
INHERITANCE

AND

INTERFACES

CHAPTER 9

Chapter Goals

 To learn about inheritance

 To implement subclasses that inherit and

override superclass methods

 To understand the concept of polymorphism

 To understand the common superclass

Object and its methods

 To work with interface types

In this chapter, you will learn how the notion of

inheritance expresses the relationship

between specialized and general classes.

Contents

 Inheritance Hierarchies

 Implementing Subclasses

 Overriding Methods

 Polymorphism

 Object: The Cosmic Superclass

 Interface Types

9.1 Inheritance Hierarchies

 In object-oriented programming, inheritance

is a relationship between:

 The subclass ‘inherits’ data (variables) and

behavior (methods) from the superclass

 A superclass: a more

generalized class

 A subclass: a more

specialized class

A Vehicle Class Hierarchy

 General

 Specialized

 More Specific

The Substitution Principle

 Since the subclass Car “is-a” Vehicle

The ‘is-a’ relationship is represented by an arrow in

a class diagram and means that the subclass can

behave as an object of the superclass.

 Car shares common traits with

Vehicle

 You can substitute a Car object

in an algorithm that expects a

Vehicle object is-a

Car myCar = new Car(. . .);
processVehicle(myCar);

Quiz Question Hierarchy
 There are different types of quiz questions:

1) Fill-in-the-blank

2) Single answer choice

3) Multiple answer choice

4) Numeric answer

5) Free Response

 A question can:
 Display it’s text

 Check for correct answer

The ‘root’ of the hierarchy

is shown at the top.

Question.java (1)

The class Question is the

‘root’ of the hierarchy, also

known as the superclass

 Only handles Strings

 No support for:

 Approximate values

 Multiple answer

choice

Question.java (2)

QuestionDemo1.java

Creates an object of the

Question class and

uses methods.

Programming Tip 9.1

// Car instance variable
double milesPerGallon;

 Use a Single Class for Variation in Values,

Inheritance for Variation in Behavior

 If two vehicles only vary by fuel efficiency,

use an instance variable for the variation,

not inheritance

 If two vehicles behave differently,

use inheritance

Be careful not to

over-use inheritance

9.2 Implementing Subclasses

 Consider implementing ChoiceQuestion to handle:

 How does ChoiceQuestion differ from Question?
 It stores choices (1,2,3 and 4) in addition to the question

 There must be a method for adding multiple choices
• The display method will show these choices below the question,

numbered appropriately

In this section you will see

how to form a subclass and

how a subclass automatically

inherits from its superclass

Inheriting from the Superclass

 Subclasses inherit from the superclass:

 All public methods that it does not override

 All public instance variables

 The Subclass can
 Add new instance variables

 Add new methods

 Change the implementation of inherited methods

Form a subclass by

specifying what is

different from the

superclass.

Overriding Superclass Methods

 Can you re-use any methods of the Question

class?
 Inherited methods perform exactly the same

 If you need to change how a method works:

• Write a new more specialized method in the subclass

• Use the same method name as the superclass method

you want to replace

• It must take all of the same parameters

 This will override the superclass method

 The new method will be invoked with the same method

name when it is called on a subclass object

A subclass can override a method

of the superclass by providing a

new implementation.

Planning the subclass

public class ChoiceQuestion extends Question
{
// This instance variable is added to the subclass
private ArrayList<String> choices;

// This method is added to the subclass
public void addChoice(String choice, boolean correct) { . . . }

// This method overrides a method from the superclass
public void display() { . . . }

}

 Use the reserved word extends to inherit from

Question

 Inherits text and answer variables

 Add new instance variable choices

Syntax 9.1: Subclass Declaration

 The subclass inherits from the superclass and

‘extends’ the functionality of the superclass

Implementing addChoice

public void addChoice(String choice, boolean correct)
{
choices.add(choice);
if (correct)
{
// Convert choices.size() to string
String choiceString = "" + choices.size();
setAnswer(choiceString);

}
}

 The method will receive two parameters
 The text for the choice

 A boolean denoting if it is the correct choice or not

 It adds text as a choice, adds choice number to the

text and calls the inherited setAnswer method

setAnswer() is the same as

calling this.setAnswer()

Common Error 9.1

 Replicating Instance Variables from the Superclass

 A subclass cannot directly access private instance

variables of the superclass
public class Question
{
private String text;
private String answer;
. . .

public class ChoiceQuestion extends Question
{
. . .
text = questionText; // Complier Error!

