Overview of Inheritance

Inheritance is the capability of one class to acquire properties and characteristics from another class. The
class whose properties are inherited by other class is called the Parent or Base or Super class. And, the
class which inherits properties of other class is called Child or Derived or Sub class.

Inheritance makes the code reusable. When we inherit an existing class, all its methods and fields
become available in the new class, hence code is reused.

NOTE : All members of a class except Private, are inherited

Purpose of Inheritance

1. Code Reusability
2. Method Overriding (Hence, Runtime Polymorphism.)

3. Use of Virtual Keyword

Basic Syntax of Inheritance
class Subclass_name : access_mode Superclass_name

While defining a subclass like this, the super class must be already defined or at least declared before the
subclass declaration.

Access Mode is used to specify, the mode in which the properties of superclass will be inherited into
subclass, public, privtate or protected.

Inheritance Visibility Mode

Depending on Access modifier used while inheritance, the availability of class members of Super class in
the sub class changes. It can either be private, protected or public.

Public Inheritance

This is the most used inheritance mode. In this the protected member of super class becomes protected
members of sub class and public becomes public.

class Subclass : public Superclass
Private Inheritance

In private mode, the protected and public members of super class become private members of derived
class.

class Subclass : Superclass // By default its private inheritance

Table showing all the Visibility Modes

Derived Class Derived Class
Base class Public Mode Private Mode
Private Not Inherited Not Inherited
Protected Protected Private
Public Public Private

Types of Inheritance

In C++, we have 5 different types of Inheritance. Namely,

Single Inheritance
Multiple Inheritance
Hierarchical Inheritance

Multilevel Inheritance

a k~ w0 N PR

Hybrid Inheritance (also known as Virtual Inheritance)

Derived Class

Protected Mode

Not Inherited

Protected

Protected

Single Inheritance

In this type of inheritance one derived class inherits from only one base class. It is the simplest form of
Inheritance.

A Super Class

B Sub Class

Multiple Inheritance

In this type of inheritance a single derived class may inherit from two or more than two base classes.

A B

Hierarchical Inheritance

In this type of inheritance, multiple derived classes inherits from a single base class.

A

B C D

Multilevel Inheritance

In this type of inheritance the derived class inherits from a class, which in turn inherits from some other
class. The Super class for one, is sub class for the other.

A

) |-ifmm| OO |-t

Hybrid (Virtual) Inheritance

Hybrid Inheritance is combination of Hierarchical and Multilevel Inheritance.

A

Single Inheritance

// inheritance using English Distances
#include <iostream>
using namespace std;

enum posneg { pos, neg }; //for sign in DistSign
[I1771771777177777717
class Distance //English Distance class
{
protected: //NOTE: can't be private
int feet;
float inches;
public: //no-arg constructor
Distance() : feet(®), inches(0.90)
{ //2-arg constructor)
Distance(int ft, float in) : feet(ft), inches(in)
{1}
void getdist() //get length from user
{

cout << "\nEnter feet: "; cin >> feet;
cout << "Enter inches: "; «cin >> inches;

}
void showdist() const //display distance
{ cout << feet << "\'-" << inches << "\"'; }

s
[17171077177717777
class DistSign : public Distance //adds sign to Distance

{
private:
posneg sign; //sign is pos or neg
public:
//no-arg constructor
DistSign() : Distance() //call base constructor
{ sign = pos; } //set the sign to +

//2- or 3-arg constructor
DistSign(int ft, float in, posneg sg=pos) :

Distance(ft, in)
{ sign = sg; }

void getdist()

//call base constructor
//set the sign

//get length from user

{
Distance::getdist(); //call base getdist()
char ch; //get sign from user
cout << "Enter sign (+ or -): "; cin >> ch;
sign = (ch=="+4") ? pos : neg;
}
void showdist() const //display distance
{
cout << ((sign==pos) ? "(+)" "(-)"); //show sign
Distance: :showdist(); //ft and in
, }
L1711 177777 7770777771 777777777777777777777777777777717111771777
int main()
{
DistSign alpha; //no-arg constructor
alpha.getdist(); //get alpha from user

DistSign beta(11l, 6.25);

DistSign gamma(100, 5.5, neg);

cout
cout

<<
<<

"\nalpha
"\nbeta
cout << "\ngamma
cout << endl;
return 0;

}

B

B

B

Public and private inheritan

// tests publicly- and privately-

#include <iostream>
using namespace std;

//2-arg constructor
//3-arg constructor

//display all distances

alpha.showdist();
beta.showdist();
gamma.showdist();

Ce

derived classes

IITTT1TT00 7700777777707 7770 7777777777 77777777777711777717771777

class A
{
private:
int privdataA;
protected:
int protdataA;
public:
int pubdataA;

//rules

1

//base class

//(functions have the same access

as the data shown here)

