
Java Collection Framework

Chapter Topics

• Introduction to the Java collections Framework

• Lists

• Sets

• Maps

• The Collections Class

2

The Java Collection Framework

The Java Collections Framework is a library of
classes and interfaces for working with collections
of objects.

A collection is an object which can store other
objects, called elements. Collections provide
methods for adding and removing elements, and for
searching for a particular element within the
collection.

3

The Main Types of Collections

• Lists

•Sets

•Maps

4

Lists

Lists: List type collections assign an integer (called an
index) to each element stored.

Indices of elements are 0 for the element at the
beginning of the list, 1 for the next element, and so
on.

Lists permit duplicate elements, which are
distinguished by their position in the list.

5

Sets

Set: a collection with no notion of position within the
collection for stored elements. Sets do not permit
duplicate elements.

6

Maps

A map is a collection of pairs of objects:
1. A value: this is the object to be stored.

2. A key: this is another object associated with the value, and which can be
used to quickly find the value within the collection.

A map is really a set of keys, with each each key
having a value attached to it.

Maps do not allow duplicate keys.

7

Part of the JCF Hierarchy

8

9

The Collection Interface

• Lists and Sets are similar in many ways.

•The Collection Interface describes the operations that
are common to both.

•Maps are fundamentally different from Lists and Sets
and are described by a different interface.

10

Some Methods in the Collection Interface

Method Description

add(o : E) : boolean Adds an object o to the Collection. The method returns

true if o is successfully added to the collection, false

otherwise.

clear() : void Removes all elements from the collection.

contains(o : Object):

boolean

Returns true if o is an element of the collection, false

otherwise.

isEmpty() : boolean Returns true if there are no elements in the collection,

false otherwise.

iterator() : Iterator<E> Returns an object called an iterator that can be used to

examine all elements stored in the collection.

remove(o : Object) :

boolean

Removes the object o from the collection and returns

true if the operation is successful, false otherwise.

size() : int Returns the number of elements currently stored in the

collection.

11

AbstractCollection

The AbstractCollection class provides a skeleton
implementation for a Collection class by
implementing many of the methods of the
Collection interface.

Programmers can create a working collection class
by providing implementations for iterator(), size(),
and overriding add(o : Object).

12

Iterators

An iterator is an object that is associated with a
collection. The iterator provides methods for
fetching the elements of the collection, one at a
time, in some order.

Iterators have a method for removing from the
collection the last item fetched.

13

The Iterator Interface

Iterators implement the Iterator interface. This
interface specifies the following methods:

hasNext() : boolean

next() : E

remove() : void

The remove() method is optional, so not all
iterators have it.

14

Methods of the Iterator Interface

Method Description

hasNext() : boolean Returns true if there is at least one more element

from the collection that can be returned, false

otherwise.

next() : E Returns the next element from the collection.

remove() : void Removes from the collection the element

returned by the last call to next(). This method

can be called at least one time for each call to

next().

15

The List Interface

The List interface extends the Collection interface by
adding operations that are specific to the position-based,
index-oriented nature of a list.

16

List Interface Methods

The methods in the List interface describe
operations for adding elements and removing
elements from the list based on the index of the
element.

There are also methods for determining the index
of an element in the list when the value of an
element is known.

17

The List Interface Methods

add(index:int, el:E) :

void

Adds the element el to the collection at the given index.

Throws IndexOutOfBoundsException if index is negative,

or greater than the size of the list.

get(index:int):E Returns the element at the given index, or throws

IndexOutBoundsException if index is negative or greater

than or equal to the size of the list.

indexOf(o:Object):int Returns the least (first) index at which the object o is

found; returns -1 if o is not in the list.

lastIndexOf(o:Object):int Returns the greatest (last) index at which the object o is

found; returns -1 if o is not in the list.

listIterator():ListIterator<

E>

Returns an iterator specialized to work with List

collections.

remove(index:int):E Removes and returns the element at the given index;

throws IndexOutOfBoundsException if index is negative,

or greater than or equal to the size of the list.

set(index:int, el:E):E Replaces the element at index with the new element el.

18

AbstractList

This is an abstract class that provides a skeletal
implementation of a List collection.

