
OBJECTS AND

CLASSES

CHAPTER 8

Objects and Programs

 Java programs are made of objects that interact

with each other
 Each object is based on a class

 A class describes a set of objects with the same

behavior

 Each class defines a specific set of methods to

use with its objects
 For example, the String class provides methods:

• Examples: length() and charAt() methods

String greeting = “Hello World”;
int len = greeting.length();
char c1 = greeting.charAt(0);

Diagram of a Class

 Private Data
 Each object has its own private

data that other objects cannot

directly access

 Methods of the public interface

provide access to private data,

while hiding implementation

details:

 This is called Encapsulation

 Public Interface
 Each object has a set of

methods available for other

objects to use

Class

Private Data

(Variables)

Public Interface

(Methods)

8.2 Implementing a Simple Class

 Example: Tally Counter: A class that models

a mechanical device that is used to count people

 For example, to find out how many people attend a

concert or board a bus

 What should it do?

 Increment the tally

 Get the current total

Tally Counter Class

 Specify instance variables in the class

declaration:

 Each object instantiated from the class has its own

set of instance variables

 Each tally counter has its own current count

 Access Specifiers:

 Classes (and interface methods) are public

 Instance variables are always private

Instantiating Objects

 Objects are created based on classes
 Use the new operator to construct objects

 Give each object a unique name (like variables)

 You have used the new operator before:

 Creating two instances of Counter objects:

Use the new operator to

construct objects of a class.

Scanner in = new Scanner(System.in);

Counter concertCounter = new Counter();
Counter boardingCounter = new Counter();

Object nameClass name Class name

public class Counter
{

private int value;

public void count()
{
value = value + 1;

}

public int getValue()
{
return value;

}
}

Tally Counter Methods

 Design a method named count that adds 1 to the

instance variable

 Which instance variable?
 Use the name of the object

• concertCounter.count()

• boardingCounter.count()

8.3 Public Interface of a Class

 When you design a class, start by specifying the

public interface of the new class
 Example: A Cash Register Class

• What tasks will this class perform?

• What methods will you need?

• What parameters will the methods need to receive?

• What will the methods return?

Task Method Returns

Add the price of an item addItem(double) void

Get the total amount owed getTotal() double

Get the count of items purchased getCount() int

Clear the cash register for a new sale clear() void

Writing the Public Interface
/**
A simulated cash register that tracks the item count
and the total amount due.

*/
public class CashRegister
{
/**
Adds an item to this cash register.
@param price: the price of this item

*/
public void addItem(double price)
{
// Method body

}
/**
Gets the price of all items in the current sale.
@return the total price

*/
public double getTotal() ...

The method declarations make up

the public interface of the class

The data and method bodies make up

the private implementation of the class

Javadoc style comments

document the class and the

behavior of each method

public static void main(String[] args)
{

// Construct a CashRegister object
CashRegister register1 = new CashRegister();
// Invoke a non-static method of the object
register1.addItem(1.95);

}

Non-static Methods Means…

 We have been writing class methods using the static
modifier:

 For non-static (instance) methods, you must instantiate

an object of the class before you can invoke methods

 Then invoke methods of the object

public static void addItem(double val)

public void addItem(double val)

Accessor and Mutator Methods

 Many methods fall into two categories:

1) Accessor Methods: 'get' methods

• Asks the object for information without changing it

• Normally return a value of some type

2) Mutator Methods: 'set' methods

• Changes values in the object

• Usually take a parameter that will change an instance variable

• Normally return void

public void addItem(double price) { }
public void clear() { }

public double getTotal() { }
public int getCount() { }

Special Topic 8.1: Javadoc

 The Javadoc utility generates a set of HTML files

from the Javadoc style comments in your source

code

 Methods document parameters and returns:

• @param

• @return

8.4 Designing the Data Representation

 An object stores data in instance variables
 Variables declared inside the class

 All methods inside the class have access to them
• Can change or access them

 What data will our CashRegister methods need?

Task Method Data Needed

Add the price of an item addItem() total, count

Get the total amount owed getTotal() total

Get the count of items purchased getCount() count

Clear the cash register for a new

sale

clear() total, count

An object holds instance variables

that are accessed by methods

Instance Variables of Objects
 Each object of a class has a separate set of

instance variables.

The values stored in

instance variables make up

the state of the object.