Common Error 9.1 (2)

 Do not try to fix the compiler error with a new instance

variable of the same name

 The constructor sets one text variable

 The display method outputs the other

public class ChoiceQuestion extends Question
{
private String text; // Second copy

9.3 Overriding Methods

 The ChoiceQuestion class needs a display
method that overrides the display method of the

Question class

 They are two different method implementations

 The two methods named display are:

 Question display
• Displays the instance variable text String

 ChoiceQuestion display
• Overrides Question display method

• Displays the instance variable text String

• Displays the local list of choices

Calling Superclass Methods

 Consider the display method of the

ChoiceQuestion class
 It needs to display the question AND the list of

choices

 text is a private instance variable of the superclass
 How do you get access to it to print the question?

 Call the display method of the superclass Question!

 From a subclass,

preface the method

name with:

 super.

public void display()
{
// Display the question text
super.display(); // OK
// Display the answer choices
. . .

}

QuestionDemo2.java (1)

Creates two objects of the

ChoiceQuestion class, uses

new addChoice method.

Calls presentQuestion (next page)

QuestionDemo2.java (2)

Uses ChoiceQuestion

(subclass) display

method.

ChoiceQuestion.java (1)

New addChoice method.

Inherits from Question class.

ChoiceQuestion.java (2)

Overridden display method.

Common Error 9.3
 Accidental Overloading

 Remember that overloading is when two methods share

the same name but have different parameters

 Overriding is where a subclass defines a method with

the same name and exactly the same parameters as the

superclass method
• Question display() method

• ChoiceQuestion display() method

 If you intend to override, but change parameters, you will

be overloading the inherited method, not overriding it

• ChoiceQuestion display(printStream out) method

println(int x);
println(String s); // Overloaded

Common Error 9.4
 Forgetting to use super when invoking a

Superclass method

 Assume that Manager inherits from Employee

•getSalary is an overridden method of Employee

– Manager.getSalary includes an additional bonus

public class Manager extends Employee
{

. . .
public double getSalary()
{
double baseSalary = getSalary(); // Manager.getSalary
// should be super.getSalary(); // Employee.getSalary
return baseSalary + bonus;

}
}

Special Topic 9.1

 Calling the Superclass Constructor

 When a subclass is instantiated, it will call the

superclass constructor with no arguments

 If you prefer to call a more specific constructor, you can

invoke it by using replacing the superclass name with

the reserved word super followed by ():

 It must be the first statement in your constructor

public ChoiceQuestion(String questionText)
{

super(questionText);
choices = new ArrayList<String>();

}

Constructor with Superclass

 To initialize private instance variables in the

superclass, invoke a specific constructor

public static void presentQuestion(Question q)

9.4 Polymorphism
 QuestionDemo2 passed two ChoiceQuestion

objects to the presentQuestion method

 Can we write a presentQuestion method that displays

both Question and ChoiceQuestion types?

 How would that work?

A subclass reference can be used when a

superclass reference is expected.

Which display method was called?

 presentQuestion simply calls the display
method of whatever type is passed:

 The variable q does not know the type of object to

which it refers:

public static void presentQuestion(Question q)
{

q.display();
. . .

 If passed an object of the Question class:

 Question display

 If passed an object of the ChoiceQuestion class:

 ChoiceQuestion display

display()

Polymorphism Benefits

 In Java, method calls are always determined by

the type of the actual object, not the type of the

variable containing the object reference

 This is called dynamic method lookup

 Dynamic method lookup allows us to treat objects of

different classes in a uniform way

 This feature is called polymorphism

 We ask multiple objects to carry out a task, and

each object does so in its own way

 Polymorphism makes programs easily extensible

QuestionDemo3.java (1)

Creates an object of

the Question class

Creates an object of the

ChoiceQuestion class, uses

new addChoice method.