LI1ITTTIT 7707777777777 7777777777777 7777777777777771777

class B : public A
{
public:
void funct()
{
int a;
a = privdataA; //error:
a = protdataA; //OK
a = pubdataA; //0K
}

//publicly-derived class

not accessible

1
[17117777777777177717777

class C : private A //privately-derived class
{
public:
void funct()

{
int a;
a = privdataA; //error: not accessible
a = protdataA; //OK
a = pubdataA; //0K
}

1
117117777777 777177717777

int main()
{
int a;
B objB;
a = objB.privdataA; //error: not accessible
a = objB.protdataA; //error: not accessible
a = objB.pubdataA; //0K (A public to B)
C objC;
a = objC.privdataA; //error: not accessible
a = objC.protdataA; //error: not accessible
a = objC.pubdataA; //error: not accessible (A private to C)
return 0;
}

Overriding functions in the subclasses

// models employee database using inheritance
#include <iostream>
using namespace std;

const int LEN = 80; //maximum length of names
[117177777777777777707777777777777777777777777777777177177777777
class employee //employee class
{
private:
char name[LEN]; //employee name
unsigned long number; //employee number
public:

void getdata()

cout << "\n Enter last name: "; cin >> name;

cout << " Enter number: "; cin >> number;
¥
void putdata() const
cout << "\n Name: " << name;
cout << "\n Number: " << number;
¥
s
[171710771717777777
class manager : public employee //management class
{
private:
char title[LEN]; //"vice-president"” etc.
double dues; //golf club dues
public:

void getdata()

{
employee: :getdata();
cout << " Enter title: "; cin >> title;
cout << " Enter golf club dues: "; cin >> dues;
}
void putdata() const
{
employee: :putdata();
cout << "\n Title: " << title;
cout << "\n Golf club dues: " << dues;
}

¥
IITTTTTIL 7707077707770 7707777707 7777777777777177771777777
class scientist : public employee //scientist class
{
private:
int pubs; //number of publications
public:
void getdata()

employee: :getdata();

cout << " Enter number of pubs: "; cin >> pubs;
}
void putdata() const
{
employee: :putdata();
cout << "\n Number of publications: " << pubs;
}
¥
L1117 777 777707777 771717
class laborer : public employee //laborer class
{
s

[I11771777777171777777777
int main()

{

manager ml, m2;

scientist si;

laborer 11;

cout << endl; //get data for several employees
cout << "\nEnter data for manager 1";
ml.getdata();

cout << "\nEnter data for manager 2";
m2.getdata();

cout << "\nEnter data for scientist 1";
sl.getdata();

cout << "\nEnter data for laborer 1";
11.getdata();
//display data for several employees
cout << "\nData on manager 1";
ml.putdata();

cout << "\nData on manager 2";
m2.putdata();

cout << "\nData on scientist 1";
sl.putdata();

cout << "\nData on laborer 1";
11.putdata();

cout << endl;

return 0;

}

Levels of inheritance

// multiple levels of inheritance

#include <iostream>

using namespace std;

const int LEN = 80; //maximum length of names

IITTTTIITITT 777077777 77777777777777777777777711777777117177177

class employee

{
private:
char name[LEN]; //employee name
unsigned long number; //employee number
public:
void getdata()
{
cout << "\n Enter last name: "; cin >> name;
cout << " Enter number: "; cin >> number;
}
void putdata() const
{
cout << "\n Name: " << name;
cout << "\n Number: " << number;
}

3
[1711771717777
class manager : public employee //manager class

{

private:

char title[LEN]; //"vice-president" etc.
double dues; //golf club dues
public:
void getdata()
{
employee: :getdata();
cout << " Enter title: "; cin >> title;
cout << " Enter golf club dues: "; cin >> dues;
¥
void putdata() const
{
employee: :putdata();
cout << "\n Title: " << title;
cout << "\n Golf club dues: " << dues;
}
s

[IT17777707 7777777777777 7777777777777777777777777777717777777717
class scientist : public employee //scientist class
{
private:
int pubs; //number of publications
public:
void getdata()

employee: :getdata();
cout << " Enter number of pubs:

"

; cin >> pubs;
9

¥
void putdata() const

employee: :putdata();

cout << "\n Number of publications: " << pubs;

, }

IITTITTIL 7700770077077 777 7707777777 77777777777711777717717777
class laborer : public employee //laborer class

{

s
[I1771771777177777717
class foreman : public laborer //foreman class

{

private:

float quotas; //percent of quotas met successfully
public:
void getdata()

{

laborer::getdata();

cout << " Enter quotas: "; cin >> quotas;

}

void putdata() const

{

laborer: :putdata();

cout << "\n Quotas: " << quotas;

}
L1117 07777 777707777 771717
int main()