Accessing Instance Variables

public static void main(String[] args)
{
. . .
System.out.println(register1.itemCount); // Error
. . .

}
The compiler will not allow

this violation of privacy

 private instance variables cannot be accessed

from methods outside of the class

 Use accessor methods of the class instead!
public static void main(String[] args)
{
. . .
System.out.println(register1.getCount()); // OK
. . .

}
Encapsulation provides a public interface

and hides the implementation details.

8.5 Implementing Instance Methods

 Implement instance methods that will use the

private instance variables

Task Method Returns

Add the price of an item addItem(double) void

Get the total amount owed getTotal() double

Get the count of items purchased getCount() int

Clear the cash register for a new sale clear() void

public void addItem(double price)
{
itemCount++;
totalPrice = totalPrice + price;

}

Syntax 8.2: Instance Methods
 Use instance variables inside methods of the class

 There is no need to specify the implicit parameter

(name of the object) when using instance variables

inside the class

 Explicit parameters must be listed in the method

declaration

Implicit and Explicit Parameters

 When an item is added, it affects the instance

variables of the object on which the method is

invoked

The object on which a

method is applied is the

implicit parameter

8.6 Constructors

 A constructor is a method that initializes instance

variables of an object
 It is automatically called when an object is created

 It has exactly the same name as the class

public class CashRegister
{
. . .
/**
Constructs a cash register with cleared item count and total.

*/
public CashRegister() // A constructor
{
itemCount = 0;
totalPrice = 0;

}
}

Constructors never return values, but

do not use void in their declaration

Multiple Constructors
 A class can have more than one constructor

 Each must have a unique set of parameters

public class BankAccount
{

. . .
/**

Constructs a bank account with a zero balance.
*/
public BankAccount() { . . . }
/**

Constructs a bank account with a given balance.
@param initialBalance the initial balance

*/
public BankAccount(double initialBalance) { . . . }

}

The compiler picks the constructor that

matches the construction parameters.

BankAccount joesAccount = new BankAccount();
BankAccount lisasAccount = new BankAccount(499.95);

Syntax 8.3: Constructors
 One constructors is invoked when the object is created

with the new keyword

The Default Constructor

 If you do not supply any constructors, the compiler

will make a default constructor automatically
 It takes no parameters

 It initializes all instance variables

public class CashRegister
{

. . .
/**

Does exactly what a compiler generated constructor would do.
*/
public CashRegister()
{

itemCount = 0;
totalPrice = 0;

}
}

By default, numbers are initialized to 0,

booleans to false, and objects as null.

CashRegister.java

Common Error 8.1
 Not initializing object references in constructor

 References are by default initialized to null

 Calling a method on a null reference results in a runtime
error: NullPointerException

 The compiler catches uninitialized local variables for you

public class BankAccount
{
private String name; // default constructor will set to null

public void showStrings()
{
String localName;
System.out.println(name.length());
System.out.println(localName.length());

}
}

Compiler Error: variable localName might

not have been initialized

Runtime Error:

java.lang.NullPointerException

Common Error 8.2

CashRegister register1 = new CashRegister();

 Trying to Call a Constructor

 You cannot call a constructor like other methods

 It is ‘invoked’ for you by the new reserved word

 You cannot invoke the constructor on an existing object:

 But you can create a new object using your existing

reference

register1.CashRegister(); // Error

CashRegister register1 = new CashRegister();
Register1.newItem(1.95);
CashRegister register1 = new CashRegister();

Common Error 8.3

 Declaring a Constructor as void

 Constructors have no return type

 This creates a method with a return type of void which

is NOT a constructor!

• The Java compiler does not consider this an error

public class BankAccount
{

/**
Intended to be a constructor.

*/
public void BankAccount()
{

. . .
}

}

Not a constructor…. Just another

method that returns nothing (void)

Special Topic 8.2

 Overloading

 We have seen that multiple constructors can

have exactly the same name

• They require different lists of parameters

 Actually any method can be overloaded
• Same method name with different parameters

 We will not be using overloading in this book
• Except as required for constructors

void print(CashRegister register) { . . . }
void print(BankAccount account) { . . . }
void print(int value) { . . . }
Void print(double value) { . . . }

public class CashRegisterTester
{
public static void main(String[] args)
{
CashRegister c1 = new CashRegister();
...