Calls presentQuestion (next page)

passing both types of objects.

QuestionDemo3.java (2)

Uses appropriate

display method.

Receives a parameter of

the super-class type

Special Topic 9.2
 Dynamic Method Lookup and the Implicit Parameter

 Suppose we move the presentQuestion method to inside the

Question class and call it as follows:

 Which display and checkAnswer methods will be called?

ChoiceQuestion cq = new ChoiceQuestion();
cq.setText("In which country was the inventor of Java born?");
. . .
cq.presentQuestion(); void presentQuestion()

{
display();
System.out.print("Your answer: ");
Scanner in = new Scanner(System.in);
String response = in.nextLine();
System.out.println(checkAnswer(response));

}

Dynamic Method Lookup
 Add the Implicit Parameter to the code to find out

 Because of dynamic method lookup, the ChoiceQuestion
versions of the display and checkAnswer methods are called

automatically.

 This happens even though the presentQuestion method is

declared in the Question class, which has no knowledge of the

ChoiceQuestion class.

public class Question
{

void presentQuestion()
{

this.display();
System.out.print("Your answer: ");
Scanner in = new Scanner(System.in);
String response = in.nextLine();
System.out.println(this.checkAnswer(response));

}

Special Topic 9.3
 Abstract Classes

 If it is desirable to force subclasses to override a method

of a base class, you can declare a method as abstract.

 You cannot instantiate an object that has abstract methods

• Therefore the class is considered abstract

 If you extend the abstract class, you must implement all abstract

methods.

public abstract class Account
{
public abstract void deductFees(); // no method implementation

. . .
public class SavingsAccount extends Account // Not abstract
{
public void deductFees() // Provides an implementation
{ // method implementation. . . }
. . .

}

Abstract References
 A class that can be instantiated is called concrete class

 You cannot instantiate an object that has abstract methods

 But you can declare an object reference whose type is an
abstract class.

 The actual object to which it refers must be an instance of a

concrete subclass

 This allows for polymorphism based on even an abstract
class!

Account anAccount; // OK: Reference to abstract object
anAccount = new Account(); // Error: Account is abstract
anAccount = new SavingsAccount(); // Concrete class is OK
anAccount = null; // OK

One reason for using abstract classes is to

force programmers to create subclasses.

Special Topic 9.4
 Final Methods and Classes

 You can also prevent programmers from creating subclasses

and override methods using final.

 The String class in the Java library is an example:

 Example of a method that cannot be overridden:

public final class String { . . . }

public class SecureAccount extends BankAccount
{

. . .
public final boolean checkPassword(String password)
{

. . .
}

}

Special Topic 9.5
 protected Access

 When trying to implement the display method of the

ChoiceQuestion class, the display method wanted to access

the instance variable text of the superclass, but it was private.

 We chose to use a method of the superclass to display the text.

 Java provides a more elegant solution
 The superclass can declare an instance variable as protected

instead of private

 protected data in an object can be

accessed by the methods of the

object’s class and all its subclasses.

 But it can also be accessed by all

other classes in the same package!

public class Question
{
protected String text;
. . .

}

If you want to grant access to the data to subclass methods only,

consider making the accessor method protected.

Steps to Using Inheritance

 As an example, we will consider a bank that offers

customers the following account types:
1) A savings account that earns interest. The interest compounds monthly and

is based on the minimum monthly balance.

2) A checking account that has no interest, gives you three free withdrawals

per month, and charges a $1 transaction fee for each additional withdrawal.

 The program will manage a set of accounts of both types
 It should be structured so that other account types can be added

without affecting the main processing loop.

 The menu: D)eposit W)ithdraw M)onth end Q)uit
 For deposits and withdrawals, query the account number and

amount. Print the balance of the account after each transaction.

 In the “Month end” command, accumulate interest or clear the

transaction counter, depending on the type of the bank account.

Then print the balance of all accounts.

