
INHERITANCE and POLYMORPHISM

Only public and protected members inherited to the derived class

Inheritance is is-A relationship. child is-A Base.

Ex: WageEmployee is is-A Employee

Two types of classes

-Concrete class

 instantiate a concrete class

-Abstract class

 As a base class

 cannot instantiate a abstract class

 must have at least one abstract method

Abstract Method

 declare in the abstract class

o public abstract double computePay();

 Implement (define) the in the child class which is derived from the

abstract class.

INHERITANCE EXAMPLE

2

/**

class description

*/

public abstract class Shape

{

private double xPos;

private double yPos;

/** default-argument constructor

*/

Shape ()

{

xPos=0;

yPos=0;

}

/** A constructor to assign values to pos & yPos

@param int x position

@parma int y position

*/

Shape (double x, double y)

{

xPos=x;

yPos=y;

}

/** get the xPos

@return int xPos

*/

public final double getxPos()

//final: cannot override the method in the derived class

{

return xPos;

}

3

public final double getyPos()

{

return yPos;

}

public void moveTo(double x, double y)

{

xPos = x;

yPos = y;

}

public String toString()

{ return “x = “ + xPos + “ y= “ + yPos;

}

public abstract double computeArea();

}//end class Shape

public class Circle extends Shape

{

private double radius;

Circle()

{

super(); //call Shape

radius=0;

}

// argument Circle constructor

public Circle (double x, double y, double r)

{

super(x,y); //call Shape(x,y)

radius = r;

}

public double computeArea()

{

return Math.PI * radius * radius;

}

public double getRadius()

{

return radius;

}

4

public String toString()

{

return super.toString() + “Radius = “+ radius;

}

}//end class Circle

public Cylinder extends Circle

{

private double height;

private double z;

public Cylinder()

{

super();

height = 0.0;

z = 0.0

}

public Cylinder(double x, double y, double r, double h, double z)

{

super(x,y,r); //call Circle 3-arg constructor

height = h;

this.z = z

}

5

public void moveTo(double x, double y, double z)

{

super.moveTo(x,y);

this.z = z;

}

public double computeArea()

{

return 2 * super.computeArea() + 2.Math.PI * getRadius() *

height;

}

public double computeVolume()

{

return super.computeArea() * height;

}

6

public double getHeight()

{

return height;

}

}//end class

Summary

 Extends

 Is-A relationship describes inheritance

o Class B extends A

o B Is-A A

 Use inheritance when Is-A relationship makes sense.

 no multiple inheritance

 multiple interface inheritance

 super()

o call the parent constructor

 If the method is overridden in the subclass, use super.method to

call the method of the base

 Protected is like private except it is inherited to the subclass.

7

Polymorphism

public class TestShape

{ _______ main(______)

 {

Shape [] s = new Shape[5];

s[0] = new Circle(10.0,2.0.5.0);

Circle c2 = new Circle(5.0,1.0,3.0);

s[1] = c2;

s[2] = new Rectangle(______);

s[3] = new Cylinder(________);

s[4] = new Cylinder(________);

//Total area of all object

double total = 0.0;

for(int i = 0; i < s.length; i++)

{

total += s[i].computeArea();

}

8

//Total area of all Rectangle objects

double sumArea = 0.0;

for(int i = 0; i < s.length; i++)

{

if(s[i] instanceof Rectangle)

sumArea += s[i].computeArea;

}

//Total volume of Cylinders

double totalVolume = 0.0;

for(int i = 0; i < s.length; i++)

{

if(s[i] instanceof Cyclinder)

totalVolume += ((Cylinder) s[i]).computeVolume();

}

9

UML (Unified Modeling Language) Diagram

- private members

+ public member
protected member

example:

10

Composition

composition – has a relationship

Use composition when you do not know clearly the is-a relationship

public class Book
{

String code;
String title;

double price;
public Book()

{
code = “”;

title = “”;
price = 0.0;

}

public Book(String c, String t, double p)
{

code = c;

title = t;
price = p;