8.7 Testing a Class

 We wrote a CashRegister class but…
 You cannot execute the class – it has no main method

 It can become part of a larger program
 Test it first though with unit testing

 To test a new class, you can use:
 Programming tools that interactively create objects:

• DrJava: www.drjava.org

• BlueJ: www.bluej.org

 Or write a tester class:
• With a main

http://www.drjava.org/
http://www.bluej.org/

CashRegisterTester.java

A unit test verifies that a class

works correctly in isolation, outside

a complete program.

 Test all methods

 Print expected

results

 Output actual results

 Compare results

Steps to Implementing a Class

1) Get an informal list of responsibilities

for your objects

2) Specify the public interface

3) Document the public interface

 Javadoc comments

Steps to Implementing a Class

4) Determine the instance variables

5) Implement constructors and methods

6) Test your class

8.8 Problem Solving: Tracing Objects

 Use an Index card for each object

 An object is manipulated through the public

interface (front of the card)

 The encapsulated data is on the back of the

card

8.9 Problem Solving

Patterns for Object Data

 Common patterns when designing instance

variables

 Keeping a Total

 Counting Events

 Collecting Values

 Managing Object Properties

 Modeling Objects with Distinct States

 Describing the Position of an Object

Patterns: Keeping a Total

 Examples
 Bank account balance

 Cash Register total

 Car gas tank fuel level

 Variables needed
 Total (totalPrice)

 Methods Required
 Add (addItem)

 Clear

 getTotal

public class CashRegister
{
private double totalPrice;

public void addItem(double price)
{
totalPrice += price;

}
public void clear()
{
totalPrice = 0;

}
public double getTotal()
{
return totalPrice;

}
}

public class CashRegister
{
private double totalPrice;
private int itemCount;
public void addItem(double price)
{
totalPrice += price;
itemCount++;

}
public void clear()
{
totalPrice = 0;
itemCount = 0;

}
public double getCount()
{
return itemCount;

}
}

Patterns: Counting Events

 Examples
 Cash Register items

 Bank transaction fee

 Variables needed
 Count

 Methods Required
 Add

 Clear

 Optional: getCount

Patterns: Collecting Values

 Examples
 Multiple choice

question

 Shopping cart

 Storing values
 Array or ArrayList

 Constructor
 Initialize to empty

collection

 Methods Required
 Add

public class Cart
{
private String[] items;
private int itemCount;
public Cart() // Constructor
{
items = new String[50];
itemCount = 0;

}
public void addItem(String name)
{
if(itemCount < 50)
{
items[itemCount] = name;
itemCount++;

}
}

}

Patterns: Managing Properties

A property of an object

can be set and

retrieved

 Examples
 Student: name, ID

 Constructor
 Set a unique value

 Methods Required
 set

 get

public class Student
{
private String name;
private int ID;
public Student(int anID)
{

ID = anID;
}
public void setName(String newname)
{
if (newName.length() > 0)
name = newName;

}
public getName()
{

return name;
}

}

Patterns: Modeling Stateful Objects

Some objects can be in one

of a set of distinct states.

 Example: A fish
 Hunger states:

• Somewhat Hungry

• Very Hungry

• Not Hungry

 Methods will change the

state
 eat

 move

public class Fish
{
private int hungry;
public static final int
NOT_HUNGRY = 0;
public static final int
SOMEWHAT_HUNGRY = 1;
public static final int
VERY_HUNGRY = 2;

public void eat()
{

hungry = NOT_HUNGRY;
}
public void move()
{
if (hungry < VERY_HUNGRY)
{ hungry++; }

}

Patterns: Object Position

 Examples
 Game object

 Bug (on a grid)

 Cannonball

 Storing values
 Row, column, direction,

speed. . .

 Methods Required
 move

 turn

public class Bug
{
private int row;
private int column;
private int direction;

// 0 = N, 1 = E, 2 = S, 3 = W
public void moveOneUnit()
{
switch(direction) {
case 0: row--; break;
case 1: column++; break;
. . .

}
}

}

8.10 Object References

 Objects are similar to arrays because they always

have reference variables

 Array Reference

 Object Reference

double[] values = new double[5];

CashRegister reg1 = new CashRegister;

An object reference specifies the

memory location of the object

Shared References

 Multiple object variables may contain references

to the same object.

