
Multithreading

Chapter Goals

• To understand how multiple threads can execute in parallel

• To learn how to implement threads

• To understand race conditions and deadlocks

• To be able to avoid corruption of shared objects by using locks
and conditions

• To be able to use threads for programming animations

Threads

• Thread: a program unit that is executed independently of other
parts of the program

• The Java Virtual Machine executes each thread in the program
for a short amount of time

• This gives the impression of parallel execution

Running a Thread

• Implement a class that implements the Runnable interface:
public interface Runnable
{

void run();
}

• Place the code for your task into the run method of your class:
public class MyRunnable implements Runnable
{

public void run()
{

Task statements
...

}
}

Running a Thread

• Create an object of your subclass:
Runnable r = new MyRunnable();

• Construct a Thread object from the runnable object:
Thread t = new Thread(r);

• Call the start method to start the thread:
t.start();

Example

A program to print a time stamp and “Hello World” once a second
for ten seconds:

Mon Dec 28 23:12:03 PST 2009 Hello, World!
Mon Dec 28 23:12:04 PST 2009 Hello, World!
Mon Dec 28 23:12:05 PST 2009 Hello, World!
Mon Dec 28 23:12:06 PST 2009 Hello, World!
Mon Dec 28 23:12:07 PST 2009 Hello, World!
Mon Dec 28 23:12:08 PST 2009 Hello, World!
Mon Dec 28 23:12:09 PST 2009 Hello, World!
Mon Dec 28 23:12:10 PST 2009 Hello, World!
Mon Dec 28 23:12:11 PST 2009 Hello, World!
Mon Dec 28 23:12:12 PST 2009 Hello, World!

GreetingRunnable Outline

public class GreetingRunnable implements Runnable
{

private String greeting;

public GreetingRunnable(String aGreeting)
{

greeting = aGreeting;
}

public void run()
{

Task statements
...

}
}

Thread Action for GreetingRunnable

• Print a time stamp

• Print the greeting

• Wait a second

GreetingRunnable

• We can get the date and time by constructing a Date object:

Date now = new Date();

• To wait a second, use the sleep method of the Thread class:

sleep(milliseconds)

• A sleeping thread can generate an InterruptedException
• Catch the exception

• Terminate the thread

Running Threads

•sleep puts current thread to sleep for given number of
milliseconds:

Thread.sleep(milliseconds)

• When a thread is interrupted, most common response is to
terminate run

Generic run method

public void run()
{

try
{

Task statements
}
catch (InterruptedException exception)
{
}
Clean up, if necessary

}

ch20/greeting/GreetingRunnable.java

1 import java.util.Date;
2
3 /**
4 A runnable that repeatedly prints a greeting.
5 */
6 public class GreetingRunnable implements Runnable
7 {
8 private static final int REPETITIONS = 10;
9 private static final int DELAY = 1000;
10
11 private String greeting;
12
13 /**
14 Constructs the runnable object.
15 @param aGreeting the greeting to display
16 */
17 public GreetingRunnable(String aGreeting)
18 {
19 greeting = aGreeting;
20 }
21

Continued

ch20/greeting/GreetingRunnable.java (cont.)

22 public void run()
23 {
24 try
25 {
26 for (int i = 1; i <= REPETITIONS; i++)
27 {
28 Date now = new Date();
29 System.out.println(now + " " + greeting);
30 Thread.sleep(DELAY);
31 }
32 }
33 catch (InterruptedException exception)
34 {
35 }
36 }
37 }

To Start the Thread

• Construct an object of your runnable class:

Runnable t = new GreetingRunnable("Hello World");

• Then construct a thread and call the start method:
Thread t = new Thread(r);
t.start();

ch20/greeting/GreetingThreadRunner.java

1 /**
2 This program runs two greeting threads in parallel.
3 */
4 public class GreetingThreadRunner
5 {
6 public static void main(String[] args)
7 {
8 GreetingRunnable r1 = new GreetingRunnable("Hello, World!");
9 GreetingRunnable r2 = new GreetingRunnable("Goodbye, World!");

10 Thread t1 = new Thread(r1);
11 Thread t2 = new Thread(r2);
12 t1.start();
13 t2.start();
14 }
15 }

Continued

ch20/greeting/GreetingThreadRunner.java (cont.)