It extends AbstractCollection and implements the
List interface.

It serves as the abstract superclass for the concrete
classes ArrayList and Vector.

19

ArrayList and Vector

ArrayList and Vector are array-based lists.
Internally, they use arrays to store their elements:
whenever the array gets full, a new, bigger array is
created, and the elements are copied to the new
array.

Vector has higher overhead than ArrayList because
Vector is synchronized to make it safe for use in
programs with multiple threads.

20

AbstractSequentialList and LinkedList

Array-based lists have high overhead when elements are
being inserted into the list, or removed from the list, at
positions that are not at the end of the list.

LinkedList is a concrete class that stores elements in a way
that eliminates the high overhead of adding to, and
removing from positions in the middle of the list.

LinkedList extends AbstractSequentialList, which in turn,
extends AbstractList.

21

Using the Concrete List Classes

• The concrete classes ArrayList, Vector, and LinkedList work in
similar ways, but have different performance characteristics.

• Because they all implement the List interface, you can use
List interface references to instantiate and refer to the
different concrete classes.

• Using a List interface instead of the concrete class reference
allows you to later switch to a different concrete class to get
better performance.

22

Example: ArrayList

import java.util.*;
public class Test
{

public static void main(String [] args)
{

List<String> nameList = new ArrayList<String> ();
String [] names = {"Ann", "Bob", "Carol"};

// Add to arrayList
for (int k = 0; k < names.length; k++)

nameList.add(names[k]);

// Display name list
for (int k = 0; k < nameList.size(); k++)

System.out.println(nameList.get(k));
}

}
23

An Example: LinkedList

Because we used a List reference to refer to the
concrete class objects, we can easily switch from an
ArrayList to a LinkedList : the only change is in the
class used to instantiate the collection.

24

Example: LinkedList

import java.util.*;
public class Test
{

public static void main(String [] args)
{

List<String> nameList = new LinkedList<String> ();
String [] names = {"Ann", "Bob", "Carol"};

// Add to arrayList
for (int k = 0; k < names.length; k++)

nameList.add(names[k]);

// Display name list
for (int k = 0; k < nameList.size(); k++)

System.out.println(nameList.get(k));
}

}
25

Using an Iterator

To use an iterator with a collection,
1. Call the iterator():Iterator<E> method of the collection to retrieve an

iterator object.

2. Use the hasNext():boolean method to see if there still remain elements to
be returned, and the next():E method to return the next available element.

3. If desired, use the remove():void method to remove the element returned
by next().

26

The Iterator remove() method

•The remove() method removes the element returned
by the last call to next().

•The remove() method can be called at most one time
for each call to next().

27

Using an Iterator

List<String> nameList = new ArrayList<String>();

String [] names = {"Ann", "Bob", "Carol"};

// Add to arrayList

for (int k = 0; k < names.length; k++)

nameList.add(names[k]);

// Display name list using an iterator

Iterator<String> it = nameList.iterator(); // Get the iterator

while (it.hasNext()) // Use the iterator

System.out.println(it.next());

28

ListIterator

The ListIterator extends Iterator by adding methods
for moving backward through the list (in addition to
the methods for moving forward that are provided
by Iterator)

hasPrevious() : boolean

previous() : E

29

Some ListIterator Methods
Method Description

add(el:E):void Adds el to the list at the position just before the

element that will be returned by the next call to the

next() method.

hasPrevious():boolean Returns true if a call to the previous() method will

return an element, false if a call to previous() will throw

an exception because there is no previous element.

nextIndex():int Returns the index of the element that would be

returned by a call to next(), or the size of the list if

there is no such element.

previous():E Returns the previous element in the list. If the iterator

is at the beginning of the list, it throws

NoSuchElementException.

previousIndex():int Returns the index of the element that would be

returned by a call to previous(), or -1.

set(el:E):void Replaces the element returned by the last call to

next() or previous() with a new element el.
30

Iterator Positions

Think of an iterator as having a cursor position that is initially
just before the element that will be returned by the first call to
next().

A call to next() puts the cursor just after the element returned,
and just before the element that will be returned by the next
call to next().