{
laborer 11;
foreman f1;

cout << endl;
cout << "\nEnter data for laborer 1";
11.getdata();
cout << "\nEnter data for foreman 1";
fl.getdata();

cout << endl;
cout << "\nData on laborer 1";
11.putdata();
cout << "\nData on foreman 1";
f1.putdata();
cout << endl;

}

Member functions in multiple inheritance

// englmult.cpp
// multiple inheritance with English Distances
#include <iostream>
#include <string>
using namespace std;
[I1177777077717777777777
class Type //type of lumber

{

private:

string dimensions;

10

string grade;
public: //no-arg constructor
Type() : dimensions("N/A"), grade("N/A")
{1
//2-arg constructor
Type(string di, string gr) : dimensions(di), grade(gr)

{1}
void gettype() //get type from user
{
cout << " Enter nominal dimensions (2x4 etc.): ";
cin >> dimensions;
cout << " Enter grade (rough, const, etc.): ";
cin >> grade;
}
void showtype() const //display type
{

cout << "\n Dimensions: << dimensions;

cout << "\n Grade: " << grade;
}

s
[I177170777177777777
class Distance //English Distance class

{

private:

int feet;
float inches;
public: //no-arg constructor
Distance() : feet(®), inches(0.90)
{ 1} //constructor (two args)
Distance(int ft, float in) : feet(ft), inches(in)
{1}
void getdist() //get length from user
{
cout << " Enter feet: "; cin >> feet;
cout << " Enter inches: "; cin >> inches;
}
void showdist() const //display distance
{ cout << feet << "\'-" << inches << "\"'; }
¥

L1177 7707777717777 77777777777 777777777777777777

class Lumber : public Type, public Distance

{
private:
int quantity; //number of pieces
double price; //price of each piece
public: //constructor (no args)
Lumber() : Type(), Distance(), quantity(®), price(0.90)
{1}
//constructor (6 args)
Lumber(string di, string gr, //args for Type
int ft, float in, //args for Distance
int qu, float prc) : //args for our data
Type(di, gr), //call Type ctor
Distance(ft, in), //call Distance ctor
quantity(qu), price(prc) //initialize our data
{1}

void getlumber()

Type::gettype();

Distance::getdist();

cout << " Enter quantity: "; cin >> quantity;
cout <« Enter price per piece: "; cin >> price;

11

}

void showlumber() const
{
Type: :showtype();
cout << "\n Length: ";
Distance: :showdist();
cout << "\n Price for " << quantity
<< " pieces: $" << price * quantity;

}
¥
L1111 77777 7770777771 77777077777777777777777177777777177117771777
int main()
{
Lumber siding; //constructor (no args)

cout << "\nSiding data:\n";
siding.getlumber(); //get siding from user

//constructor (6 args)
Lumber studs("2x4", "const", 8, 0.0, 200, 4.45F);

//display lumber data
cout << "\nSiding"; siding.showlumber();
cout << "\nStuds"; studs.showlumber();
cout << endl;
return 0;

}
Constructors in multiple inheritance

// multiple inheritance with English Distances
#include <iostream>

#include <string>

using namespace std;

IITTTTTTITTT 7707777777077 7 77777777777 77777777777777777777

class Type //type of lumber
{
private:
string dimensions;
string grade;
public: //no-arg constructor
Type() : dimensions("N/A"), grade("N/A")

//2-arg constructor
Type(string di, string gr) : dimensions(di), grade(gr)

{1}
void gettype() //get type from user
{
cout << " Enter nominal dimensions (2x4 etc.): ";
cin >> dimensions;
cout << " Enter grade (rough, const, etc.): ";
cin >> grade;
}
void showtype() const //display type
{
cout << "\n Dimensions: " << dimensions;
cout << "\n Grade: " << grade;
) }
L1111 77777 7777777777777 77077777777777777777777777771717177717177
class Distance //English Distance class
{
private:

12

int feet;
float inches;

//no-arg constructor

//constructor (two args)
: feet(ft), inches(in)

//get length from user

cin >> feet;
5 ¢in >> inches;

//display distance

public:

Distance() : feet(®), inches(0.90)
{ 1}

Distance(int ft, float in)
{ 1}

void getdist()
{
cout << " Enter feet: ";
cout << " Enter inches:
}

void showdist() const
{ cout

<< feet << "\'-" << inches << "\"'; }

IITTTTTTITTT 770777777077 77 07777777777 77777777777717177777777777

class Lumber :
{
private:
int quantity;
double price;
public:
Lumber()
{1}

Lumber(string di, string gr,
int ft, float in,
int qu, float prc) :
Type(di, gr),
Distance(ft, in),

quantity(qu), price(prc)

{1}
void getlumber()

Type: :gettype();
Distance::getdist();

cout << " Enter quantity: "
cout << " Enter price per piece:
}
void showlumber() const
{

Type: :showtype();
cout << "\n Length: ";
Distance: :showdist();
cout << "\n Price for
<< " pieces: $"

