
OBJECTS AND

CLASSES

CHAPTER 8

Objects and Programs

 Java programs are made of objects that interact

with each other
 Each object is based on a class

 A class describes a set of objects with the same

behavior

 Each class defines a specific set of methods to

use with its objects
 For example, the String class provides methods:

• Examples: length() and charAt() methods

String greeting = “Hello World”;
int len = greeting.length();
char c1 = greeting.charAt(0);

Diagram of a Class

 Private Data
 Each object has its own private

data that other objects cannot

directly access

 Methods of the public interface

provide access to private data,

while hiding implementation

details:

 This is called Encapsulation

 Public Interface
 Each object has a set of

methods available for other

objects to use

Class

Private Data

(Variables)

Public Interface

(Methods)

8.2 Implementing a Simple Class

 Example: Tally Counter: A class that models

a mechanical device that is used to count people

 For example, to find out how many people attend a

concert or board a bus

 What should it do?

 Increment the tally

 Get the current total

Tally Counter Class

 Specify instance variables in the class

declaration:

 Each object instantiated from the class has its own

set of instance variables

 Each tally counter has its own current count

 Access Specifiers:

 Classes (and interface methods) are public

 Instance variables are always private

Instantiating Objects

 Objects are created based on classes
 Use the new operator to construct objects

 Give each object a unique name (like variables)

 You have used the new operator before:

 Creating two instances of Counter objects:

Use the new operator to

construct objects of a class.

Scanner in = new Scanner(System.in);

Counter concertCounter = new Counter();
Counter boardingCounter = new Counter();

Object nameClass name Class name

public class Counter
{

private int value;

public void count()
{
value = value + 1;

}

public int getValue()
{
return value;

}
}

Tally Counter Methods

 Design a method named count that adds 1 to the

instance variable

 Which instance variable?
 Use the name of the object

• concertCounter.count()

• boardingCounter.count()

8.3 Public Interface of a Class

 When you design a class, start by specifying the

public interface of the new class
 Example: A Cash Register Class

• What tasks will this class perform?

• What methods will you need?

• What parameters will the methods need to receive?

• What will the methods return?

Task Method Returns

Add the price of an item addItem(double) void

Get the total amount owed getTotal() double

Get the count of items purchased getCount() int

Clear the cash register for a new sale clear() void

Writing the Public Interface
/**
A simulated cash register that tracks the item count
and the total amount due.

*/
public class CashRegister
{
/**
Adds an item to this cash register.
@param price: the price of this item

*/
public void addItem(double price)
{
// Method body

}
/**
Gets the price of all items in the current sale.
@return the total price

*/
public double getTotal() ...

The method declarations make up

the public interface of the class

The data and method bodies make up

the private implementation of the class

Javadoc style comments

document the class and the

behavior of each method

public static void main(String[] args)
{

// Construct a CashRegister object
CashRegister register1 = new CashRegister();
// Invoke a non-static method of the object
register1.addItem(1.95);

}

Non-static Methods Means…

 We have been writing class methods using the static
modifier:

 For non-static (instance) methods, you must instantiate

an object of the class before you can invoke methods

 Then invoke methods of the object

public static void addItem(double val)

public void addItem(double val)

Accessor and Mutator Methods

 Many methods fall into two categories:

1) Accessor Methods: 'get' methods

• Asks the object for information without changing it

• Normally return a value of some type

2) Mutator Methods: 'set' methods

• Changes values in the object

• Usually take a parameter that will change an instance variable

• Normally return void

public void addItem(double price) { }
public void clear() { }

public double getTotal() { }
public int getCount() { }

Special Topic 8.1: Javadoc

 The Javadoc utility generates a set of HTML files

from the Javadoc style comments in your source

code

 Methods document parameters and returns:

• @param

• @return

8.4 Designing the Data Representation

 An object stores data in instance variables
 Variables declared inside the class

 All methods inside the class have access to them
• Can change or access them

 What data will our CashRegister methods need?

Task Method Data Needed

Add the price of an item addItem() total, count

Get the total amount owed getTotal() total

Get the count of items purchased getCount() count

Clear the cash register for a new

sale

clear() total, count

An object holds instance variables

that are accessed by methods

Instance Variables of Objects
 Each object of a class has a separate set of

instance variables.

The values stored in

instance variables make up

the state of the object.