At any time, in a ListIterator, the cursor is in between two list
elements: A call to previous() will skip backward and return the
element just skipped, a call to next() will skip forward and and
return the element just skipped.

31

Iterator and ListIterator Exceptions

A call to previous() throws
NoSuchElementException when there is no element
that can be skipped in a backward move.

A call to next() throws NoSuchElementException
when there is no

element that can be skipped in a forward move.

32

Example Use of a ListIterator

public static void main(String [] args)
{

List<String> nameList = new ArrayList<String>();
String [] names = {"Ann", "Bob", "Carol"};

// Add to arrayList using a ListIterator
ListIterator<String> it = nameList.listIterator();
for (int k = 0; k < names.length; k++)

it.add(names[k]);

// Get a new ListIterator for printing
it = nameList.listIterator();
while (it.hasNext())

System.out.println(it.next());
}

33

Enhanced For Loop

The enhanced for loop can be used with any
collection.

The compiler converts the enhanced for loop into a
traditional loop that uses the collection’s iterator.

34

Sets

Sets are collections that store elements, but have
no notion of a position of an element within the
collection.

The distinguishing feature of a set as a collection is
that it does not allow duplicates.

35

The Set Part of the JCF Hierarchy

36

AbstractCollection

AbstractSet

HashSet TreeSet

LinkedHashSet

The Set Part of the JCF

AbstractSet implements the Set Interface.

TreeSet implements the SortedSet interface, which
has methods for working with elements that have
an order that allows them to be sorted according to
their value.

37

HashSet

•HashSets store elements according to a hash code.

•A hash code of an element is an integer computed
from the value of the element that can be used to
help identify the element.

•The procedure used to compute the hash code of
an element is called the hashing function or the
hashing algorithm.

38

Examples of Hashing Functions

•For Integer objects, you can use the integer value of
the object (or its absolute value).

•For Character objects, you can use the UNICODE value
for the character.

•For String objects, you can use a function that takes
into account the UNICODE values of the characters
that make up the string, as well as the position
occupied by each character.

39

A Simplistic Hashing Function

A very simple (but not very good) hashing function
for strings might assign to each string the UNICODE
value of its first character.

Note that all strings with the same first character
are assigned the same hash code.

When two distinct objects have the same hash
code, we say that we have a collision.

40

Implementation of a HashSet

•A HashSet can be regarded as a collection of
“buckets.”
•Each bucket corresponds to a hash code, and stores

all objects in the set that have that particular hash
code.
•Some buckets will have just one element, whereas

other buckets may have many.
•A good hashing scheme should distribute elements

among the buckets so that all buckets have
approximately the same number of elements.

41

Implementation of a HashSet

The HashSet is a collection of buckets, and each
bucket is a collection of elements.

The collection of buckets is actually a list of
buckets, perhaps an ArrayList.

Each bucket may also be a list of elements, usually
a linked list.

42

How a HashSet Works

•To add an element X, the hash code for X is used (as
an index) to locate the appropriate bucket. X is then
added to the list for that bucket. If X is already in the
bucket (The test is done using the equals method),
then it is not added.

•To remove an item X, the hash code for X is computed.
The corresponding bucket is then searched for X, and
if it is found, it is removed.

43

Efficiency of HashSet Operations

Given an item X, computing the hash code for X
and locating the corresponding bucket can be done
very fast.

The time to search for, or remove X from the
bucket depends on how many elements are stored
in the bucket.

More collisions mean more elements in some
buckets, so we try to find a hashing scheme that
minimizes collisions.

44

HashSet Performance Considerations

To have good performance with a HashSet:

1. Have enough buckets: fewer buckets means
more collisions.

2. Have a good hashing function that spreads
elements evenly among the buckets. This keeps
the number of elements in each bucket small.

45

HashSet Capacity and Load Factor

•The load factor of a HashSet is the fraction of buckets
that must be occupied before the number of buckets
is increased.

•The number of buckets in a HashSet is called its
capacity.

46

Some HashSet Constructors

HashSet() Creates an empty HashSet object with a

default initial capacity of 16 and load factor

of 0.75.

HashSet(int initCapacity,

float loadFactor)

Creates an empty HashSet object with the

specified initial capacity and load factor.