Program Run:
Mon Dec 28 12:04:46 PST 2009 Hello, World!
Mon Dec 28 12:04:46 PST 2009 Goodbye, World!
Mon Dec 28 12:04:47 PST 2009 Hello, World!
Mon Dec 28 12:04:47 PST 2009 Goodbye, World!
Mon Dec 28 12:04:48 PST 2009 Hello, World!
Mon Dec 28 12:04:48 PST 2009 Goodbye, World!
Mon Dec 28 12:04:49 PST 2009 Hello, World!
Mon Dec 28 12:04:49 PST 2009 Goodbye, World!
Mon Dec 28 12:04:50 PST 2009 Hello, World!
Mon Dec 28 12:04:50 PST 2009 Goodbye, World!
Mon Dec 28 12:04:51 PST 2009 Hello, World!
Mon Dec 28 12:04:51 PST 2009 Goodbye, World!
Mon Dec 28 12:04:52 PST 2009 Goodbye, World!
Mon Dec 28 12:04:52 PST 2009 Hello, World!
Mon Dec 28 12:04:53 PST 2009 Hello, World!
Mon Dec 28 12:04:53 PST 2009 Goodbye, World!
Mon Dec 28 12:04:54 PST 2009 Hello, World!
Mon Dec 28 12:04:54 PST 2009 Goodbye, World!
Mon Dec 28 12:04:55 PST 2009 Hello, World!
Mon Dec 28 12:04:55 PST 2009 Goodbye, World!

Thread Scheduler

• Thread scheduler: runs each thread for a short amount of time
(a time slice)

• Then the scheduler activates another thread

• There will always be slight variations in running times -
especially when calling operating system services (e.g. input
and output)

• There is no guarantee about the order in which threads are
executed

Self Check 20.1

What happens if you change the call to the sleep method in the
run method to Thread.sleep(1)?

Answer: The messages are printed about one millisecond
apart.

Self Check 20.2

What would be the result of the program if the main method
called

r1.run();
r2.run();

instead of starting threads?

Answer: The first call to run would print ten “Hello”
messages, and then the second call to run would print ten
“Goodbye” messages

Terminating Threads

• A thread terminates when its run method terminates

• Do not terminate a thread using the deprecated stop method

• Instead, notify a thread that it should terminate:

t.interrupt();

• interrupt does not cause the thread to terminate – it sets a
boolean variable in the thread data structure

Terminating Threads

• The run method should check occasionally whether it has been
interrupted

• Use the interrupted method

• An interrupted thread should release resources, clean up, and exit:

public void run()
{

for (int i = 1;
i <= REPETITIONS && !Thread.interrupted();
i++)

{
Do work

}
Clean up

}

Terminating Threads

• The sleep method throws an InterruptedException when
a sleeping thread is interrupted

• Catch the exception

• Terminate the thread :
public void run()
{

try
{

for (int i = 1; i <= REPETITIONS; i++)
{

Do work
Sleep

}
}
catch (InterruptedException exception)
{

Clean up
}

}

Terminating Threads

• Java does not force a thread to terminate when it is interrupted

• It is entirely up to the thread what it does when it is interrupted

• Interrupting is a general mechanism for getting the thread’s
attention

Self Check 20.4

Consider the following Runnable:
public class MyRunnable implements Runnable
{

public void run()
{

try
{

System.out.println(1);
Thread.sleep(1000);
System.out.println(2);

}
catch (InterruptedException exception)
{

System.out.println(3);
}
System.out.println(4);

}
}

Self Check 20.4 (cont.)