}

public Type, public Distance

//number of pieces
//price of each piece
//constructor (no args)

: Type(), Distance(), quantity(®@), price(0.9)

//constructor (6 args)

//args for Type
//args for Distance
//args for our data
//call Type ctor
//call Distance ctor
//initialize our data

; cin >> quantity;
"; cin >> price;

<< quantity
<< price * quantity;

L1177 7700777770777 7777777777777 77777777777777777

int main()
{
Lumber siding;
cout << "\nSiding data:\n";
siding.getlumber();

Lumber studs("2x4", "const", 8,

cout << "\nSiding";

//constructor (no args)

//get siding from user

//constructor (6 args)
0.0, 200, 4.45F);

//display lumber data

siding.showlumber();

13

cout << "\nStuds"; studs.showlumber();
cout << endl;
return 0;

}

Ambiguity in multiple inheritance

// ambigu.cpp
// demonstrates ambiguity in multiple inheritance
#include <iostream>
using namespace std;
[I17717771777771717
class A

{

public:

void show() { cout << "Class A\n"; }

¥
class B

{

public:

void show() { cout << "Class B\n"; }

s
class C : public A, public B

)
[I1771771777777777717
int main()

{

C objC; //object of class C
// objC.show(); //ambiguous--will not compile

objC.A: :show(); //0K

objC.B: :show(); / /0K

return 0;

}
Aggregation: Classes within classes

// containership with employees and degrees

#include <iostream>

#include <string>

using namespace std;
[I1771771777777777717

class student //educational background
{
private:
string school; //name of school or university
string degree; //highest degree earned
public:
void getedu()
{
cout << " Enter name of school or university: ";
cin >> school;
cout << " Enter highest degree earned \n";
cout << " (Highschool, Bachelor's, Master's, PhD): ";
cin >> degree;
}
void putedu() const
cout << "\n School or university: " << school;
cout << "\n Highest degree earned: " << degree;
}

14

1

IITTTTTITETTT 777707777 77777777777777777777777771777717117177177

class employee

{
private:
string name;

unsigned long number;

public:
void getdata()

cout << "\n
cout << "

}

void putdata() const

{

cout << "\n
cout << "\n

}

IITTTTTTITTT 7707707770707 7 7777777777777 777777777777777

class manager
{
private:
string title;
double dues;
employee emp;
student stu;

Enter last name:
Enter number: ";

//employee name
//employee number

;5 €in >> name;
cin >> number;

<< name;
" << number;

//management

//"vice-president" etc.
//golf club dues

//object of class employee
//object of class student

public:
void getdata()

emp.getdata();

cout << " Enter title: "; cin >> title;
cout << " Enter golf club dues: "; cin >> dues;
stu.getedu();
}

void putdata() const
emp.putdata();
cout << "\n Title: " << title;
cout << "\n Golf club dues: " << dues;
stu.putedu();
}

s
[IT177777077717777777717
class scientist //scientist

{

private:

int pubs; //number of publications
employee emp; //object of class employee
student stu; //object of class student
public:
void getdata()
{
emp.getdata();
cout << " Enter number of pubs: "; cin >> pubs;
stu.getedu();
}

void putdata() const

emp.putdata();
cout << "\n Number of publications: " << pubs;
stu.putedu();

15

}
1
[17117777777777177717777

class laborer //laborer
{
private:
employee emp; //object of class employee
public:

void getdata()
{ emp.getdata(); }
void putdata() const
{ emp.putdata(); }

3
[I117177771771777177177717
int main()

{

manager mil;

scientist s1, s2;

laborer 11;

cout << endl;
cout << "\nEnter data for manager 1"; //get data for
ml.getdata(); //several employees

cout << "\nEnter data for scientist 1";
sl.getdata();

cout << "\nEnter data for scientist 2";
s2.getdata();

cout << "\nEnter data for laborer 1";
11.getdata();

cout << "\nData on manager 1"; //display data for
ml.putdata(); //several employees

cout << "\nData on scientist 1";
sl.putdata();

cout << "\nData on scientist 2";
s2.putdata();

cout << "\nData on laborer 1";
11.putdata();

cout << endl;

return 0;

}

Virtual functions

Normal functions access with pointers (early binding)

// notvirt.cpp

// normal functions accessed from pointer
#include <iostream>

using namespace std;

IITTTTTITTT 7707777777077 707777777777 77777777777717777777777777

class Base //base class
{
public:
void show() //normal function

{ cout << "Base\n"; }
16

s
[I1777777777771777777777777777777777777777777777777717177777771717
class Dervl : public Base //derived class 1

{

public:

void show()
{ cout << "Dervi\n"; }

s
[IT1TTTITTTT1 770777770777 770 7777777 77777777777777777117177177177
class Derv2 : public Base //derived class 2