HashSet(int initCapacity) Creates an empty HashSet object with the

specified initial capacity and a load factor of

0.75.

47

The hashCode() method

The Java Object class defines a method for computing
hash codes

int hashCode()

This method should be overriden in any class whose
instances will be stored in a HashSet.

The Object class’s hashCode() method returns a value
based on the memory address of the object.

48

Overriding the hashCode() Method

Observe these guidelines:
1. Objects that are equal according to their equals method should be

assigned the same hash code.

2. Because of 1), whenever you override a class’s equals() method, you
should also override hashCode().

3. Try to minimize collisions.

49

HashSet Example 1
import java.util.*;

/**
This program demonstrates how to add elements
to a HashSet. It also shows that duplicate
elements are not allowed.

*/

public class HashSetDemo1
{

public static void main(String[] args)
{

// Create a HashSet to hold String objects.
Set<String> fruitSet = new HashSet<String>();

// Add some strings to the set.
fruitSet.add("Apple");
fruitSet.add("Banana");
fruitSet.add("Pear");
fruitSet.add("Strawberry");

// Display the elements in the set.
System.out.println("Here are the elements.");
for (String element : fruitSet)

System.out.println(element);

// Try to add a duplicate element.
System.out.println("\nTrying to add Banana to " +

"the set again...");
if (!fruitSet.add("Banana"))
System.out.println("Banana was not added again.");

// Display the elements in the set.
System.out.println("\nHere are the elements once more.");
for (String element : fruitSet)

System.out.println(element);
}

}

50

A Car Class for Use With a HashSet

class Car

{

String vin, description;

public boolean equals(Object other) // Depends on vin only

{

if (!(other instanceof Car))

return false;

else

return vin.equalsIgnoreCase(((Car)other).vin);

}

public int hashCode() { return vin.hashCode();} // Depends on vin only

public Car(String v, String d) { vin = v; description = d; }

public String toString() { return vin + " " + description; }

}

51

A Car Class for use with a HashSet

Note that the Car class overrides both equals() and
hashCode().

52

Use of the Car Class with a HashSet

public static void main(String [] args)
{

Set<Car> carSet = new HashSet<Car>();
Car [] myRides = {

new Car("TJ1", "Toyota"),
new Car("GM1", "Corvette"),
new Car("TJ1", "Toyota Corolla")

};
// Add the cars to the HashSet
for (Car c : myRides)

carSet.add(c);

// Print the list using an Iterator
Iterator it = carSet.iterator();
while (it.hasNext())

System.out.println(it.next());
}

53

HashSet<Car> Program Output

GM1 Corvette

TJ1 Toyota

Note:
• The iterator does not return items in the order added to the

HashSet.
• The entry of the Toyota Corolla is rejected because it is equal

to an entry already stored (same vin).

54

HashSet Example 2

import java.util.*;

/**
This program creates a HashSet, adds some
names to it, gets an iterator for the set,
and searches the set for names.

*/

public class HashSetDemo2
{

public static void main(String[] args)
{

// Create a HashSet to hold names.
Set<String> nameSet = new HashSet<String>();

// Add some names to the set.
nameSet.add("Chris");
nameSet.add("David");
nameSet.add("Katherine");
nameSet.add("Kenny");

// Get an iterator for the set.
Iterator it = nameSet.iterator();

55

HashSet Example 2

// Display the elements in the set.
System.out.println("Here are the names in the set.");
while (it.hasNext())

System.out.println(it.next());

System.out.println();

// Search for "Katherine". We should find this
// name in the set.
if (nameSet.contains("Katherine"))

System.out.println("Katherine is in the set.");
else

System.out.println("Katherine is NOT in the set.");

// Search for "Bethany". We should not find
// this name in the set.
if (nameSet.contains("Bethany"))

System.out.println("Bethany is in the set.");
else

System.out.println("Bethany is NOT in the set.");
}

}

56

HashSet Example 3
/**

The Car class stores a VIN (Vehicle Identification
Number) and a description for a car.

*/

public class Car
{

private String vin; // Vehicle Identification Number
private String description; // Car description

/**
Constructor
@param v The VIN for the car.
@param desc The description of the car.

