout, but it is

often convenient to think of them as a permanent part of the language.

The standard C++ output manipulators are:

endl

- places a new line character on the output stream. This is identical to

placing '\n' on the output stream.

#include<iostream>

using namespace std;

int main()

{

4

 cout << "Hello world 1" << endl;

 cout << "Hello world 2\n";

 return 0;

}

produces

Hello world 1

Hello world 2

flush

- flushes the output buffer to its final destination.

Field width

A very useful thing to do in a program is output numbers and strings in fields

of fixed width. This is crucial for reports.

setw()

- Adjusts the field with for the item about to be printed.

Important Point

The setw() manipulator only affects the next value to be printed.

The setw() manipulator takes an integer argument which is the minimum field

width for the value to be printed.

Important Point

All manipulators that take arguments are defined in the header file iomanip. This

header file must be included to use such manipulators.

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

 // A test of setw()

 cout << "*" << -17 << "*" << endl;

 cout << "*" << setw(6) << -17 << "*" << endl << endl;

 cout << "*" << "Hi there!" << "*" << endl;

 cout << "*" << setw(20) << "Hi there!" << "*" << endl;

 cout << "*" << setw(3) << "Hi there!" << "*" << endl;

5

 return 0;

}

produces

-17

* -17*

Hi there!

* Hi there!*

Hi there!

Note that the values are right justified in their fields. This can be changed. Note

also what happens if the value is too big to fit in the field.

Important Point

The argument given to setw() is a minimum width. If the value needs more

space, the output routines will use as much as is needed.

This field overflow strategy is different than that used in other programming

languages. Some languages will fill a small field with *'s or #'s. Others will

truncate the value. The philosophy for the C++ standard output is that it's better

to have a correct value formatted poorly than to have a nicely formatted error.

Important Point

The default field width is 0.

Justification

Values can be justified in their fields. There are three manipulators for

adjusting the justification: left, right, and internal.

Important Point

The default justification is right justification.

Important Point

All manipulators except setw() are persistent. Their effect continues until

explicitly changed.

6

left

- left justify all values in their fields.

right

- right justify all values in their fields. This is the default justification value.

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

 cout << "*" << -17 << "*" << endl;

 cout << "*" << setw(6) << -17 << "*" << endl;

 cout << left;

 cout << "*" << setw(6) << -17 << "*" << endl << endl;

 cout << "*" << "Hi there!" << "*" << endl;

 cout << "*" << setw(20) << "Hi there!" << "*" << endl;

 cout << right;

 cout << "*" << setw(20) << "Hi there!" << "*" << endl;

 return 0;

}

produces

-17

* -17*

*-17 *

Hi there!

*Hi there! *

* Hi there!*

internal

- internally justifies numeric values in their fields. Internal justification

separates the sign of a number from its digits. The sign is left justified and the

digits are right justified. This is a useful format in accounting and business

programs, but is rarely used in other applications.

#include <iostream>

#include <iomanip>

using std::cout;

using std::endl;

using std::setw;

using std::internal;

int main()

{

 cout << setw(9) << -3.25 << endl;

 cout << internal << setw(9) << -3.25 << endl;

7

 return 0;

}

produces

 -3.25

- 3.25

showpos and noshowpos

This manipulator determines how positive numbers are printed. A negative

number is traditionally printed with a minus sign in front. The lack of a minus

sign means a positive value. However some accounting and scientific

applications traditionally place a plus sign in front of positive numbers just to

emphasize the fact that the number is positive. Using the showpos manipulator

makes this happen automatically. The noshowpos manipulator returns the

output state to placing nothing in front of positive values.

#include <iostream>

using namespace std;

int main()

{

 int pos_int = 4, neg_int = -2, zero_int = 0;

 float pos_f = 3.5, neg_f = -31.2, zero_f = 0.0;

 cout << "pos_int: " << pos_int << " neg_int: " << neg_int;

 cout << " zero_int: " << zero_int << endl;

 cout << "pos_f: " << pos_f << " neg_f: " << neg_f;

 cout << " zero_f: " << zero_f << endl << endl;

 cout << showpos;

 cout << "pos_int: " << pos_int << " neg_int: " << neg_int;

 cout << " zero_int: " << zero_int << endl;

 cout << "pos_f: " << pos_f << " neg_f: " << neg_f;

 cout << " zero_f: " << zero_f << endl << endl;

 return 0;

}

produces

pos_int: 4 neg_int: -2 zero_int: 0

pos_f: 3.5 neg_f: -31.2 zero_f: 0

pos_int: +4 neg_int: -2 zero_int: +0

pos_f: +3.5 neg_f: -31.2 zero_f: +0

Note that zero is considered to be a positive number in this case.