Suppose a thread with this Runnable is started and immediately
interrupted.

Thread t = new Thread(new MyRunnable());
t.start();
t.interrupt();

What output is produced?

Answer: The run method prints the values 1, 3, and 4. The call
to interrupt merely sets the interruption flag, but the sleep
method immediately throws an InterruptedException.

Race Conditions

• When threads share a common object, they can conflict with
each other

• Sample program: multiple threads manipulate a bank account

ch20/unsynch/BankAccountThreadRunner.java

1 /**
2 This program runs threads that deposit and withdraw
3 money from the same bank account.
4 */
5 public class BankAccountThreadRunner
6 {
7 public static void main(String[] args)
8 {
9 BankAccount account = new BankAccount();

10 final double AMOUNT = 100;
11 final int REPETITIONS = 100;
12 final int THREADS = 100;
13
14 for (int i = 1; i <= THREADS; i++)
15 {
16 DepositRunnable d = new DepositRunnable(
17 account, AMOUNT, REPETITIONS);
18 WithdrawRunnable w = new WithdrawRunnable(
19 account, AMOUNT, REPETITIONS);
20
21 Thread dt = new Thread(d);
22 Thread wt = new Thread(w);
23

Continued

ch20/unsynch/BankAccountThreadRunner.java (cont.)

24 dt.start();
25 wt.start();
26 }
27 }
28 }

ch20/unsynch/DepositRunnable.java

1 /**
2 A deposit runnable makes periodic deposits to a bank account.
3 */
4 public class DepositRunnable implements Runnable
5 {
6 private static final int DELAY = 1;
7 private BankAccount account;
8 private double amount;
9 private int count;

10
11 /**
12 Constructs a deposit runnable.
13 @param anAccount the account into which to deposit money
14 @param anAmount the amount to deposit in each repetition
15 @param aCount the number of repetitions
16 */
17 public DepositRunnable(BankAccount anAccount, double anAmount,
18 int aCount)
19 {
20 account = anAccount;
21 amount = anAmount;
22 count = aCount;
23 }
24

Continued

ch20/unsynch/DepositRunnable.java (cont.)

25 public void run()
26 {
27 try
28 {
29 for (int i = 1; i <= count; i++)
30 {
31 account.deposit(amount);
32 Thread.sleep(DELAY);
33 }
34 }
35 catch (InterruptedException exception) {}
36 }
37 }

ch20/unsynch/WithdrawRunnable.java

1 /**
2 A withdraw runnable makes periodic withdrawals from a bank account.
3 */
4 public class WithdrawRunnable implements Runnable
5 {
6 private static final int DELAY = 1;
7 private BankAccount account;
8 private double amount;
9 private int count;

10
11 /**
12 Constructs a withdraw runnable.
13 @param anAccount the account from which to withdraw money
14 @param anAmount the amount to withdraw in each repetition
15 @param aCount the number of repetitions
16 */
17 public WithdrawRunnable(BankAccount anAccount, double anAmount,
18 int aCount)
19 {
20 account = anAccount;
21 amount = anAmount;
22 count = aCount;
23 }
24

Continued

ch20/unsynch/WithdrawRunnable.java (cont.)

25 public void run()
26 {
27 try
28 {
29 for (int i = 1; i <= count; i++)
30 {
31 account.withdraw(amount);
32 Thread.sleep(DELAY);
33 }
34 }
35 catch (InterruptedException exception) {}
36 }
37 }

ch20/unsynch/BankAccount.java

1 /**
2 A bank account has a balance that can be changed by
3 deposits and withdrawals.
4 */
5 public class BankAccount
6 {
7 private double balance;
8
9 /**

10 Constructs a bank account with a zero balance.
11 */
12 public BankAccount()
13 {
14 balance = 0;
15 }
16

Continued

ch20/unsynch/BankAccount.java (cont.)

