
1

VISITOR PATTERN

In Visitor pattern, we use a visitor class which changes the executing algorithm

of an element class. By this way, execution algorithm of element can vary as and
when visitor varies. This pattern comes under behavior pattern category. As per

the pattern, element object has to accept the visitor object so that visitor object
handles the operation on the element object. The visitor pattern consists of two parts:

 a method called Visit() which is implemented by the visitor and is called for every
element in the object structure

 visitable classes providing Accept() methods that accept a visitor

Design components
 Client : The Client class is a consumer of the classes of the visitor design pattern. It has access to

the data structure objects and can instruct them to accept a Visitor to perform the appropriate
processing.

 Visitor : This is an interface or an abstract class used to declare the visit operations for all the types

of visitable classes.

 ConcreteVisitor : For each type of visitor all the visit methods, declared in abstract visitor, must

be implemented. Each Visitor will be responsible for different operations.

2

 Visitable : is an interface which declares the accept operation. This is the entry point which enables

an object to be “visited” by the visitor object.

 ConcreteVisitable : Those classes implements the Visitable interface or class and defines the

accept operation. The visitor object is passed to this object using the accept operation.

Advantages :
 If the logic of operation changes, then we need to make change only in the visitor implementation

rather than doing it in all the item classes.
 Adding a new item to the system is easy, it will require change only in visitor interface and

implementation and existing item classes will not be affected.

Disadvantages :
 We should know the return type of visit() methods at the time of designing otherwise we will have to

change the interface and all of its implementations.
 If there are too many implementations of visitor interface, it makes it hard to extend.

Example:

Consider a scenario where we have a Bike and Engine and FuelTank are parts of Bike. We have
two types of visitors, i.e. PartsChecker which checks whether all bike parts are working fine,
and PartsOperator which operates all bike parts. We will write visitor design pattern implementation
as below.

 Bike, Engine and FuelTank implement Visitable, and implement accept(Visitor visitor);
 PartsChecker and PartsOperator implement visit() methods.

3

4

Visitor.java

public interface Visitor {

 public abstract void visit(FuelTank fuelTank);

 public abstract void visit(Engine engine);

 public abstract void visit(Bike bike);

}

PartChecker.java

public class PartsChecker implements Visitor {

 @Override

 public void visit(FuelTank fuelTank) {

 System.out.println("Checking whether there is fuel in

fuel tank");

 }

 @Override

 public void visit(Engine engine) {

 System.out.println("Checking whether ignition switch is

on");

 }

 @Override

 public void visit(Bike bike) {

 System.out.println("Going to the bike");

 }

PartsOperaor.java

public class PartsOperator implements Visitor {

 @Override

 public void visit(FuelTank fuelTank) {

 System.out.println("Releasing fuel from fuel tank to

Engine");

 }

 @Override

 public void visit(Engine engine) {

 System.out.println("Accepting fuel from fuel tank and

running engine");

 }

5

 @Override

 public void visit(Bike bike) {

 System.out.println("Now going to start bike");

 }

}

Visitable.java

public interface Visitable {

 public abstract void accept(Visitor visitor);

}

FuelTank.java

public class FuelTank implements Visitable {

 public void accept(Visitor visitor) {
 visitor.visit(this);
 }
}

Engine.java

public class Engine implements Visitable {

 @Override
 public void accept(Visitor visitor) {
 visitor.visit(this);
 }

}

Bike.java

import java.util.ArrayList;
import java.util.List;

public class Bike implements Visitable {

 private List<Visitable> bikeParts = new ArrayList<Visitable>();

6

 @Override
 public void accept(Visitor visitor) {

 visitor.visit(this);
 for(Visitable part : bikeParts){
 part.accept(visitor);
 }

 }

 public void addBikePart(Visitable part) {
 bikeParts.add(part);
 }

}

Ride.java

public class Rider {

 public static void main(String args[]) {
 Bike bike = new Bike();
 Visitable engine = new Engine();
 Visitable fuelTank = new FuelTank();

 bike.addBikePart(fuelTank);
 bike.addBikePart(engine);

 bike.accept(new PartsChecker());
 bike.accept(new PartsOperator());

 }
}

7

Output

 Going to the bike

Checking whether there is fuel in fuel tank

Checking whether ignition switch is on

ow going to start bike

Releasing fuel from fuel tank to Engine

Accepting fuel from fuel tank and running engine

Another example of visitor pattern

We are going to create a ComputerPart interface defining accept

opearation.Keyboard, Mouse, Monitor and Computer are concrete classes

implementing ComputerPart interface. We will define another

interface ComputerPartVisitor which will define a visitor class

operations. Computeruses concrete visitor to do corresponding action.

VisitorPatternDemo, our demo class, will

use Computer and ComputerPartVisitor classes to demonstrate use of visitor

pattern.

8

Step 1

Define an interface to represent element.

ComputerPart.java

public interface ComputerPart {

 public void accept(ComputerPartVisitor computerPartVisitor);

}

Step 2

Create concrete classes extending the above class.

Keyboard.java

public class Keyboard implements ComputerPart {

 @Override

 public void accept(ComputerPartVisitor computerPartVisitor) {

 computerPartVisitor.visit(this);

 }

}

Monitor.java

public class Monitor implements ComputerPart {

 @Override

 public void accept(ComputerPartVisitor computerPartVisitor) {

 computerPartVisitor.visit(this);

 }

9

}

Mouse.java

public class Mouse implements ComputerPart {

 @Override

 public void accept(ComputerPartVisitor computerPartVisitor) {

 computerPartVisitor.visit(this);

 }

}

Computer.java

public class Computer implements ComputerPart {

 ComputerPart[] parts;
 public Computer(){

 parts = new ComputerPart[] {new Mouse(), new Keyboard(), new
Monitor()};

 }

 @Override

 public void accept(ComputerPartVisitor computerPartVisitor) {

 for (int i = 0; i < parts.length; i++) {

 parts[i].accept(computerPartVisitor);

 }
 computerPartVisitor.visit(this);

 }

}

10

Step 3

Define an interface to represent visitor.

ComputerPartVisitor.java

public interface ComputerPartVisitor {

 public void visit(Computer computer);

 public void visit(Mouse mouse);

 public void visit(Keyboard keyboard);

 public void visit(Monitor monitor);

}

Step 4

Create concrete visitor implementing the above class.

ComputerPartDisplayVisitor.java

public class ComputerPartDisplayVisitor implements ComputerPartVisitor {

 @Override

 public void visit(Computer computer) {

 System.out.println("Displaying Computer.");

 }

 @Override

 public void visit(Mouse mouse) {

 System.out.println("Displaying Mouse.");

 }

11

 @Override

 public void visit(Keyboard keyboard) {

 System.out.println("Displaying Keyboard.");

 }

 @Override

 public void visit(Monitor monitor) {

 System.out.println("Displaying Monitor.");

 }

}

Step 5

Use the ComputerPartDisplayVisitor to display parts of Computer.

VisitorPatternDemo.java

public class VisitorPatternDemo {

 public static void main(String[] args) {

 ComputerPart computer = new Computer();

 computer.accept(new ComputerPartDisplayVisitor());

 }

}

Step 6

Verify the output.

Displaying Mouse.
Displaying Keyboard.
Displaying Monitor.
Displaying Computer.