Steps to Using Inheritance

1) List the classes that are part of the hierarchy.
SavingsAccount

CheckingAccount

2) Organize the classes into an inheritance.

hierarchy

Base on superclass BankAccount

3) Determine the common responsibilities.

a. Write Pseudocode for each task

b. Find common tasks

Using Inheritance

Steps to Using Inheritance
4) Decide which methods are overridden in subclasses.

 For each subclass and each of the common responsibilities, decide

whether the behavior can be inherited or whether it needs to be

overridden

5) Declare the public interface of each subclass.
 Typically, subclasses have responsibilities other than those of the

superclass. List those, as well as the methods that need to be

overridden.

 You also need to specify how the objects of the subclasses should

be constructed.

6) Identify instance variables.
 List the instance variables for each class. Place instance variables

that are common to all classes in the base of the hierarchy.

7) Implement constructors and methods.

8) Construct objects of different subclasses and process them.

9.5 Object: The Cosmic Superclass

 In Java, every class that is declared without an explicit

extends clause automatically extends the class Object.

The methods of the Object class are very

general. You will learn to override the

toString method.

Writing a toString method
 The toString method returns a String representation for

each object.

 The Rectangle class (java.awt) has a toString method

 You can invoke the toString method directly



 The toString method can also be invoked implicitly whenever you

concatenate a String with an object:

 The compiler can invoke the toString method, because it

knows that every object has a toString method:

 Every class extends the Object class, and can override toString

Rectangle box = new Rectangle(5, 10, 20, 30);
String s = box.toString(); // Call toString directly
// Sets s to "java.awt.Rectangle[x=5,y=10,width=20,height=30]“

System.out.println("box=" + box); // Call toString implicitly

http://www.j2ee.me/j2se/1.5.0/docs/api/java/awt/Rectangle.html

Overriding the toString method
 Example: Override the toString method for the

BankAccount class

 All that is printed is the name of the class, followed by the hash code

which can be used to tell objects (Chapter 10)

 We want to know what is inside the object

BankAccount momsSavings = new BankAccount(5000);
String s = momsSavings.toString();
// Sets s to something like "BankAccount@d24606bf"

public class BankAccount
{
public String toString()
{
// returns "BankAccount[balance=5000]"
return "BankAccount[balance=" + balance + "]";

}
}

Override the toString method to yield a

string that describes the object’s state.

Overriding the equals method
 In addition to the toString method, the Object class

equals method checks whether two objects have the same

contents:

 This is different from the == operator which compares the

two references:

if (stamp1.equals(stamp2)) . . . // same Contents?

if (stamp1 == stamp2) . . . // same Objects?

Overriding the equals method

 The Object class specifies the type of parameter as Object

public class Stamp
{
private String color;
private int value;
. . .
public boolean equals(Object otherObject)
{
. . .
}
. . .

}

The Stamp equals method must declare

the same type of parameter as the

Object equals method to override it.

public boolean equals(Object otherObject)
{
Stamp other = (Stamp) otherObject;
return color.equals(other.color)
&& value == other.value;

}
Cast the parameter variable to the class Stamp

The instanceof operator

 It is legal to store a subclass reference in a

variable declared as superclass reference type

 The opposite conversion is also possible:

 From a superclass reference to a subclass reference

 If you have a variable of type Object, and you know

that it actually holds a Question reference, you can

cast it:

 To make sure it is an object of the Question type,

you can test it with the instanceof operator:

Question q = (Question) obj;

if (obj instanceof Question)
{

Question q = (Question) obj;
}

instanceof returns a boolean

Syntax 9.3: Using instanceof

 Using the instanceOf operator also involves casting

 Returns true if you can safely cast one object to another

 Casting allows the use of methods of the new object

 Most often used to make a reference more specific

• Cast from an Object reference to a more specific class type

Common Error 9.5
 Don’t Use Type Tests

 This is a poor strategy. If a new class is added, then all

these queries need to be revised.