17 /**
18 Deposits money into the bank account.
19 @param amount the amount to deposit
20 */
21 public void deposit(double amount)
22 {
23 System.out.print("Depositing " + amount);
24 double newBalance = balance + amount;
25 System.out.println(", new balance is " + newBalance);
26 balance = newBalance;
27 }
28

Continued

ch20/unsynch/BankAccount.java (cont.)

29 /**
30 Withdraws money from the bank account.
31 @param amount the amount to withdraw
32 */
33 public void withdraw(double amount)
34 {
35 System.out.print("Withdrawing " + amount);
36 double newBalance = balance - amount;
37 System.out.println(", new balance is " + newBalance);
38 balance = newBalance;
39 }
40
41 /**
42 Gets the current balance of the bank account.
43 @return the current balance
44 */
45 public double getBalance()
46 {
47 return balance;
48 }
49 }

ch20/unsynch/BankAccount.java (cont.)

Program Run:
Depositing 100.0, new balance is 100.0
Withdrawing 100.0, new balance is 0.0
Depositing 100.0, new balance is 100.0
Withdrawing 100.0, new balance is 0.0
...
Withdrawing 100.0, new balance is 400.0
Depositing 100.0, new balance is 500.0
Withdrawing 100.0, new balance is 400.0
Withdrawing 100.0, new balance is 300.0

Sample Application

• Create a BankAccount object

• Create two sets of threads:
• Each thread in the first set repeatedly deposits $100

• Each thread in the second set repeatedly withdraws $100

•deposit and withdraw have been modified to print
messages:
public void deposit(double amount)
{

System.out.print("Depositing " + amount);
double newBalance = balance + amount;
System.out.println(", new balance is "

+ newBalance);
balance = newBalance;

}

Sample Application

• The result should be zero, but sometimes it is not

• Normally, the program output looks somewhat like this:
Depositing 100.0, new balance is 100.0
Withdrawing 100.0, new balance is 0.0
Depositing 100.0, new balance is 100.0
Depositing 100.0, new balance is 200.0
Withdrawing 100.0, new balance is 100.0
...
Withdrawing 100.0, new balance is 0.0

• But sometimes you may notice messed-up output, like this:
Depositing 100.0Withdrawing 100.0, new balance is
100.0, new balance is -100.0

Scenario to Explain Non- zero Result: Race Condition

1. A deposit thread executes the lines:
System.out.print("Depositing " + amount);
double newBalance = balance + amount;

The balance variable is still 0, and the newBalance local
variable is 100

2. The deposit thread reaches the end of its time slice and a
withdraw thread gains control

3. The withdraw thread calls the withdraw method which
withdraws $100 from the balance variable; it is now -100

4. The withdraw thread goes to sleep

Continued

Scenario to Explain Non- zero Result: Race Condition

5. The deposit thread regains control and picks up where it left off;
it executes:
System.out.println(", new balance is " + newBalance);
balance = newBalance;

The balance is now 100 instead of 0 because the deposit
method used the OLD balance

Corrupting the Contents of the balance Variable

Race Condition

• Occurs if the effect of multiple threads on shared data depends
on the order in which they are scheduled

• It is possible for a thread to reach the end of its time slice in the
middle of a statement

• It may evaluate the right-hand side of an equation but not be
able to store the result until its next turn:
public void deposit(double amount)
{

balance = balance + amount;
System.out.print("Depositing " + amount

+ ", new balance is " + balance);
}

• Race condition can still occur:
balance = the right-hand-side value

Self Check 20.5

Give a scenario in which a race condition causes the bank
balance to be -100 after one iteration of a deposit thread and a
withdraw thread.

Answer: There are many possible scenarios. Here is one:
• The first thread loses control after the first print statement.

• The second thread loses control just before the assignment balance
= newBalance.

• The first thread completes the deposit method.

• The second thread completes the withdraw method.

