
INTRODUDCTION TO PATTERN DESIGN 

In 1994, four authors Erich Gamma, Richard Helm, Ralph Johnson and John 

Vlissides published a book titled Design Patterns - Elements of Reusable 

Object-Oriented Software which initiated the concept of Design Pattern in 

Software development. 

These authors are collectively known as Gang of Four (GOF). According to 

these authors design patterns are primarily based on the following principles 

of object orientated design. 

 Program to an interface not an implementation 

 Favor object composition over inheritance 

Design patterns provide a standard terminology and are specific to particular 
scenario. For example, a singleton design pattern signifies use of single object 

so all developers familiar with single design pattern will make use of single 
object and they can tell each other that program is following a singleton 
pattern. 

Types of Design Patterns 

As per the design pattern reference book Design Patterns - Elements of 

Reusable Object-Oriented Software , there are 23 design patterns which 

can be classified in three categories: Creational, Structural and Behavioral 

patterns. We'll also discuss another category of design pattern: J2EE design 

patterns. 

S.N. Pattern & Description 

1 Creational Patterns 

These design patterns provide a way to create objects while hiding the 
creation logic, rather than instantiating objects directly using new operator. 

This gives program more flexibility in deciding which objects need to be 
created for a given use case. 



2 Structural Patterns 

These design patterns concern class and object composition. Concept of 
inheritance is used to compose interfaces and define ways to compose 
objects to obtain new functionalities. 

3 Behavioral Patterns 
These design patterns are specifically concerned with communication 

between objects. 

4 J2EE Patterns 
These design patterns are specifically concerned with the presentation tier. 

These patterns are identified by Sun Java Center. 

 

Creational Design Patterns 

Creational patterns often used in place of direct instantiation with constructors. 
They make the creation process more adaptable and dynamic. In particular, 
they can provide a great deal of flexibility about which objects are created, how 
those objects are created, and how they are initialized. 

Singleton 

When an application wants to have one and only one instance of any class per 

JVM, in all possible scenarios without any exceptional condition. 

Factory 

This is most suitable where there is some complex object creation steps are 

involved. To ensure that these steps are centralized and not exposed to 

composing classes, factory pattern should be used. 

Abstract factory 

Whenever you need another level of abstraction over a group of factories, you 

should consider using abstract factory pattern. 

 

https://howtodoinjava.com/design-patterns/singleton-design-pattern-in-java/
https://howtodoinjava.com/design-patterns/creational/implementing-factory-design-pattern-in-java/
https://howtodoinjava.com/design-patterns/creational/abstract-factory-pattern-in-java/


Structural Design Patterns 

These design patterns show you how to glue different pieces of a system 

together in a flexible and extensible fashion. Structural patterns help you 

guarantee that when one of the parts changes, the entire structure does not 

need to change. 

Adapter 
Convert the interface of a class into another interface clients expect. Adapter lets 

classes work together that couldn’t otherwise because of incompatible interfaces. 

Decorator 

This is used to add additional features or behaviors to a particular instance of a 

class, while not modifying the other instances of same class. 

Behavioral Design Patterns 

A behavioral pattern abstracts an action you want to take from the object or 

class that takes the action. By changing the object or class, you can change the 

algorithm used, the objects affected, or the behavior, while still retaining the 

same basic interface for client classes. 

Command 
Command pattern is a behavioral design pattern which is useful to abstract 
business logic into discrete actions which we call commands. This command 
object helps in loose coupling between two classes where one class (invoker) shall 
call a method on other class (receiver) to perform a business operation. 

Visitor 
When you want a hierarchy of objects to modify their behavior but without 
modifying their source code. 

Memento 
Memento design pattern provides ability to capture(save) an object’s state and 
then restore back this captured state when required by the system. 



State 

State Design Pattern allows the behavior of an object to vary based on its state. 
I.e. whenever the object’s state changes, its behavior changes as per its new 
state. To the observer it appears as if the object has changed its class. 