Accessing Instance Variables

public static void main(String[] args)
{
. . .
System.out.println(register1.itemCount); // Error
. . .

}
The compiler will not allow

this violation of privacy

 private instance variables cannot be accessed

from methods outside of the class

 Use accessor methods of the class instead!
public static void main(String[] args)
{
. . .
System.out.println(register1.getCount()); // OK
. . .

}
Encapsulation provides a public interface

and hides the implementation details.

8.5 Implementing Instance Methods

 Implement instance methods that will use the

private instance variables

Task Method Returns

Add the price of an item addItem(double) void

Get the total amount owed getTotal() double

Get the count of items purchased getCount() int

Clear the cash register for a new sale clear() void

public void addItem(double price)
{
itemCount++;
totalPrice = totalPrice + price;

}

Syntax 8.2: Instance Methods
 Use instance variables inside methods of the class

 There is no need to specify the implicit parameter

(name of the object) when using instance variables

inside the class

 Explicit parameters must be listed in the method

declaration

Implicit and Explicit Parameters

 When an item is added, it affects the instance

variables of the object on which the method is

invoked

The object on which a

method is applied is the

implicit parameter

8.6 Constructors

 A constructor is a method that initializes instance

variables of an object
 It is automatically called when an object is created

 It has exactly the same name as the class

public class CashRegister
{
. . .
/**
Constructs a cash register with cleared item count and total.

*/
public CashRegister() // A constructor
{
itemCount = 0;
totalPrice = 0;

}
}

Constructors never return values, but

do not use void in their declaration

Multiple Constructors
 A class can have more than one constructor

 Each must have a unique set of parameters

public class BankAccount
{

. . .
/**

Constructs a bank account with a zero balance.
*/
public BankAccount() { . . . }
/**

Constructs a bank account with a given balance.
@param initialBalance the initial balance

*/
public BankAccount(double initialBalance) { . . . }

}

The compiler picks the constructor that

matches the construction parameters.

BankAccount joesAccount = new BankAccount();
BankAccount lisasAccount = new BankAccount(499.95);

Syntax 8.3: Constructors
 One constructors is invoked when the object is created

with the new keyword

The Default Constructor

 If you do not supply any constructors, the compiler

will make a default constructor automatically
 It takes no parameters

 It initializes all instance variables

public class CashRegister
{

. . .
/**

Does exactly what a compiler generated constructor would do.
*/
public CashRegister()
{

itemCount = 0;
totalPrice = 0;

}
}

By default, numbers are initialized to 0,

booleans to false, and objects as null.

CashRegister.java

Common Error 8.1
 Not initializing object references in constructor

 References are by default initialized to null

 Calling a method on a null reference results in a runtime
error: NullPointerException

 The compiler catches uninitialized local variables for you

public class BankAccount
{
private String name; // default constructor will set to null

public void showStrings()
{
String localName;
System.out.println(name.length());
System.out.println(localName.length());

}
}

Compiler Error: variable localName might

not have been initialized

Runtime Error:

java.lang.NullPointerException

Common Error 8.2

CashRegister register1 = new CashRegister();

 Trying to Call a Constructor

 You cannot call a constructor like other methods

 It is ‘invoked’ for you by the new reserved word

 You cannot invoke the constructor on an existing object:

 But you can create a new object using your existing

reference

register1.CashRegister(); // Error

CashRegister register1 = new CashRegister();
Register1.newItem(1.95);
CashRegister register1 = new CashRegister();

Common Error 8.3

 Declaring a Constructor as void

 Constructors have no return type

 This creates a method with a return type of void which

is NOT a constructor!

• The Java compiler does not consider this an error

public class BankAccount
{

/**
Intended to be a constructor.

*/
public void BankAccount()
{

. . .
}

}

Not a constructor…. Just another

method that returns nothing (void)

Special Topic 8.2

 Overloading

 We have seen that multiple constructors can

have exactly the same name

• They require different lists of parameters

 Actually any method can be overloaded
• Same method name with different parameters

 We will not be using overloading in this book
• Except as required for constructors

void print(CashRegister register) { . . . }
void print(BankAccount account) { . . . }
void print(int value) { . . . }
Void print(double value) { . . . }

public class CashRegisterTester
{
public static void main(String[] args)
{
CashRegister c1 = new CashRegister();
...