Floating Point Output

8

There are 3 floating point formats: general, fixed, and scientific. Fixed format

always has a number, decimal point, and fraction part, no matter how big the

number gets, i.e., not scientific notation. 6.02e+17 would be displayed

as 602000000000000000 instead of 6.02e+17.

Scientific format always displays a number in scientific notation. The value of

one-fourth would not be displayed as 0.25, but as 2.5e-01 instead.

General format is a mix of fixed and scientific formats. If the number is small

enough, fixed format is used. If the number gets too large, the output switches

over to scientific format. General format is the default format for floating point

values.

fixed and scientific

The manipulator fixed will set up the output stream for displaying floating

point values in fixed format.

The scientific manipulator forces all floating point values to be displayed in

scientific notation.

Unfortunately, there is no manipulator to place the output stream back into

general format. The author of these notes considers this to be a design flaw in

the standard C++ libraries. There is a way to place the output stream back into

general format, but it's not pretty and requires more explanation than is

appropriate here. In short, here's the magic incantation

cout.unsetf(ios::fixed | ios::scientific);

In order to use this statement, you need a using declaration for the ios class.

#include <iostream>

using namespace std;

int main()

{

 float small = 3.1415926535897932384626;

 float large = 6.0234567e17;

 float whole = 2.000000000;

 cout << "Some values in general format" << endl;

 cout << "small: " << small << endl;

 cout << "large: " << large << endl;

9

 cout << "whole: " << whole << endl << endl;

 cout << scientific;

 cout << "The values in scientific format" << endl;

 cout << "small: " << small << endl;

 cout << "large: " << large << endl;

 cout << "whole: " << whole << endl << endl;

 cout << fixed;

 cout << "The same values in fixed format" << endl;

 cout << "small: " << small << endl;

 cout << "large: " << large << endl;

 cout << "whole: " << whole << endl << endl;

 // Doesn't work -- doesn't exist

 // cout << general;

 cout.unsetf(ios::fixed | ios::scientific);

 cout << "Back to general format" << endl;

 cout << "small: " << small << endl;

 cout << "large: " << large << endl;

 cout << "whole: " << whole << endl << endl;

 return 0;

}

produces

Some values in general format

small: 3.14159

large: 6.02346e+17

whole: 2

The values in scientific format

small: 3.141593e+00

large: 6.023457e+17

whole: 2.000000e+00

The same values in fixed format

small: 3.141593

large: 602345661202956288.000000

whole: 2.000000

Back to general format

small: 3.14159

large: 6.02346e+17

whole: 2

setprecision()

An important point about floating point output is the precision, which is

roughly the number of digits displayed for the number. The exact definition of

the precision depends on which output format is currently being used.

10

In general format, the precision is the maximum number of digits displayed.

This includes digits before and after the decimal point, but does not include the

decimal point itself. Digits in a scientific exponent are not included.

In fixed and scientific formats, the precision is the number of digits after the

decimal point.

Important Point

The default output precision is 6.

The setprecision manipulator allows you to set the precision used for printing

out floating point values. The manipulator takes an integer argument. The

header file <iomanip> must be included to use this manipulator.

showpoint and noshowpoint

There is one aspect of printing numbers in general format that is either very

nice or very annoying depending on your point of view. When printing out

floating point values, only as many decimal places as needed (up to the

precision) are used to print out the values. In other words, trailing zeros are

not printed. This is nice and compact, but impossible to get decimal points to

line up in tables.

The showpoint manipulator forces trailing zeros to be printed, even though they

are not needed. By default this option is off. As can be seen from previous

examples, this manipulator is not needed in fixed or scientific format, only in

general format.

#include <iostream>

using std::cout;

using std::endl;

using std::showpoint;

int main()

{

 float lots = 3.1415926535;

 float little1 = 2.25;

 float little2 = 1.5;

 float whole = 4.00000;

 cout << "Some values with noshowpoint (the default)" << endl << endl;

 cout << "lots: " << lots << endl;

11

 cout << "little1: " << little1 << endl;

 cout << "little2: " << little2 << endl;

 cout << "whole: " << whole << endl;

 cout << endl << endl;

 cout << "The same values with showpoint" << endl << endl;

 cout << showpoint;

 cout << "lots: " << lots << endl;

 cout << "little1: " << little1 << endl;

 cout << "little2: " << little2 << endl;

 cout << "whole: " << whole << endl;

 return 0;

}

produces

Some values with noshowpoint (the default)

lots: 3.14159

little1: 2.25

little2: 1.5

whole: 4

The same values with showpoint

lots: 3.14159

little1: 2.25000

little2: 1.50000

whole: 4.00000