Synchronizing Object Access

• To solve problems such as the one just seen, use a lock object

• Lock object: used to control threads that manipulate shared
resources

• In Java: Lock interface and several classes that implement it
• ReentrantLock: most commonly used lock class

• Locks are a feature of Java version 5.0

• Earlier versions of Java have a lower-level facility for thread
synchronization

Synchronizing Object Access

• Typically, a lock object is added to a class whose methods
access shared resources, like this:

public class BankAccount
{
private Lock balanceChangeLock;

public BankAccount()
{

balanceChangeLock = new ReentrantLock();
...

}
...

}

Synchronizing Object Access

• Code that manipulates shared resource is surrounded by calls to
lock and unlock:
balanceChangeLock.lock();
Manipulate the shared resource

balanceChangeLock.unlock();

• If code between calls to lock and unlock throws an exception,
call to unlock never happens

Synchronizing Object Access

• To overcome this problem, place call to unlock into a finally
clause:
public void deposit(double amount)
{

balanceChangeLock.lock();
try
{

System.out.print("Depositing " + amount);
double newBalance = balance + amount;
System.out.println(", new balance is " +
newBalance); balance = newBalance;

}
finally
{

balanceChangeLock.unlock();
}

}

Synchronizing Object Access

• When a thread calls lock, it owns the lock until it calls unlock

• A thread that calls lock while another thread owns the lock is
temporarily deactivated

• Thread scheduler periodically reactivates thread so it can try to
acquire the lock

• Eventually, waiting thread can acquire the lock

Self Check 20.7

If you construct two BankAccount objects, how many lock
objects are created?

Answer: Two, one for each bank account object. Each lock
protects a separate balance variable.

Self Check 20.8

What happens if we omit the call unlock at the end of the
deposit method?

Answer: When a thread calls deposit, it continues to own
the lock, and any other thread trying to deposit or withdraw
money in the same bank account is blocked forever.

Avoiding Deadlocks

• A deadlock occurs if no thread can proceed because each
thread is waiting for another to do some work first

•BankAccount example:
public void withdraw(double amount)
{

balanceChangeLock.lock();
try
{

while (balance < amount)
Wait for the balance to grow

...
}
finally
{

balanceChangeLock.unlock();
}

}

Avoiding Deadlocks

• How can we wait for the balance to grow?

• We can’t simply call sleep inside withdraw method;
thread will block all other threads that want to use
balanceChangeLock

• In particular, no other thread can successfully execute deposit

• Other threads will call deposit, but will be blocked until
withdraw exits

• But withdraw doesn’t exit until it has funds available

• DEADLOCK

Condition Objects

• To overcome problem, use a condition object

• Condition objects allow a thread to temporarily release a lock,
and to regain the lock at a later time

• Each condition object belongs to a specific lock object

Condition Objects (cont.)

• You obtain a condition object with newCondition method of
Lock interface:
public class BankAccount
{

public BankAccount()
{

balanceChangeLock = new ReentrantLock();
sufficientFundsCondition =

balanceChangeLock.newCondition();
...

}
...
private Lock balanceChangeLock;
private Condition sufficientFundsCondition;

}

Condition Objects

• It is customary to give the condition object a name that
describes condition to test

• You need to implement an appropriate test

Condition Objects (cont.)

• As long as test is not fulfilled, call await on the condition object:
public void withdraw(double amount)
{

balanceChangeLock.lock();
try
{

while (balance < amount)
sufficientFundsCondition.await();
...