8.7 Testing a Class

 We wrote a CashRegister class but…
 You cannot execute the class – it has no main method

 It can become part of a larger program
 Test it first though with unit testing

 To test a new class, you can use:
 Programming tools that interactively create objects:

• DrJava: www.drjava.org

• BlueJ: www.bluej.org

 Or write a tester class:
• With a main

http://www.drjava.org/
http://www.bluej.org/

CashRegisterTester.java

A unit test verifies that a class

works correctly in isolation, outside

a complete program.

 Test all methods

 Print expected

results

 Output actual results

 Compare results

Steps to Implementing a Class

1) Get an informal list of responsibilities

for your objects

2) Specify the public interface

3) Document the public interface

 Javadoc comments

Steps to Implementing a Class

4) Determine the instance variables

5) Implement constructors and methods

6) Test your class

8.8 Problem Solving: Tracing Objects

 Use an Index card for each object

 An object is manipulated through the public

interface (front of the card)

 The encapsulated data is on the back of the

card

8.9 Problem Solving

Patterns for Object Data

 Common patterns when designing instance

variables

 Keeping a Total

 Counting Events

 Collecting Values

 Managing Object Properties

 Modeling Objects with Distinct States

 Describing the Position of an Object

Patterns: Keeping a Total

 Examples
 Bank account balance

 Cash Register total

 Car gas tank fuel level

 Variables needed
 Total (totalPrice)

 Methods Required
 Add (addItem)

 Clear

 getTotal

public class CashRegister
{
private double totalPrice;

public void addItem(double price)
{
totalPrice += price;

}
public void clear()
{
totalPrice = 0;

}
public double getTotal()
{
return totalPrice;

}
}

public class CashRegister
{
private double totalPrice;
private int itemCount;
public void addItem(double price)
{
totalPrice += price;
itemCount++;

}
public void clear()
{
totalPrice = 0;
itemCount = 0;

}
public double getCount()
{
return itemCount;

}
}

Patterns: Counting Events

 Examples
 Cash Register items

 Bank transaction fee

 Variables needed
 Count

 Methods Required
 Add

 Clear

 Optional: getCount

Patterns: Collecting Values

 Examples
 Multiple choice

question

 Shopping cart

 Storing values
 Array or ArrayList

 Constructor
 Initialize to empty

collection

 Methods Required
 Add

public class Cart
{
private String[] items;
private int itemCount;
public Cart() // Constructor
{
items = new String[50];
itemCount = 0;

}
public void addItem(String name)
{
if(itemCount < 50)
{
items[itemCount] = name;
itemCount++;

}
}

}

Patterns: Managing Properties

A property of an object

can be set and

retrieved

 Examples
 Student: name, ID

 Constructor
 Set a unique value

 Methods Required
 set

 get

public class Student
{
private String name;
private int ID;
public Student(int anID)
{

ID = anID;
}
public void setName(String newname)
{
if (newName.length() > 0)
name = newName;

}
public getName()
{

return name;
}

}

Patterns: Modeling Stateful Objects

Some objects can be in one

of a set of distinct states.

 Example: A fish
 Hunger states:

• Somewhat Hungry

• Very Hungry

• Not Hungry

 Methods will change the

state
 eat

 move

public class Fish
{
private int hungry;
public static final int
NOT_HUNGRY = 0;
public static final int
SOMEWHAT_HUNGRY = 1;
public static final int
VERY_HUNGRY = 2;

public void eat()
{

hungry = NOT_HUNGRY;
}
public void move()
{
if (hungry < VERY_HUNGRY)
{ hungry++; }

}

Patterns: Object Position

 Examples
 Game object

 Bug (on a grid)

 Cannonball

 Storing values
 Row, column, direction,

speed. . .

 Methods Required
 move

 turn

public class Bug
{
private int row;
private int column;
private int direction;

// 0 = N, 1 = E, 2 = S, 3 = W
public void moveOneUnit()
{
switch(direction) {
case 0: row--; break;
case 1: column++; break;
. . .

}
}

}

8.10 Object References

 Objects are similar to arrays because they always

have reference variables

 Array Reference

 Object Reference

double[] values = new double[5];

CashRegister reg1 = new CashRegister;

An object reference specifies the

memory location of the object

Shared References

 Multiple object variables may contain references

to the same object.