• When you add the class NumericQuestion

 Let polymorphism select the correct method:
• Declare a method doTheTask in the superclass

• Override it in subclasses

if (q instanceof ChoiceQuestion)) // Don’t do this
{
// Do the task the ChoiceQuestion way

}
else if (q instanceof Question))
{
// Do the task the Question way

}

Special Topic 9.6
 Inheritance and the toString Method

 Instead of writing the type of object in a toString method
• Use getclass (inherited from object) in the superclass

 Then use inheritance, call the superclass toString first

public class BankAccount { . . .
public String toString()
{
return getClass().getName() + "[balance=" + balance + "]";

}

public class SavingsAccount extends BankAccount
{
. . .
public String toString()
{
return super.toString() + "[interestRate=" + intRate + "]";

} // returns SavingsAccount[balance= 10000][interestRate= 5]
}

This allows the superclass to output

private instance variables

Special Topic 9.7
 Inheritance and the equals Method

 What if someone called stamp1.equals(x) where x was

not a Stamp object?
• Using the instanceOf operator, t would be possible for otherObject

to belong to some subclass of Stamp.

 Use the getClass method to compare your exact class to

the passed object to make sure

public boolean equals(Object otherObject)
{
if (otherObject == null) { return false; }
if (getClass() != otherObject.getClass()) { return false; }
Stamp other = (Stamp) otherObject;
return color.equals(other.color) && value == other.value;

}

Insures comparison of

the same types

9.6 Interface Types
 An interface is a special type of declaration that

lists a set of methods and their signatures
 A class that ‘implements’ the interface must implement

all of the methods of the interface

 It is similar to a class, but there are differences:
• All methods in an interface type are abstract:

They have a name, parameters, and a return type, but they

don’t have an implementation

• All methods in an interface type are automatically public

• An interface type cannot have instance variables

• An interface type cannot have static methods

public interface Measurable
{
double getMeasure();

}

A Java interface type declares a set of

methods and their signatures.

Syntax 9.4: Interface Types
 An interface declaration and a class that

implements the interface.

Using Interface Types
 We can use the interface type Measurable to

implement a “universal” static method for

computing averages:

public static double average(Measurable[] objs)
{
if (objs.length == 0) return 0;
double sum = 0;
for (Measurable obj : objs)
{
sum = sum + obj.getMeasure();

}
return sum / objs.length;

}

public interface Measurable
{
double getMeasure();

}

Implementing an Interface
 A class can be declared to implement an interface

 The class must implement all methods of the interface

public class BankAccount implements Measurable
{
public double getMeasure()
{
return balance;

}
. . .

} public class Country implements Measurable
{
public double getMeasure()
{
return area;

}
. . .

}

Use the implements reserved

word in the class declaration.

The methods of the interface

must be declared as public

An Implementation Diagram

 The dashed line with an

arrow is used to denote

implements relationships

MeasureableDemo.java (1)

MeasureableDemo.java (2)

The Comparable Interface

 The Java library includes a number of important

interfaces including Comparable
 It requires implementing one method: compareTo()

 It is used to compare two objects

 It is implemented by many objects in the Java API

 If may want to implement it in your classes to use

powerful Java API tools such as sorting

 It is called on one object, and is passed another
 Called on object a, return values include:

• Negative: a comes before b

• Positive: a comes after b

• 0: a is the same as b

a.compareTo(b);

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Comparable.html

The Comparable Type parameter

 The Comparable interface uses a special type of

parameter that allows it to work with any type:

 The type <T> is a placeholder for an actual type of object

 The class ArrayList class uses the same technique with

the type surrounded by angle brackets < >

public interface Comparable<T>
{

int compareTo(T other);
}

Using the type inside angle

braces will be covered

further in the next chapter.

ArrayList<String> names = new ArrayList<String>();

A Comparable Example
 The BankAccount compareTo method compares bank

accounts by their balance.

 It takes one parameter of it’s own class type (BankAccount)

public class BankAccount implements Comparable<BankAccount>
{

. . .
public int compareTo(BankAccount other)
{
if (balance < other.getBalance()) { return -1; }
if (balance > other.getBalance()) { return 1; }
return 0;

}
. . .