*/

public Car(String v, String desc)
{

vin = v;
description = desc;

}

/**
getVin method
@return The car's VIN.

*/

public String getVin()
{

return vin;
}

57

HashSet Example 3
/**

getDescription method
@return The car's description.

*/

public String getDescription()
{

return description;
}

/**
toString method
@return A string containing the VIN and description.

*/

public String toString()
{

return "VIN: " + vin +
"\tDescription: " +
description;

}

/**
hashCode method
@return A hash code for this car.

*/

public int hashCode()
{

return vin.hashCode();
}

58

HashSet Example 3
/**

equals method
@param obj Another object to compare this object to.
@return true if the two objects are equal, false otherwise.

*/

public boolean equals(Object obj)
{

// Make sure the other object is a Car.
if (obj instanceof Car)
{

// Get a Car reference to obj.
Car tempCar = (Car) obj;

// Compare the two VINs. If the VINs are
// the same, then they are the same car.
if (vin.equalsIgnoreCase(tempCar.vin))

return true;
else

return false;
}
else

return false;
}

}

59

HashSet Example 3
import java.util.*;

/**
This program stores Car objects in a HashSet and then
searches for various objects.

*/

public class CarHashSet
{

public static void main(String[] args)
{

// Create a HashSet to store Car objects.
Set<Car> carSet = new HashSet<Car>();

// Add some Car objects to the HashSet.
carSet.add(new Car("227H54", "1997 Volkswagen"));
carSet.add(new Car("448A69", "1965 Mustang"));
carSet.add(new Car("453B55", "2007 Porsche"));
carSet.add(new Car("177R60", "1980 BMW"));

// Display the elements in the HashSet.
System.out.println("Here are the cars in the set:");
for (Car c : carSet)

System.out.println(c);

System.out.println();

60

HashSet Example 3
// Search for a specific car. This one is in the set.

Car mustang = new Car("448A69", "1965 Mustang");
System.out.println("Searching for " + mustang);

if (carSet.contains(mustang))
System.out.println("The Mustang is in the set.");

else
System.out.println("The Mustang is NOT in the set.");

// Search for another car. This one is not in the set.
Car plymouth = new Car("911C87", "2000 Plymouth");
System.out.println("Searching for " + plymouth);

if (carSet.contains(plymouth))
System.out.println("The Plymouth is in the set.");

else
System.out.println("The Plymouth is NOT in the set.");

}
}

61

LinkedHashSet

A linkedHashSet is just a HashSet that keeps track of
the order in which elements are added using an
auxiliary linked list.

62

TreeSet

A TreeSet stores elements based on a natural order
defined on those elements.

The natural order is based on the values of the
objects being stored .

By internally organizing the storage of its elements
according to this order, a TreeSet allows fast search for
any element in the collection.

63

Order

An order on a set of objects specifies for any two
objects x and y, exactly one of the following:

x is less than y

x is equal to y

x is greater than y

64

Examples of Natural Orders

Some classes have a “natural” order for their objects:
• Integer, Float, Double etc has the obvious concept of natural order which tells

when one number is less than another.

• The String class has a natural alphabetic order for its objects.

65

The Comparable Interface

In Java, a class defines its natural order by
implementing the Comparable interface:

public interface Comparable<T>
{

int compareTo(T other);
}

The compareTo method returns a negative value, or
zero, or a positive value, to indicate that the calling
object is less than, equal to, or greater than the
other object.

66

Using a TreeSet with Comparable Elements

1. Make sure the class of your objects implements
Comparable.

2. Create an instance of TreeSet specialized for your class

Set<String> mySet = new TreeSet<String>();

3. Add elements.

4. Retrieve elements using an iterator. The iterator will return
elements in sorted order.

67

Sorting Strings Using a TreeSet
import java.util.*;

public class Test

{

public static void main(String [] args)

{

// Create TreeSet

Set<String> mySet = new TreeSet<String>();

// Add Strings

mySet.add("Alan");

mySet.add("Carol");

mySet.add("Bob");

// Get Iterator

Iterator it = mySet.iterator();

while (it.hasNext())

{

System.out.println(it.next());

}

}

}

68

The SortedSet Interface

TreeSet implements the SortedSet interface.