{
public:
void show()
{ cout << "Derv2\n"; }

1
[17117777777177177777777

int main()
{
Dervl dvi; //object of derived class 1
Derv2 dv2; //object of derived class 2
Base* ptr; //pointer to base class
ptr = &dvi; //put address of dvl in pointer
ptr->show(); //execute show()
ptr = &dv2; //put address of dv2 in pointer
ptr->show(); //execute show()
return 0;
}

Output

Base

Base

Virtual functions accessed with pointers (late binding)

// virt.cpp

// virtual functions accessed from pointer

#include <iostream>

using namespace std;

[11117777777 7777777707777 777777777777777777777777777777177777777

class Base //base class
{
public:
virtual void show() //virtual function
{ cout << "Base\n"; }

s
[111177777777777777707777777777777777777777777777777777177777777
class Dervl : public Base //derived class 1

{

public:

void show()
{ cout << "Dervi\n"; }

s
L1111 77777 7777777777777 77077777777777777777777777771717177717177
class Derv2 : public Base //derived class 2

{

public:

void show()
{ cout << "Derv2\n"; }

17

1
[17117777777777177717777

int main()
{
Dervl dvi; //object of derived class 1
Derv2 dv2; //object of derived class 2
Base* ptr; //pointer to base class
ptr = &dvi; //put address of dvl in pointer
ptr->show(); //execute show()
ptr = &dv2; //put address of dv2 in pointer
ptr->show(); //execute show()
return 0;
}

Output

Dervil

Derv2

Abstract class and pure virtual functions

// virtpure.cpp

// pure virtual function

#include <iostream>

using namespace std;
[I17717717771777777717

class Base //base class

{

public:

virtual void show() = 0; //pure virtual function

s
[I1771771777777777717
class Dervl : public Base //derived class 1

{

public:

void show()
{ cout << "Dervi\n"; }

s
[17171077177717777
class Derv2 : public Base //derived class 2

{

public:

void show()
{ cout << "Derv2\n"; }

1
[1111771717777

int main()
{

// Base bad; //can't make object from abstract class
Base* arr[2]; //array of pointers to base class
Dervl dvi; //object of derived class 1
Derv2 dv2; //object of derived class 2
arr[0] = &dvi; //put address of dvl in array
arr[1] = &dv2; //put address of dv2 in array
arr[0]->show(); //execute show() in both objects
arr[1]->show();
return 0;

}

18

Virtual functions and Polymorphism

// virtpers.cpp

// virtual functions with person class
#include <iostream>

using namespace std;

IITTTTTITTT 7707777777077 770 7777777777 77777777777717177777777777

class person //person class
{
protected:
char name[40];
public:
void getName()
{ cout << " Enter name: "; cin >> name; }
void putName()
{ cout << "Name is: " << name << endl; }
virtual void getData() = 0; //pure virtual func

virtual bool isOutstanding() = @; //pure virtual func
¥
L1117 0777777 7777777 77717

class student : public person //student class
{
private:
float gpa; //grade point average
public:
void getData() //get student data from user
{
person: :getName();
cout << " Enter student's GPA: "; cin >> gpa;
}

bool isOutstanding()
{ return (gpa > 3.5) ? true : false; }

s
[17171077171717777777
class professor : public person //professor class

{

private:

int numPubs; //number of papers published
public:
void getData() //get professor data from user
person: :getName();
cout << " Enter number of professor's publications: ";
cin >> numPubs;
}
bool isOutstanding()
{ return (numPubs > 100) ? true : false; }
s

LI1ITTTITT 7707777707777 7777777777777 77777777777777777771777

int main()

{
person* persPtr[100]; //array of pointers to persons
int n = 0; //number of persons on list

char choice;

do {
cout << "Enter student or professor (s/p): ";

19

cin >> choice;
if(choice=="s")

persPtr[n] = new student;
else

persPtr[n] = new professor;
persPtr[n++]->getData();
cout << " Enter another (y/n)?
cin >»> choice;
} while(choice=="y"');

for(int j=0; j<n; j++)
{
persPtr[j]->putName();

//put new student

// in array

//put new professor

// in array

//get data for person

", //do another person?

//cycle until not 'y’
//print names of all

//persons, and
//say if outstanding

if(persPtr[j]->isOutstanding())
cout << " This person is outstanding\n";
}

return 0;
} //end main()
Hybrid Inheritance and virtual base Class

In Multiple Inheritance, the derived class inherits from more than one base class. Hence, in Multiple
Inheritance there are a lot chances of ambiguity.

class A
{ void show(); };

class B:public A {};

class C:public A {};

class D:public B, public C {};
int main()

{

D obj;

obj.show();
}

In this case both class B and C inherits function show() from class A. Hence class D has two inherited
copies of function show(). In main() function when we call function show(), then ambiguity arises, because
compiler doesn't know which show() function to call. Hence we use Virtual keyword while inheriting class.

class B : virtual public A {};
class C : virtual public A {};

class D : public B, public C {};
Now by adding virtual keyword, we tell compiler to call any one out of the two show() functions.

