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C++ Input/Output 

Standard input and output in C++ is done through the use of streams. Streams are 

generic places to send or receive data. Keyboard, screen, file, network, it's all the 

same after setup. It's a stream. 

In C++, I/O is done through classes and functions found in <iostream>. 

There are two variables (among others) defined in <iostream>. cout is used for 

output, cin for input. 

Important Point  

cout and cin are not key words in the C++ language. They are variables, 

instances of classes, that have been declared in <iostream>. cout is a variable 

of type ostream. cin is a variable of type istream. 

C++ allows us to change the meaning of standard operators in various situations. 

(We'll spend a lot of time on this later.) For now, the standard shifting 

operators « and » have been overloaded for use in I/O. 

cout << "Hello world!\n"; 

« is sometimes called the output operator, sometimes the insertion operator (it inserts 

something into the stream) 

We don't need to tell the type of the data to be output, that happens automatically 

(we'll find out how later) 

int  i = 7; 

double d = 3.4; 

 

cout << i; 

 

cout << d; 

Output operations can be chained: 

cout << i << "  " << d << "\n"; 

The input operator (or extraction operator) « 
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cin >> i; 

 

cin >> d; 

Note that address operators (&) are not needed here like they are with the standard C 

input function scanf(). (And there was much rejoicing.) 

The cin input stream can be chained as well, but usually isn't. 

Note that output goes to cout, input comes from cin. It may be possible to get input 

from cout or send output to cin depending on the library implementation, but it 

shouldn't do anything useful. 

To get an entire line from cin, there exists a function, called getline, that takes the 

stream (cin) as first argument, and the string variable as second. For example: 

// cin with strings 

#include <iostream> 

#include <string> 

using namespace std; 

 

int main () 

{ 

  string mystr; 

  cout << "What's your name? "; 

  getline (cin, mystr); 

  cout << "Hello " << mystr << ".\n"; 

  cout << "What is your favorite team? "; 

  getline (cin, mystr); 

  cout << "I like " << mystr << " too!\n"; 

  return 0; 

} 

 

Note: 

 

string name; 

cout << "Enter your name: " << flush; 

cin >> name; 

    // read string until the next separator 

    // (space, newline, tab) 
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getchar() - This function reads in a character. It returns the character as the ASCII 
value of that character. This function will wait for a key to be pressed before 
continuing with the program.  

//Example waits for a character input, then outputs the character 

#include <cstdio> 

#include <iostream> 

 

using namespace std; 

 

int main() 

{ 

  char a_char; 

  cout<<"Enter y or n:  "; 

  a_char=getchar(); 

  cout<<a_char; 

} 

Output Formatting 
 

Formatting program output is an essential part of any serious application. 

Surprisingly, most C++ textbooks don't give a full treatment of output formatting. 

The purpose of this section is to describe the full range of formatting abilities 

available in C++. 

Formatting in the standard C++ libraries is done through the use of manipulators, 

special variables or objects that are placed on the output stream. Most of the standard 

manipulators are found in <iostream> and so are included automatically. The standard 

C++ manipulators are not keywords in the language, just like cin and cout, but it is 

often convenient to think of them as a permanent part of the language. 

The standard C++ output manipulators are: 

endl 

- places a new line character on the output stream. This is identical to 

placing '\n' on the output stream. 

#include<iostream> 

using namespace std; 

 

int main() 

{ 
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  cout << "Hello world 1" << endl; 

  cout << "Hello world 2\n"; 

 

  return 0; 

} 

produces 

Hello world 1 

Hello world 2 

flush 

- flushes the output buffer to its final destination. 

Field width 

A very useful thing to do in a program is output numbers and strings in fields 

of fixed width. This is crucial for reports. 

setw() 

- Adjusts the field with for the item about to be printed. 

Important Point  

The setw() manipulator only affects the next value to be printed. 

The setw() manipulator takes an integer argument which is the minimum field 

width for the value to be printed. 

Important Point  

All manipulators that take arguments are defined in the header file iomanip. This 

header file must be included to use such manipulators. 

#include <iostream> 

#include <iomanip> 

using namespace std; 

 

 

int main() 

{ 

  // A test of setw() 

 

  cout << "*" << -17 << "*" << endl; 

  cout << "*" << setw(6) << -17 << "*" << endl << endl; 

 

  cout << "*" << "Hi there!" << "*" << endl; 

  cout << "*" << setw(20) << "Hi there!" << "*" << endl; 

  cout << "*" << setw(3) << "Hi there!" << "*" << endl; 



 

5 
 

 

  return 0; 

} 

produces 

*-17* 

*   -17* 

 

*Hi there!* 

*           Hi there!* 

*Hi there!* 

Note that the values are right justified in their fields. This can be changed. Note 

also what happens if the value is too big to fit in the field. 