}

The methods of the interface

must be declared as public

Using compareTo to Sort
 The Arrays.sort method uses the compareTo method to

sort the elements of the array

 Once the BankAccount class implements the

Comparable interface, you can sort an array of bank

accounts with the Arrays.sort method:

 The array is now sorted by increasing balance

Implementing Java Library interfaces

allows you to use the power of the Java

Library with your classes.

BankAccount[] accounts = new BankAccount[3];
accounts[0] = new BankAccount(10000);
accounts[1] = new BankAccount(0);
accounts[2] = new BankAccount(2000);
Arrays.sort(accounts);

Common Error 9.6
 Forgetting to Declare Implementing Methods

as Public
 The methods in an interface are not declared as public,

because they are public by default.

 However, the methods in a class are not public by default.

 It is a common error to forget the public reserved word

when declaring a method from an interface:

public class BankAccount implements Measurable
{
double getMeasure() // Oops—should be public
{
return balance;

}
. . .

}

Special Topic 9.8
 Interface Constants

 Interfaces cannot have instance variables, but it is legal to

specify constants

 When declaring a constant in an interface, you can (and

should) omit the reserved words public static final,

because all variables in an interface are automatically

public static final.

public interface SwingConstants
{
int NORTH = 1;
int NORTHEAST = 2;
int EAST = 3;
. . .

}

Special Topic 9.9
 Function Objects

 Interfaces work well IF all objects that need the service

are willing to implement the interface.

 The sole purpose of a function object is to execute a

single method
• This allows a non-implementing class to use the services of the

interface by creating a function object and using it’s method

 First, create a new interface
• The measure method measures an object and returns its

measurement. We use a parameter of type Object, the “lowest

common denominator” of all classes in Java, because we do not

want to restrict which classes can be measured.

public interface Measurer
{
double measure(Object anObject);

}

Function Objects(2)
 Then declare a class that implements the new

interface

public class StringMeasurer implements Measurer
{
public double measure(Object obj)
{
String str = (String) obj; // Cast obj to String type
return str.length();

}
} public interface Measurer

{
double measure(Object anObject);

}

Function Objects (3)
 Example of Function Object Use

 Instantiate an object of the Function object class

 Call your method that accepts an object of this type

public static double average(Object[] objs, Measurer meas)
{
if (objs.length == 0) { return 0; }
double sum = 0;
for (Object obj : objs)
{
sum = sum + meas.measure(obj);

}
return sum / objs.length;

}

String[] words = { "Mary", "had", "a", "little", "lamb" };
Measurer strMeas = new StringMeasurer();
double result = average(words, strMeas);

See ch09/measure2 sample program.

Summary: Inheritance
 A subclass inherits data and behavior from a

superclass.

 You can always use a subclass object in place of

a superclass object.

 A subclass inherits all methods that it does not

override.

 A subclass can override a superclass method by

providing a new implementation.

Summary: Overriding Methods

 An overriding method can extend or replace the

functionality of the superclass method.

 Use the reserved word super to call a superclass

method.

 Unless specified otherwise, the subclass constructor

calls the superclass constructor with no arguments.

 To call a superclass constructor, use the super
reserved word in the first statement of the subclass

constructor.

 The constructor of a subclass can pass arguments to a

superclass constructor, using the reserved word

super.

Summary: Polymorphism

 A subclass reference can be used when a

superclass reference is expected.

 Polymorphism (“having multiple shapes”) allows us

to manipulate objects that share a set of tasks, even

though the tasks are executed in different ways.

 An abstract method is a method whose

implementation is not specified.

 An abstract class is a class that cannot be

instantiated.

Summary: toString and instanceOf

 Override the toString method to yield a String
that describes the object’s state.

 The equals method checks whether two objects

have the same contents.

 If you know that an object belongs to a given class,

use a cast to convert the type.

 The instanceof operator tests whether an object

belongs to a particular type.

Summary: Interfaces

 The Java interface type contains the return

types, names, and parameter variables of

 Unlike a class, an interface type provides no

implementation.

 By using an interface type for a parameter variable,

a method can accept objects from many classes.

 The implements reserved word indicates which

interfaces a class implements.

 Implement the Comparable interface so that

objects of your class can be compared, for

example, in a sort method.