20

// normbase.cpp
// ambiguous reference to base class

class Parent

{
protected:
int basedata;
s
class Childl : public Parent
i}
class Child2 : public Parent
i}
class Grandchild : public Child1, public Child2
{
public:
int getdata()
{ return basedata; } // ERROR: ambiguous
¥

// virtbase.cpp
// virtual base classes

class Parent

{
protected:
int basedata;
¥
class Childl : virtual public Parent // shares copy of Parent
i)
class Child2 : virtual public Parent // shares copy of Parent
i)
class Grandchild : public Childl, public Child2
{
public:
int getdata()
{ return basedata; } // OK: only one copy of Parent
s

Upcasting in C++

Upcasting is using the Super class's reference or pointer to refer to a Sub class's object. Or we can say
that, the act of converting a Sub class's reference or pointer into its Super class's reference or pointer is
called upcasting.

Base

Upcasting

Derived

21

The opposite of upcasting is downcasting, in which we convert Super class's reference or pointer into
derived class's reference or pointer.

Upcasting and downcasting are an important part of C++. Upcasting and downcasting gives a possibility to build
complicated programs with a simple syntax. It can be achieved by using Polymorphism.

C++ allows that a derived class pointer (or reference) to be treated as base class pointer. This is upcasting.

Downcasting is an opposite process, which consists in converting base class pointer (or reference) to derived class
pointer.

Upcasting and downcasting should not be understood as a simple casting of different data types

We will use the following hierarchy of classes:

UPCASTING

Person

N

DOWNCASTING

As you can see, Manager and Clerk are both Employee. They are both Person too. What does it mean? It means
that Manager and Clerk classes inherit properties of Employee class, which inherits properties of Person class.

For example, we don't need to specify that both Manager and Clerk are identified by First and Last name, have
salary; you can show information about them and add a bonus to their salaries. We have to specify these properties
only once in the Employee class:

In the same time, Manager and Clerk classes are different. Manager takes a commission fee for every contract, and
Clerk has information about his Manager:

22

#include <iostream>
using namespace std;

class Person

{
//content of Person
b
class Employee:public Person
{
public:
Employee(string fName, string IName, double sal)
{
FirstName = fName;
LastName = IName;
salary = sal,
}
string FirstName;
string LastName;
double salary;
void show()
{
cout << "First Name: " << FirstName << " Last Name: " << LastName << " Salary: " <<
salary<<endl,
}
void addBonus(double bonus)
{
salary += bonus;
}
o
class Manager :public Employee
{
public:
Manager(string fName, string IName, double sal, double comm) :Employee(fName, IName, sal)
{
Commision = comm;
}
double Commision;
double getComm()
{
return Commision;
}
b
class Clerk :public Employee
{
public:

Clerk(string fName, string IName, double sal, Manager* man) :Employee(fName, IName, sal)
23

{
¥

Manager* manager;
Manager* getManager()

manager = man;

{
return manager;
}
b
void congratulate(Employee* emp)
{
cout << "Happy Birthday!!!" << endl;
emp->addBonus(200);
emp->show();
3
int main()
{

/Ipointer to base class object
Employee* emp;

/lobject of derived class
Manager m1(*'Steve", "Kent", 3000, 0.2);
Clerk c1("Kevin","Jones", 1000, &m1);

/limplicit upcasting
emp = &ml,;

/t's ok
cout<<emp->FirstName<<endl;
cout<<emp->salary<<endl;

//Fails because upcasting is used
/lcout<<emp->getComm();

/lcorrection: cout<<((Manager*)emp)->getComm();
congratulate(&cl);

congratulate(&m1);

cout<<"Manager of "<<cl.FirstName<<" is "<<cl.getManager()->FirstName;

¥

Output
Steve

3000

Happy Birthday!!!

First Name: Kevin Last Name: Jones Salary: 1200
Happy Birthday!!!

First Name: Steve Last Name: Kent Salary: 3200
Manager of Kevin is Steve

24

Both upcasting and downcasting do not change object by itself. When you use upcasting or downcasting you just
"label" an object in different ways.