SortedSet methods allow access to the least and
greatest elements in the collection.

SortedSet methods allow various views of the
collection, for example, the set of all elements greater
than a given element, or less than a given element.

69

Comparators

A comparator is an object that can impose an order
on objects of another class.

This is different from the Comparable interface, which
allows a class to impose an order on its own objects.

70

The Comparator Interface

Interface Comparator <T>

{

int compare(T obj1, T obj2);

boolean equals(Object o);

}

The compare(x, y) method returns a negative value, or zero,
or a positive value, according to whether x is less than, equal
to, or greater than y.

The equals method is used to compare one comparator
object to another. It does not have to be implemented if the
equals inherited from Object is adequate.

71

Using TreeSets with Comparators

A TreeSet that stores objects of a class that does not
implement Comparable must use a comparator to
order its elements.

The comparator is specified as an argument to the
TreeSet constructor.

A comparator can also be used to make a TreeSet
order its elements differently from their natural order.

72

A Comparator for Ordering Strings in Reverse
Alphabetic Order

import java.util.*;

class RevStrComparator implements Comparator<String>

{

public int compare(String s1, String s2)

{

return - s1.compareTo(s2); // Note the negation operator

}

}

73

Using a TreeSet to Sort Strings in Reverse
Alphabetic Order

public class Test
{

public static void main(String [] args)
{ // Create Comparator

RevStrComparator comp = new RevStrComparator();
Set<String> mySet = new TreeSet<String>(comp);
// Add strings
mySet.add("Alan");
mySet.add("Carol");
mySet.add("Bob");
// Get Iterator
Iterator it = mySet.iterator();
while (it.hasNext())
{

System.out.println(it.next());
}

}
}

74

TreeSet Example 1
import java.util.*;

/**
This program demonstrates how a TreeSet
sorts its elements in ascending order.

*/

public class TreeSetDemo1
{

public static void main(String[] args)
{

// Create a TreeSet and store some values in it.
SortedSet<String> mySet = new TreeSet<String>();
mySet.add("Pear");
mySet.add("Apple");
mySet.add("Strawberry");
mySet.add("Banana");

// Display the elements in the TreeSet.
System.out.println("Here are the TreeSet elements " +

"in ascending order:");
for (String str : mySet)

System.out.println(str);

// Add a new element to the TreeSet.
System.out.println("\nAdding Blueberry to the set.");
mySet.add("Blueberry");

// Display the elements again.
System.out.println("\nHere are the TreeSet elements " +

"again:");
for (String str : mySet)

System.out.println(str);
}

}

75

TreeSet Example 2
import java.util.Comparator;

public class CarComparator<T extends Car>
implements Comparator<T>

{
public int compare(T car1, T car2)
{

// Get the two cars' VINs.
String vin1 = car1.getVin();
String vin2 = car2.getVin();

// Compare the VINs and return the
// result of the comparison.
return vin1.compareToIgnoreCase(vin2);

}
}

76

TreeSet Example 2
import java.util.*;

/**
This program demonstrates how a TreeSet
can use a Comparator to sort its elements.

*/

public class TreeSetDemo2
{

public static void main(String[] args)
{

// Create a TreeSet and pass an instance of
// CarComparator to it.
SortedSet<Car> carSet =

new TreeSet<Car>(new CarComparator<Car>());

// Add some Car objects to the TreeSet.
carSet.add(new Car("227H54", "1997 Volkswagen"));
carSet.add(new Car("453B55", "2007 Porsche"));
carSet.add(new Car("177R60", "1980 BMW"));
carSet.add(new Car("448A69", "1965 Mustang"));

// Display the elements in the TreeSet.
System.out.println("Here are the cars sorted in " +

"order of their VINs:");
for (Car car : carSet)

System.out.println(car);
}

}

77

Maps

A map is a collection whose elements have two parts: a key
and a value.

The combination of a key and a value is called a mapping.

The map stores the mappings based on the key part of the
mapping, in a way similar to how a Set collection stores its
elements.

The map uses keys to quickly locate associated values.