Important Point  

The argument given to setw() is a minimum width. If the value needs more 

space, the output routines will use as much as is needed. 

This field overflow strategy is different than that used in other programming 

languages. Some languages will fill a small field with *'s or #'s. Others will 

truncate the value. The philosophy for the C++ standard output is that it's better 

to have a correct value formatted poorly than to have a nicely formatted error. 

Important Point  

The default field width is 0. 

Justification 

Values can be justified in their fields. There are three manipulators for 

adjusting the justification: left, right, and internal. 

Important Point  

The default justification is right justification. 

Important Point  

All manipulators except setw() are persistent. Their effect continues until 

explicitly changed. 
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left 

- left justify all values in their fields. 

right 

- right justify all values in their fields. This is the default justification value. 

#include <iostream> 

#include <iomanip> 

using namespace std; 

 

int main() 

{ 

  cout << "*" << -17 << "*" << endl; 

  cout << "*" << setw(6) << -17 << "*" << endl; 

  cout << left; 

  cout << "*" << setw(6) << -17 << "*" << endl << endl; 

 

 

  cout << "*" << "Hi there!" << "*" << endl; 

  cout << "*" << setw(20) << "Hi there!" << "*" << endl; 

  cout << right; 

  cout << "*" << setw(20) << "Hi there!" << "*" << endl; 

 

  return 0; 

} 

produces 

*-17* 

*   -17* 

*-17   * 

 

*Hi there!* 

*Hi there!           * 

*           Hi there!* 

internal 

- internally justifies numeric values in their fields. Internal justification 

separates the sign of a number from its digits. The sign is left justified and the 

digits are right justified. This is a useful format in accounting and business 

programs, but is rarely used in other applications. 

#include <iostream> 

#include <iomanip> 

 

using std::cout; 

using std::endl; 

using std::setw; 

using std::internal; 

 

int main() 

{ 

  cout << setw(9) << -3.25 << endl; 

  cout << internal << setw(9) << -3.25 << endl; 
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  return 0; 

} 

produces 

    -3.25 

-    3.25 

showpos and noshowpos 

This manipulator determines how positive numbers are printed. A negative 

number is traditionally printed with a minus sign in front. The lack of a minus 

sign means a positive value. However some accounting and scientific 

applications traditionally place a plus sign in front of positive numbers just to 

emphasize the fact that the number is positive. Using the showpos manipulator 

makes this happen automatically. The noshowpos manipulator returns the 

output state to placing nothing in front of positive values. 

 

 

#include <iostream> 

using namespace std; 

 

int main() 

{ 

  int pos_int = 4, neg_int = -2, zero_int = 0; 

  float pos_f = 3.5, neg_f = -31.2, zero_f = 0.0; 

 

  cout << "pos_int: " << pos_int << "  neg_int: " << neg_int; 

  cout << "  zero_int: " << zero_int << endl; 

  cout << "pos_f: " << pos_f << "  neg_f: " << neg_f; 

  cout << "  zero_f: " << zero_f << endl << endl; 

 

  cout << showpos; 

 

  cout << "pos_int: " << pos_int << "  neg_int: " << neg_int; 

  cout << "  zero_int: " << zero_int << endl; 

  cout << "pos_f: " << pos_f << "  neg_f: " << neg_f; 

  cout << "  zero_f: " << zero_f << endl << endl; 

 

  return 0; 

} 

produces 

pos_int: 4  neg_int: -2  zero_int: 0 

pos_f: 3.5  neg_f: -31.2  zero_f: 0 

 

pos_int: +4  neg_int: -2  zero_int: +0 

pos_f: +3.5  neg_f: -31.2  zero_f: +0 

Note that zero is considered to be a positive number in this case. 

Floating Point Output 
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There are 3 floating point formats: general, fixed, and scientific. Fixed format 

always has a number, decimal point, and fraction part, no matter how big the 

number gets, i.e., not scientific notation. 6.02e+17 would be displayed 

as 602000000000000000 instead of 6.02e+17. 

Scientific format always displays a number in scientific notation. The value of 

one-fourth would not be displayed as 0.25, but as 2.5e-01 instead. 

General format is a mix of fixed and scientific formats. If the number is small 

enough, fixed format is used. If the number gets too large, the output switches 

over to scientific format. General format is the default format for floating point 

values. 