Upcasting is a process of treating a pointer or a reference of derived class object as a base class pointer. You do
not need to upcast manually. You just need to assign derived class pointer (or reference) to base class pointer:

/Ipointer to base class object

Employee* emp;

/lobject of derived class

Manager m1(*'Steve”, "Kent", 3000, 0.2);
/limplicit upcasting

emp = &ml,;

When you use upcasting, the object is not changing. Nevertheless, when you upcast an object, you will be able to
access only member functions and data members that are defined in the base class:

int main()

{

/Ipointer to base class object
Employee* emp;

/lobject of derived class
Manager m1(*'Steve", "Kent", 3000, 0.2);
Clerk c1("Kevin","Jones", 1000, &m1);

/limplicit upcasting
emp = &mi;

/Nt's ok
cout<<emp->FirstName<<endl;
cout<<emp->salary<<endl;

/[Fails because upcasting is used
/lcout<<emp->getComm();
/lcorrection: cout<<((Manager*)emp)->getComm();

congratulate(&cl);
congratulate(&m1);

cout<<"Manager of "<<cl.FirstName<<" is "<<cl.getManager()->FirstName;

¥

One of the biggest advantage of upcasting is the capability of writing generic functions for all the classes that are
derived from the same base class. Look on example:

25

void congratulate(Employee* emp)

{
cout << "Happy Birthday!!!" << endl;
emp->show();
emp->addBonus(200);

3

This function will work with all the classes that are derived from the Employee class. When you call it with objects of
type Manager and Person, they will be automatically upcasted to Employee class:

/lautomatic upcasting
congratulate(&cl);
congratulate(&m1);

Memory layout

As you know, derived class extends properties of the base class. It means that derived class has properties (data
members and member functions) of the base class and defines new data members and member functions.

Look on the memory layout of the Employee and Manager classes:

par —

Firstiame
Employee LastName

salary \ Manager

Comision

Of course, this model is simplified view of memory layout for objects. However, it represents the fact that when you
use base class pointer to point up an object of the derived class, you can access only elements that are defined in
the base class (green area). Elements of the derived class (yellow area) are not accessible when you use base
class pointer.

Downcasting

Downcasting is an opposite process for upcasting. It converts base class pointer to derived class pointer.
Downcasting must be done manually. It means that you have to specify explicit type cast.

Downcasting is not safe as upcasting. You know that a derived class object can be always treated as base class
object. However, the opposite is not right. For example, a Manager is always a Person; But a Person is not always a
Manager. It could be a Clerk too.

You have to use an explicit cast for downcasting:

26

/Ipointer to base class object

Employee* emp;

/lobject of derived class

Manager m1("'Steve", "Kent", 3000, 0.2);
/limplicit upcasting

emp = &ml;

/lexplicit downcasting from Employee to Manager
Manager* m2 = (Manager*)(emp);

This code compiles and runs without any problem, because emp points to an object of Manager class.

What will happen, if we try to downcast a base class pointer that is pointing to an object of base class and not to an
object of derived class?

Employee e1("Peter”, "Green", 1400);
/ltry to cast an employee to Manager
Manager* m3 = (Manager*)(&el);
cout << m3->getComm() << endl;

el object is not an object of Manager class. It does not contain any information about commission. That why such
an operation can produce unexpected results.

Look on the memory layout again:

ptr \
FirstMame

Employee LastNarme

salary Manager

Comisian

When you try to downcast base class pointer (Employee) that is not actually pointing up an object of derived class
(Manager), you will get access to the memory that does not have any information about derived class object (yellow
area). This is the main danger of downcasting.

You can use a safe cast that can help you to know, if one type can be converted correctly to another type. For this
purpose, use dynamic cast.

27

Dynamic Cast

dynamic_cast is an operator that converts safely one type to another type. In the case, the conversation is possible
and safe, it returns the address of the object that is converted. Otherwise, it returns nullptr.

dynamic_cast has the following syntax
dynamic_cast<new_type> (object)

If you want to use dynamic cast for downcasting, base class should be polymorphic - it must have at least one
virtual function. Modify base class Person by adding a virtual function:

virtual void test() {}

Now you can use downcasting for converting Employee class pointers to derived classes pointers.

Employee e1("Peter", "Green", 1400);
Manager* m3 = dynamic_cast<Manager*>(&el);
if (m3)
cout << m3->getComm() << endl;
else
cout << "Can't cast from Employee to Manager" << endl;

In this case, dynamic cast returns nullptr. Therefore, you will see a warning message.

Runtime Type Information (RTTI)

Runtime Type Information (RTTI) is the concept of determining the type of any variable during execution (runtime.)

The RTTI mechanism contains:
= The operator dynamic_cast
= The operator typeid
= The struct type_info
RTTI can only be used with polymorphic types. This means that with each class you make, you must have at least

one virtual function (either directly or through inheritance.)

Compatibility note: On some compilers you have to enable support of RTTI to keep track of dynamic types.
So to make use of dynamic_cast (see next section) you have to enable this feature. See you compiler documentation

for more detail.

Dynamic_cast

The dynamic_cast can only be used with pointers and references to objects. It makes sure that the result of the
type conversion is valid and complete object of the requested class. This is way a dynamic_cast will always be

successful if we use it to cast a class to one of its base classes. Take a look at the example:

28

class Base_Class { };
class Derived_Class: public Base_Class { };

Base_Class a; Base_Class * ptr_a;
Derived_Class b; Derived_Class * ptr_b;

ptr_a = dynamic_cast<Base_Class *>(&b);
ptr_b = dynamic_cast<Derived_Class *>(&a);

The first dynamic_cast statement will work because we cast from derived to base. The second dynamic_cast
statement will produce a compilation error because base to derived conversion is not allowed with dynamic_cast

unless the base class is polymorphic.