78

The Map Part of the JCF Hierarchy

79

Map

AbstractMap

HashMap TreeMap

LinkedHashMap

The Map Interface

Map is a generic interface Map<K, V>

Map specifies two type parameters, K for the key,
and V for the value part of the mapping.

80

Some Methods of the Map Interface

clear() : void Removes all elements from the map.

containsValue(value:

Object):boolean

Returns true if the map contains a mapping with

the given value.

containsKey(key : Object)

: boolean

Returns true if the map contains a mapping with

the given key.

get(key : Object) : V Returns the value associated with the specified

key, or returns null if there is no such value.

isEmpty() : boolean Returns true if the key contains no mappings.

keySet() : Set<K> Returns the set of all keys stored in the map.

81

Some Methods of the Map Interface

put(key : K, value : V) : V Adds a mapping that associates V with K, and

returns the value previously associated with K.

Returns null if there was no value associated with K.

remove(key : Object) : V Removes the mapping associated with the given

key from the map, and returns the associated value.

If there is not such mapping, returns null.

size() : int Returns the number of mappings in the map.

values() : Collection<V> Returns a collection consisting of all values stored in

the map.

82

Concrete Map Classes

Maps store keys with attached values. The keys are
stored as sets.
• HashMap stores keys according to their hash codes, just like

HashSet stores its elements.
• LinkedHashMap is a HashMap that can iterate over the keys

in insertion order (order in which mappings were inserted)
or in access order (order of last access).

• TreeMap stores mappings according to the natural order of
the keys, or according to an order specified by a
Comparator.

83

HashMap Example 1
import java.util.*;

/**
This program stores mappings in a HashMap and then
searches for various objects.

*/

public class CarHashMap1
{

public static void main(String[] args)
{

// Create a HashMap to store Car objects.
Map<String, Car> carMap =

new HashMap<String, Car>();

// Create some Car objects.
Car vw = new Car("227H54", "1997 Volkswagen");
Car mustang = new Car("448A69", "1965 Mustang");
Car porsche = new Car("453B55", "2007 Porsche");
Car bmw = new Car("177R60", "1980 BMW");

// Put some mappings into the HashMap. In each
// mapping, the car's VIN is the key and the
// Car object containing that VIN is the value.
carMap.put(vw.getVin(), vw);
carMap.put(mustang.getVin(), mustang);
carMap.put(porsche.getVin(), porsche);
carMap.put(bmw.getVin(), bmw);

84

HashMap Example 1

// Search for the Mustang by its VIN.
System.out.println("\nSearching for the car with " +

"VIN " + mustang.getVin());
Car foundCar = carMap.get(mustang.getVin());

// If the car was found, display it.
if (foundCar != null)

System.out.println(foundCar);
else

System.out.println("The Mustang is NOT in the set.");

// Search for another VIN. This one is not in the set.
System.out.println("\nSearching for the car with " +

"VIN 911C87");
foundCar = carMap.get("911C87");

// If the car was found display it.
if (foundCar != null)

System.out.println(foundCar);
else

System.out.println("That car is NOT in the set.");
}

}

85

HashMap Example 2
import java.util.*;

/**
This program retrieves a set of keys and a
collection of values from a HashMap.

*/

public class CarHashMap2
{

public static void main(String[] args)
{

// Create a HashMap to store Car objects.
Map<String, Car> carMap =

new HashMap<String, Car>();

// Create some Car objects.
Car vw = new Car("227H54", "1997 Volkswagen");
Car mustang = new Car("448A69", "1965 Mustang");
Car porsche = new Car("453B55", "2007 Porsche");
Car bmw = new Car("177R60", "1980 BMW");

// Put some mappings into the HashMap. In each
// mapping, the car's VIN is the key and the
// Car object containing that VIN is the value.
carMap.put(vw.getVin(), vw);
carMap.put(mustang.getVin(), mustang);
carMap.put(porsche.getVin(), porsche);
carMap.put(bmw.getVin(), bmw);

86

HashMap Example 2

// Get a set containing the keys in this map.
Set<String> keys = carMap.keySet();

// Iterate through the keys, printing each one.
System.out.println("Here are the keys:");
for (String k : keys)

System.out.println(k);

// Get a collection containing the values.
Collection<Car> values = carMap.values();

// Iterate through the values, printing each one.
System.out.println("\nHere are the values:");
for (Car c : values)

System.out.println(c);
}

}

87

HashMap Example 3

import java.util.*;

/**
This program retrieves the mappings from a HashMap
as a Set of Map.Entry objects.