}
…

public double getPrice()

{
return price;

}
public void setBook(Book bb)

{b = bb;}
}

11

 public class BookOrder
 {

private Book book;
private int quantity;

private double total;
public BookOrder()

{
book = new Book();

quantity = 0;
total = 0.0;

}

public BookOrder(String c, String t, double p, int q, double tot)
{

book = new Book(c,t,p);

quantity = q;
total = tot;

}
public void setTotal()

{
total = quantity * book.getPrice();

}
public Book getBook()

{
return book;

}
}

INTERFACE

Interface can contains only abstract method (no keyword abstract) and

constant variables. The class implementing interfaces must define all the
abstract methods.

public interface B

{
 constant variables;

 abstract methods; //No keyword public
}

12

In Java, multiple inheritances are not allowed, but multiple interfaces are.

public class D extends A implements B, C

{
 …………………………..

}
Ex:

interface Animal {

 public void eat();
 public void travel();

}

/* File name : MammalInt.java */
public class MammalInt implements Animal{

 public void eat(){
 System.out.println("Mammal eats");

 }

 public void travel(){
 System.out.println("Mammal travels");

 }

 public int noOfLegs(){
 return 0;

 }

 public static void main(String args[]){
 MammalInt m = new MammalInt();

 m.eat();

 m.travel();
 }

}

This would produce the following result:

ammal eats
ammal travels

Java interface Comparable

Comparable interface is used to order the objects of user-defined class.This
interface is found in java.lang package and contains only one method named

compareTo(Object).It provide only single sorting sequence i.e. you can sort

13

the elements on based on single datamember only.

Syntax:

public interface Comparable
{

int CompareTo(Obj o);
}

Example:

Student.java

class Student implements Comparable
 {

 int rollno;
 String name;

 int age;

 Student(int rollno,String name,int age){
 this.rollno=rollno;

 this.name=name;
 this.age=age;

 }

 public int compareTo(Object obj){
 Student st=(Student)obj;

 if(age==st.age)
 return 0;

 else if(age>st.age)
 return 1;

 else
 return -1;

 }

 }

SimpleJava.java

 import java.util.*;

 import java.io.*;

 class TestSort3{
 public static void main(String args[]){

 ArrayList al=new ArrayList();

 al.add(new Student(101,"Vijay",23));

14

 al.add(new Student(106,"Ajay",27));

 al.add(new Student(105,"Jai",21));

 Collections.sort(al);
 //If you an array named ar, then the sort statement should be

 //Array.sort(ar);
 Iterator itr=al.iterator();

 while(itr.hasNext()){
 Student st=(Student)itr.next();

 System.out.println(st.rollno+""+st.name+""+st.age);
 }

 }
 }

Output
105 Jai 21

101 Vijay 23

106 Ajay 2

Java Comparator interface
Comparator interface is used to order the objects of user-defined class.

This interface is found in java.util package and contains 2 methods compare
(Object obj1,Object obj2) and equals(Object element).

It provides multiple sorting sequence i.e. you can sort the elements based
on any data member. For instance it may be on rollno, name, age or

anything else.

Syntax
public int compare(Object obj1,Object obj2): compares the first object with

second object.

Example of sorting the elements of List that contains user-defined class

objects on the basis of age and name

In this example, we have created 4 java classes:

 Student.java
 AgeComparator.java

 NameComparator.java
 Simple.java

15

Student.java

This class contains three fields rollno, name and age and a parameterized

constructor.

 class Student{
 int rollno;
 String name;
 int age;
 Student(int rollno,String name,int age){
 this.rollno=rollno;
 this.name=name;
 this.age=age;
 }
 }

AgeComparator.java

This class defines comparison logic based on the age. If age of first object is

greater than the second, we are returning positive value, it can be any one
such as 1, 2 , 10 etc. If age of first object is less than the second object, we

are returning negative value, it can be any negative value and if age of both
objects are equal, we are returning 0.

 import java.util.*;
 class AgeComparator implements Comparator{
 public int Compare(Object o1,Object o2){
 Student s1=(Student)o1;
 Student s2=(Student)o2;

 if(s1.age==s2.age)
 return 0;
 else if(s1.age>s2.age)
 return 1;
 else
 return -1;
 }
 }

NameComparator.java
This class provides comparison logic based on the name. In such case, we are using the
compareTo() method of String class, which internally provides the comparison logic.