 Single Reference

 Shared References

CashRegister reg1 = new CashRegister;

CashRegister reg2 = reg1;

The internal values can be

changed through either reference

Primitive versus Reference Copy

 Primitive variables can be copied, but work

differently than object references
 Primitive Copy Reference Copy

• Two locations One location for both

CashRegister reg1 = new CashRegister;
CashRegister reg2 = reg1;
reg2.addItem(2.95);

int num1 = 0;
int num2 = num1;
num2++;

Why? Primitives take much less

storage space than objects!

The null reference

 A reference may point to ‘no’ object
 You cannot invoke methods of an object via a

null reference – causes a run-time error

 To test if a reference is null before using it:

String middleInitial = null; // No middle initial

if (middleInitial == null)
System.out.println(firstName + " " + lastName);

else
System.out.println(firstName + " " + middleInitial + ". "
+ lastName);

CashRegister reg = null;
System.out.println(reg.getTotal()); // Runtime Error!

The this reference

 Methods receive the ‘implicit parameter’ in a

reference variable called ‘this’
 It is a reference to the object the method was

invoked on:

 It can clarify when instance variables are used:
void addItem(double price)
{

this.itemCount++;
this.totalPrice = this.totalPrice + price;

}

Constructor this reference

 Sometimes people use the this reference

in constructors
 It makes it very clear that you are setting the

instance variable:

public class Student
{

private int id;
private String name;
public Student(int id, String name)
{
this.id = id;
this.name = name;

}
}

public class BankAccount
{
private double balance;
private int accountNumber;
private static int lastAssignedNumber = 1000;

public BankAccount()
{
lastAssignedNumber++;
accountNumber = lastAssignedNumber;

}
. . .

}

8.11 Static Variables and Methods

 Variables can be declared as static in the Class

declaration
 There is one copy of a static variable that is shared

among all objects of the Class

Methods of any object of the class can use

or change the value of a static variable

Using Static Variables

 Example:
 Each time a new account is created,

the lastAssignedNumber variable is

incremented by the constructor

 Access the static variable using:
 ClassName.variableName

Using Static Methods

 The Java API has many classes that provide

methods you can use without instantiating objects
 The Math class is an example we have used

 Math.sqrt(value) is a static method that returns the

square root of a value

 You do not need to instantiate the Math class first

 Access static methods using:
 ClassName.methodName()

public class Financial
{

/**
Computes a percentage of an amount.
@param percentage the percentage to apply
@param amount the amount to which the percentage is applied
@return the requested percentage of the amount

*/
public static double percentOf(double percentage, double amount)
{

return (percentage / 100) * amount;
}

}

Writing your own Static Methods

 You can define your own static methods

static methods usually return a value. They

can only access static variables and methods.

double tax = Financial.percentOf(taxRate, total);

 Invoke the method on the Class, not an object

Summary: Classes and Objects

 A class describes a set of objects with the same

behavior.

 Every class has a public interface: a collection of

methods through which the objects of the class

can be manipulated.

 Encapsulation is the act of providing a public

interface and hiding the implementation details.

 Encapsulation enables changes in the

implementation without affecting users of a class

Summary: Variables and Methods

 An object’s instance variables store the data

required for executing its methods.

 Each object of a class has its own set of instance

variables.

 An instance method can access the instance

variables of the object on which it acts.

 A private instance variable can only be accessed

by the methods of its own class.

 Variables declared as static in a class have a

single copy of the variable shared among all of the

instances of the class.

Summary: Method Headers, Data

 Method Headers
 You can use method headers and method comments to

specify the public interface of a class.

 A mutator method changes the object on which it operates.

 An accessor method does not change the object on which

it operates.

 Data Declaration
 For each accessor method, an object must either store or

compute the result.

 Commonly, there is more than one way of representing the

data of an object, and you must make a choice.

 Be sure that your data representation supports method

calls in any order.

Summary: Parameters, Constructors

 Methods Parameters
 The object on which a method is applied is the implicit

parameter.

 Explicit parameters of a method are listed in the method

declaration.

 Constructors
 A constructor initializes the object’s instance variables

 A constructor is invoked when an object is created with

the new operator.

 The name of a constructor is the same as the class

 A class can have multiple constructors.

 The compiler picks the constructor that matches the

construction arguments.