}
finally
{

balanceChangeLock.unlock();
}

}

Condition Objects

• Calling await
• Makes current thread wait
• Allows another thread to acquire the lock object

• To unblock, another thread must execute signalAll on the
same condition object :

sufficientFundsCondition.signalAll();

• signalAll unblocks all threads waiting on the condition

•signal: randomly picks just one thread waiting on the object
and unblocks it

•signal can be more efficient, but you need to know that every
waiting thread can proceed

• Recommendation: always call signalAll

ch20/synch/BankAccountThreadRunner.java

1 /**
2 This program runs threads that deposit and withdraw
3 money from the same bank account.
4 */
5 public class BankAccountThreadRunner
6 {
7 public static void main(String[] args)
8 {
9 BankAccount account = new BankAccount();

10 final double AMOUNT = 100;
11 final int REPETITIONS = 100;
12 final int THREADS = 100;
13
14 for (int i = 1; i <= THREADS; i++)
15 {
16 DepositRunnable d = new DepositRunnable(
17 account, AMOUNT, REPETITIONS);
18 WithdrawRunnable w = new WithdrawRunnable(
19 account, AMOUNT, REPETITIONS);
20
21 Thread dt = new Thread(d);
22 Thread wt = new Thread(w);
23

Continued

ch20/synch/BankAccountThreadRunner.java (cont.)

24 dt.start();
25 wt.start();
26 }
27 }
28 }

ch20/synch/BankAccount.java

1 import java.util.concurrent.locks.Condition;
2 import java.util.concurrent.locks.Lock;
3 import java.util.concurrent.locks.ReentrantLock;
4
5 /**
6 A bank account has a balance that can be changed by
7 deposits and withdrawals.
8 */
9 public class BankAccount

10 {
11 private double balance;
12 private Lock balanceChangeLock;
13 private Condition sufficientFundsCondition;
14
15 /**
16 Constructs a bank account with a zero balance.
17 */
18 public BankAccount()
19 {
20 balance = 0;
21 balanceChangeLock = new ReentrantLock();
22 sufficientFundsCondition = balanceChangeLock.newCondition();
23 }
24

ch20/synch/BankAccount.java (cont.)

25 /**
26 Deposits money into the bank account.
27 @param amount the amount to deposit
28 */
29 public void deposit(double amount)
30 {
31 balanceChangeLock.lock();
32 try
33 {
34 System.out.print("Depositing " + amount);
35 double newBalance = balance + amount;
36 System.out.println(", new balance is " + newBalance);
37 balance = newBalance;
38 sufficientFundsCondition.signalAll();
39 }
40 finally
41 {
42 balanceChangeLock.unlock();
43 }
44 }
45

Continued

ch20/synch/BankAccount.java (cont.)

46 /**
47 Withdraws money from the bank account.
48 @param amount the amount to withdraw
49 */
50 public void withdraw(double amount)
51 throws InterruptedException
52 {
53 balanceChangeLock.lock();
54 try
55 {
56 while (balance < amount)
57 sufficientFundsCondition.await();
58 System.out.print("Withdrawing " + amount);
59 double newBalance = balance - amount;
60 System.out.println(", new balance is " + newBalance);
61 balance = newBalance;
62 }
63 finally
64 {
65 balanceChangeLock.unlock();
66 }
67 }
68

Continued

ch20/synch/BankAccount.java (cont.)

69 /**
70 Gets the current balance of the bank account.
71 @return the current balance
72 */
73 public double getBalance()
74 {
75 return balance;
76 }
77 }

Continued

ch20/synch/BankAccount.java (cont.)

Program Run:
Depositing 100.0, new balance is 100.0
Withdrawing 100.0, new balance is 0.0
Depositing 100.0, new balance is 100.0
Depositing 100.0, new balance is 200.0
...
Withdrawing 100.0, new balance is 100.0
Depositing 100.0, new balance is 200.0
Withdrawing 100.0, new balance is 100.0
Withdrawing 100.0, new balance is 0.0

Self Check 20.9

What is the essential difference between calling sleep and
await?

Answer: A sleeping thread is reactivated when the sleep delay
has passed. A waiting thread is only reactivated if another
thread has called signalAll or signal.

Self Check 20.10

Why is the sufficientFundsCondition object an instance
variable of the BankAccount class and not a local variable of the
withdraw and deposit methods?

Answer: The calls to await and signal/signalAll must
be made to the same object.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66