16

 import java.util.*;
 class NameComparator implements Comparator{
 public int Compare(Object o1,Object o2){
 Student s1=(Student)o1;
 Student s2=(Student)o2;

 return s1.name.compareTo(s2.name);
 }
 }

Simple.java

In this class, we are printing the objects values by sorting on the basis of name and age.

 import java.util.*;
 import java.io.*;

 class Simple{
 public static void main(String args[]){

 ArrayList al=new ArrayList();
 al.add(new Student(101,"Vijay",23));
 al.add(new Student(106,"Ajay",27));
 al.add(new Student(105,"Jai",21));

 System.out.println("Sorting by Name...");

 Collections.sort(al,new NameComparator());
 Iterator itr=al.iterator();
 while(itr.hasNext()){
 Student st=(Student)itr.next();
 System.out.println(st.rollno+" "+st.name+" "+st.age);
 }

 System.out.println("sorting by age...");
 Collections.sort(al,new AgeComparator());
 Iterator itr2=al.iterator();
 while(itr2.hasNext()){
 Student st=(Student)itr2.next();
 System.out.println(st.rollno+" "+st.name+" "+st.age);
 }
 }
 }

17

Output
Sorting by Name...
 106 Ajay 27
 105 Jai 21
 101 Vijay 23
 Sorting by age...
 105 Jai 21
 101 Vijay 23
 106 Ajay 27

Differences between Comparable and Comparator
Comparable and Comparator both are interfaces and can be used to sort

collection elements.
But there are many differences between Comparable and Comparator

interfaces that are given below.

Comparable Comparator

1) Comparable provides single sorting

sequence. In other words, we can sort the

collection on the basis of single element

such as id or name or price etc.

Comparator provides multiple sorting sequence. In

other words, we can sort the collection on the basis of

multiple elements such as id, name and price etc.

2) Comparable affects the original class

i.e. actual class is modified.

Comparator doesn't affect the original class i.e.

actual class is not modified.

3) Comparable provides compareTo()

method to sort elements.

Comparator provides compare() method to sort

elements.

4) Comparable is found in java.lang

package.
Comparator is found in java.util package.

5) We can sort the list elements of

Comparable type by

Collections.sort(List) method.

We can sort the list elements of Comparator type by

Collections.sort(List,Comparator) method.

18

Operator == and the Object method equals

The operator == tests whether two references are the same
objects(referential equality)

Circle c1 = new Circle(1.0,2.0,3.0);

Circle c2 = c1;

if (c1 == c2) //returns true based on reference not value

Circle c1 = new Circle(1.0,2.0,3.0);
Circle c2 = new Circle(1.0,2.0,3.0);

if (c1 == c2)// false

Overriding the method equals for logical equality.

public class Circle()
{

…
public Boolean equals(Object otherobject)

{
 if (otherobject instanceof Circle)

{
return radius == ((Circle) otherobject).radius;

}

else
{

 return false;
}

}

}

Circle c1 = new Circle(1.0,2.0,3.0);
Circle c2 = new Circle(1.0,2.0,3.0);

if (c1.equals(c2)) // true

19

Clone

Sometimes you want to make a copy of an object.
c1 = c2;

The statement above does not create a duplicate object.
It simply assigns the reference of c2 to c1. To create an object with separate

memory space use the clone() method.

Java interface Cloneable

 The object cloning is a way to create exact copy of an object. For
this purpose, clone() method of Object class is used to clone an

object.
 The java.lang.Cloneable interface must be implemented by the

class whose object clone we want to create. If we don't implement
 Cloneable interface, clone() method generates

CloneNotSupportedException.