If a class is polymorphic then dynamic_cast will perform a special check during execution. This check ensures that
the expression is a valid and complete object of the requested class.

Take a look at the example:

/[dynamic_cast
#include <iostream>
#include <exception>
using namespace std;

class Base_Class { virtual void dummy() {} };
class Derived_Class: public Base_Class { int a; };

int main () {

try {
Base_Class * ptr_a = new Derived_Class;

Base_Class * ptr_b = new Base_Class;
Derived_Class * ptr_c;

ptr_c = dynamic_cast< Derived_Class *>(ptr_a);
if (ptr_c ==0) cout << "Null pointer on first type-cast" << endl,

ptr_c = dynamic_cast< Derived_Class *>(ptr_b);
if (ptr_c ==0) cout << "Null pointer on second type-cast” << endl;

} catch (exception& my_ex) {cout << "Exception: " << my_ex.what();}
return O;

¥

In the example we perform two dynamic_casts from pointer objects of type Base_Class* (namely ptr_a and ptr_b)

to a pointer object of type Derived_Class*.

29

If everything goes well then the first one should be successful and the second one will fail. The pointers ptr_a and
ptr_b are both of the type Base_Class. The pointer ptr_a points to an object of the type Derived_Class. The pointer
ptr_b points to an object of the type Base_Class. So when the dynamic type cast is performed then ptr_a is pointing
to a full object of class Derived_Class, but the pointer ptr_b points to an object of class Base_Class. This object is

an incomplete object of class Derived_Class; thus this cast will fail!

Because this dynamic_cast fails a null pointer is returned to indicate a failure. When a reference type is converted
with dynamic_cast and the conversion fails then there will be an exception thrown out instead of the null pointer.

The exception will be of the type bad_cast.

With dynamic_cast it is also possible to cast null pointers even between the pointers of unrelated classes.

Dynamic_cast can cast pointers of any type to void pointer(void*).

Typeid and typ_info

If a class hierarchy is used then the programmer doesn’t have to worry (in most cases) about the data-type of a
pointer or reference, because the polymorphic mechanism takes care of it. In some cases the programmer wants
to know if an object of a derived class is used. Then the programmer can make use of dynamic_cast. (If the dynamic
cast is successful, then the pointer will point to an object of a derived class or to a class that is derived from that
derived class.) But there are circumstances that the programmer (not often) wants to know the prizes data-type.

Then the programmer can use the typeid operator.

The typeid operator can be used with:

= Variables
= Expressions
= Data-types

Take a look at the typeid example:
#include <iostream>

#include <typeinfo>
using namespace std;

int main ()

{
int* a;
int b;
a=0; b=0;

if (typeid(a) != typeid(b))
{

cout << "a and b are of different types:\n";
cout << "alis: " << typeid(a).name() << '\n’;

30

cout << b is: " << typeid(b).name() << \n’;

¥

return O;

}

Note: the extra header file typeinfo.

The result of a typeid is a const type_info&. The class type_info is part of the standard C++ library and contains

information about data-types. (This information can be different. It all depends on how it is implemented.)

A bad_typeid exception is thrown by typeid, if the type that is evaluated by typeid is a pointer that is preceded by

a dereference operator and that pointer has a null value.

Virtual Destructors
Destructors in the Base class can be Virtual. Whenever upcasting is done, Destructors of the Base class
must be made virtual for proper destruction of the object when the program exits.

NOTE : Constructors are never Virtual, only Destructors can be Virtual.

Upcasting without Virtual Destructor
Let’s first see what happens when we do not have a virtual Base class destructor.

class Base

{
public:
~Base() {cout << "Base Destructor\t"; }

|5

class Derived:public Base

{
public:
~Derived() { cout<< "Derived Destructor"; }

|5

int main()

{
Base* b = new Derived; //upcasting
delete b;

}

Output : Base Destructor

In the above example, delete b will only call the Base class destructor, which is undesirable because,
then the object of Derived class still remains because its destructor is never called. Which results in
memory leak.

Upcasting with Virtual Destructor
31

Now let’s see. what happens when we have Virtual destructor in the base class.

class Base

{
public:
virtual ~Base() {cout << "Base Destructor\t"; }

|5

class Derived:public Base

{
public:
~Derived() { cout<< "Derived Destructor"; }

|5

int main()

{
Base* b = new Derived; //upcasting
delete b;

}
Output :

Derived Destructor
Base Destructor

When we have Virtual destructor inside the base class, then first Derived class's destructor is called and
then Base class's destructor is called.

32