 

 

 

fixed and scientific 

The manipulator fixed will set up the output stream for displaying floating 

point values in fixed format. 

The scientific manipulator forces all floating point values to be displayed in 

scientific notation. 

Unfortunately, there is no manipulator to place the output stream back into 

general format. The author of these notes considers this to be a design flaw in 

the standard C++ libraries. There is a way to place the output stream back into 

general format, but it's not pretty and requires more explanation than is 

appropriate here. In short, here's the magic incantation 

cout.unsetf(ios::fixed | ios::scientific); 

In order to use this statement, you need a using declaration for the ios class. 

#include <iostream> 

using namespace std; 

 

int main() 

{ 

  float small = 3.1415926535897932384626; 

  float large = 6.0234567e17; 

  float whole = 2.000000000; 

 

  cout << "Some values in general format" << endl; 

  cout << "small:  " << small << endl; 

  cout << "large:  " << large << endl; 
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  cout << "whole:  " << whole << endl << endl; 

 

  cout << scientific; 

 

  cout << "The values in scientific format" << endl; 

  cout << "small:  " << small << endl; 

  cout << "large:  " << large << endl; 

  cout << "whole:  " << whole << endl << endl; 

 

  cout << fixed; 

 

  cout << "The same values in fixed format" << endl; 

  cout << "small:  " << small << endl; 

  cout << "large:  " << large << endl; 

  cout << "whole:  " << whole << endl << endl; 

 

  // Doesn't work -- doesn't exist 

  // cout << general; 

 

  cout.unsetf(ios::fixed | ios::scientific); 

 

  cout << "Back to general format" << endl; 

  cout << "small:  " << small << endl; 

  cout << "large:  " << large << endl; 

  cout << "whole:  " << whole << endl << endl; 

 

  return 0; 

} 

produces 

Some values in general format 

small:  3.14159 

large:  6.02346e+17 

whole:  2 

 

The values in scientific format 

small:  3.141593e+00 

large:  6.023457e+17 

whole:  2.000000e+00 

 

The same values in fixed format 

small:  3.141593 

large:  602345661202956288.000000 

whole:  2.000000 

 

Back to general format 

small:  3.14159 

large:  6.02346e+17 

 

whole:  2 

setprecision() 

An important point about floating point output is the precision, which is 

roughly the number of digits displayed for the number. The exact definition of 

the precision depends on which output format is currently being used. 
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In general format, the precision is the maximum number of digits displayed. 

This includes digits before and after the decimal point, but does not include the 

decimal point itself. Digits in a scientific exponent are not included. 

In fixed and scientific formats, the precision is the number of digits after the 

decimal point. 

Important Point  

The default output precision is 6. 

The setprecision manipulator allows you to set the precision used for printing 

out floating point values. The manipulator takes an integer argument. The 

header file <iomanip> must be included to use this manipulator. 

showpoint and noshowpoint 

There is one aspect of printing numbers in general format that is either very 

nice or very annoying depending on your point of view. When printing out 

floating point values, only as many decimal places as needed (up to the 

precision) are used to print out the values. In other words, trailing zeros are 

not printed. This is nice and compact, but impossible to get decimal points to 

line up in tables. 

The showpoint manipulator forces trailing zeros to be printed, even though they 

are not needed. By default this option is off. As can be seen from previous 

examples, this manipulator is not needed in fixed or scientific format, only in 

general format. 

#include <iostream> 

 

using std::cout; 

using std::endl; 

using std::showpoint; 

 

int main() 

{ 

  float lots = 3.1415926535; 

  float little1 = 2.25; 

  float little2 = 1.5; 

  float whole = 4.00000; 

 

  cout << "Some values with noshowpoint (the default)" << endl << endl; 

 

  cout << "lots:    " << lots << endl; 
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  cout << "little1: " << little1 << endl; 

  cout << "little2: " << little2 << endl; 

  cout << "whole:   " << whole << endl; 

 

  cout << endl << endl; 

 

  cout << "The same values with showpoint" << endl << endl; 

 

  cout << showpoint; 

 

  cout << "lots:    " << lots << endl; 

  cout << "little1: " << little1 << endl; 

  cout << "little2: " << little2 << endl; 

  cout << "whole:   " << whole << endl; 

 

  return 0; 

} 

produces 

Some values with noshowpoint (the default) 

 

lots:    3.14159 

little1: 2.25 

little2: 1.5 

whole:   4 

 

 

The same values with showpoint 

 

lots:    3.14159 

little1: 2.25000 

little2: 1.50000 

whole:   4.00000 

 

  