 The clone() method is defined in the Object class. Syntax of the
clone() method is as follows:

 protected Object clone() throws CloneNotSupportedException

The clone() method saves the extra processing task for creating the exact

copy of an object. If we perform it by using the new keyword, it will take a
lot of processing to be performed that is why we use object cloning.

public class Book implements Cloneable
{

private String title;
private String code;

private double price;

public Object clone() throws CloneNotSupportedException

{
return super.clone();

}
}

In the main()
Book b1 = new Book(______);

Book b2 = (Book) b1.clone();

Note: If you do not modify clone() and have objects in the object, you will
make a shallow copy

20

Deep copy

public class Bookorder implements Cloneable
{

private int quantity;
private double total;

private Book book;
public void setBook(Book b)

{ book = b;
}

public Object clone() throws CloneNotSupportedException
{

Bookorder b = (Bookorder) super.clone;
book = (Book) book.clone;

b.setBook(book);
return b;

}
}

In the main()
Bookorder b1 = new Bookorder(____);

Bookorder b2 = (Bookorder) b1.clone();

21

Inheritance, interface and casting

Recall that inheritance implements the "is-a" relationship. For example, in

the Introduction to Inheritance notes, class RaceHorse was defined to be a
subclass of Horse (because every RaceHorse is a Horse). Therefore, it makes

sense that a RaceHorse can be used in any context that expects a Horse. For

example:

Horse h;

RaceHorse r = new RaceHorse();

h = r;

22

Variable h is of type Horse, so in an assignment of the form

h = ...

the right-hand side of the assignment should be of type Horse, too.

However, since a RaceHorse is-a Horse, it is OK for the right-hand side to be
of type RaceHorse, as in the above example.

Note that every Horse is not a RaceHorse, so in general, a Horse cannot be

used when a RaceHorse is expected. For example, the following code causes
a compile-time error:

Horse h = new Horse();

RaceHorse r = h;

Here are three more examples of code that sets a Horse variable or
parameter to point to a RaceHorse object:

(1) Horse h = new RaceHorse(); // h is of type Horse, but it points to a

 // RaceHorse object

(2) public static void f(Horse h) { ... }

 ...

 RaceHorse r = new RaceHorse();

 f(r); // f's formal parameter h is of type Horse, but the actual

 // parameter points to a RaceHorse object

(3) public static RaceHorse g() { // return a pointer to a RaceHorse object

}

 ...

 Horse h = g(); // h is of type Horse, but it now points to a RaceHorse

 // object

If you know that at a particular point in your code a Horse variable is really
pointing to a RaceHorse object, then you can use that variable in a context

that expects a RaceHorse, but you must provide a cast. Note that there are
two kinds of errors that can arise if you get this wrong:

1. missing cast => compile-time error

2. incorrect cast => runtime error (ClassCastException is thrown)

Examples:

Assume that we have the following declarations of function f and variables
h1 and h2:

public static void f(RaceHorse r) { ... }

Horse h1 = new RaceHorse();

Horse h2 = new Horse();

23

Now consider the following three calls to f:

1. f(h1); // compile-time error (missing cast)

2. f((RaceHorse)h1); // fine! h1 really does point to a RaceHorse

3. f((RaceHorse)h2); // runtime error (bad cast) h2 points to a Horse

Note that when you use a cast you must think about what expression you

are casting, and perhaps use parentheses (if that expression is part of a
larger expression). For example, suppose variable h is of type Horse but

actually points to a RaceHorse. You can call h's WinRace method (which is a

RaceHorse method, but not a Horse method), but you have to use a cast,
like this:

((RaceHorse)h).WinRace();

The parentheses tell the compiler that you are casting just variable h to be

of type RaceHorse. If you omit the parentheses:

(RaceHorse)h.WinRace(); // NO! This doesn't work!!

the compiler will think you are casting the result of the call h.WinRace() to
be of type RaceHorse.