*/

public class CarHashMap3
{

public static void main(String[] args)
{

// Create a HashMap to store Car objects.
Map<String, Car> carMap =

new HashMap<String, Car>();

// Create some Car objects.
Car vw = new Car("227H54", "1997 Volkswagen");
Car mustang = new Car("448A69", "1965 Mustang");
Car porsche = new Car("453B55", "2007 Porsche");
Car bmw = new Car("177R60", "1980 BMW");

// Put some mappings into the HashMap. In each
// mapping, the car's VIN is the key and the
// Car object containing that VIN is the value.
carMap.put(vw.getVin(), vw);
carMap.put(mustang.getVin(), mustang);
carMap.put(porsche.getVin(), porsche);
carMap.put(bmw.getVin(), bmw);

88

HashMap Example 3

// Get a set containing the mappings in this map.
Set<Map.Entry<String, Car>> cars = carMap.entrySet();

// Iterate through the mappings, printing each one.
System.out.println("Here are the mappings:");
for (Map.Entry<String, Car> entry : cars)
{

System.out.println("Key = " + entry.getKey());
System.out.println("Value = " + entry.getValue());
System.out.println();

}
}

}

89

HashMap Example 4

import java.util.*;

/**
This program retrieves the mappings from a
LinkedHashMap as a Set of Map.Entry objects.

*/

public class CarHashMap4
{

public static void main(String[] args)
{

// Create a LinkedHashMap to store Car objects.
Map<String, Car> carMap =

new LinkedHashMap<String, Car>();

// Create some Car objects.
Car vw = new Car("227H54", "1997 Volkswagen");
Car mustang = new Car("448A69", "1965 Mustang");
Car porsche = new Car("453B55", "2007 Porsche");
Car bmw = new Car("177R60", "1980 BMW");

90

HashMap Example 4

// Put some mappings into the LinkedHashMap. In
// each mapping, the car's VIN is the key and the
// Car object containing that VIN is the value.
carMap.put(vw.getVin(), vw);
carMap.put(mustang.getVin(), mustang);
carMap.put(porsche.getVin(), porsche);
carMap.put(bmw.getVin(), bmw);

// Get a set containing the mappings in this map.
Set<Map.Entry<String, Car>> cars = carMap.entrySet();

// Iterate through the mappings, printing each one.
System.out.println("Here are the mappings:");
for (Map.Entry<String, Car> entry : cars)
{

System.out.println("Key = " + entry.getKey());
System.out.println("Value = " + entry.getValue());
System.out.println();

}
}

}

91

HashMap Example 5

import java.util.*;

/**
This program displays the mappings stored in a
TreeMap. The mappings are displayed in ascending
key order.

*/

public class CarHashMap5
{

public static void main(String[] args)
{

// Create a TreeMap to store Car objects.
SortedMap<String, Car> carMap =

new TreeMap<String, Car>();

// Create some Car objects.
Car vw = new Car("227H54", "1997 Volkswagen");
Car mustang = new Car("448A69", "1965 Mustang");
Car porsche = new Car("453B55", "2007 Porsche");
Car bmw = new Car("177R60", "1980 BMW");

// Put some mappings into the TreeMap. In each
// mapping, the car's VIN is the key and the
// Car object containing that VIN is the value.
carMap.put(vw.getVin(), vw);
carMap.put(mustang.getVin(), mustang);
carMap.put(porsche.getVin(), porsche);
carMap.put(bmw.getVin(), bmw);

92

HashMap Example 5

// Get a set containing the mappings in this map.
Set<Map.Entry<String, Car>> cars = carMap.entrySet();

// Iterate through the mappings, printing each one.
System.out.println("Here are the mappings:");
for (Map.Entry<String, Car> entry : cars)
{

System.out.println("Key = " + entry.getKey());
System.out.println("Value = " + entry.getValue());
System.out.println();

}
}

}

93