 Single Reference

 Shared References

CashRegister reg1 = new CashRegister;

CashRegister reg2 = reg1;

The internal values can be

changed through either reference

Primitive versus Reference Copy

 Primitive variables can be copied, but work

differently than object references
 Primitive Copy Reference Copy

• Two locations One location for both

CashRegister reg1 = new CashRegister;
CashRegister reg2 = reg1;
reg2.addItem(2.95);

int num1 = 0;
int num2 = num1;
num2++;

Why? Primitives take much less

storage space than objects!

The null reference

 A reference may point to ‘no’ object
 You cannot invoke methods of an object via a

null reference – causes a run-time error

 To test if a reference is null before using it:

String middleInitial = null; // No middle initial

if (middleInitial == null)
System.out.println(firstName + " " + lastName);

else
System.out.println(firstName + " " + middleInitial + ". "
+ lastName);

CashRegister reg = null;
System.out.println(reg.getTotal()); // Runtime Error!

The this reference

 Methods receive the ‘implicit parameter’ in a

reference variable called ‘this’
 It is a reference to the object the method was

invoked on:

 It can clarify when instance variables are used:
void addItem(double price)
{

this.itemCount++;
this.totalPrice = this.totalPrice + price;

}

Constructor this reference

 Sometimes people use the this reference

in constructors
 It makes it very clear that you are setting the

instance variable:

public class Student
{

private int id;
private String name;
public Student(int id, String name)
{
this.id = id;
this.name = name;

}
}

public class BankAccount
{
private double balance;
private int accountNumber;
private static int lastAssignedNumber = 1000;

public BankAccount()
{
lastAssignedNumber++;
accountNumber = lastAssignedNumber;

}
. . .

}

8.11 Static Variables and Methods

 Variables can be declared as static in the Class

declaration
 There is one copy of a static variable that is shared

among all objects of the Class

Methods of any object of the class can use

or change the value of a static variable

Using Static Variables

 Example:
 Each time a new account is created,

the lastAssignedNumber variable is

incremented by the constructor

 Access the static variable using:
 ClassName.variableName

Using Static Methods

 The Java API has many classes that provide

methods you can use without instantiating objects
 The Math class is an example we have used

 Math.sqrt(value) is a static method that returns the

square root of a value

 You do not need to instantiate the Math class first

 Access static methods using:
 ClassName.methodName()

public class Financial
{

/**
Computes a percentage of an amount.
@param percentage the percentage to apply
@param amount the amount to which the percentage is applied
@return the requested percentage of the amount

*/
public static double percentOf(double percentage, double amount)
{

return (percentage / 100) * amount;
}

}

Writing your own Static Methods

 You can define your own static methods

static methods usually return a value. They

can only access static variables and methods.

double tax = Financial.percentOf(taxRate, total);

 Invoke the method on the Class, not an object

Summary: Classes and Objects

 A class describes a set of objects with the same

behavior.

 Every class has a public interface: a collection of

methods through which the objects of the class

can be manipulated.

 Encapsulation is the act of providing a public

interface and hiding the implementation details.

 Encapsulation enables changes in the

implementation without affecting users of a class

Summary: Variables and Methods

 An object’s instance variables store the data

required for executing its methods.

 Each object of a class has its own set of instance

variables.

 An instance method can access the instance

variables of the object on which it acts.

 A private instance variable can only be accessed

by the methods of its own class.

 Variables declared as static in a class have a

single copy of the variable shared among all of the

instances of the class.

Summary: Method Headers, Data

 Method Headers
 You can use method headers and method comments to

specify the public interface of a class.

 A mutator method changes the object on which it operates.

 An accessor method does not change the object on which

it operates.

 Data Declaration
 For each accessor method, an object must either store or

compute the result.

 Commonly, there is more than one way of representing the

data of an object, and you must make a choice.

 Be sure that your data representation supports method

calls in any order.

Summary: Parameters, Constructors

 Methods Parameters
 The object on which a method is applied is the implicit

parameter.

 Explicit parameters of a method are listed in the method

declaration.

 Constructors
 A constructor initializes the object’s instance variables

 A constructor is invoked when an object is created with

the new operator.

 The name of a constructor is the same as the class

 A class can have multiple constructors.

 The compiler picks the constructor that matches the

construction arguments.

