

Slide 1

GUI Event Handling and
validate data

Slide 2

What happens when a button is pressed

JButton ActionListenerActionEvent

What happens when any event occurs

event source event listenerevent object

Slide 3

The Java event model
• GUI applications depend on events that represent user interactions

such as clicking a button or selecting an item from a list.
• All events are represented by an event object that derives from the

EventObject class. The event object contains information about
the event that occurred.

• An event listener is an object that responds to an event.
• The class that defines an event listener must implement an event

listener interface.
• A component that generates an event is called an event source.
• To respond to an event, an application must register an event

listener object with the event source that generates the event.
• The class for the event source provides a method for registering

event listeners. Then, when the event occurs, the event source
creates an event object and passes it to the event listener.

Slide 4

Semantic events
Action Event object Listener interface
Button clicked ActionEvent ActionListener
Combo box item selected ActionEvent

ItemEvent
ActionListener
ItemListener

List item selected ListSelectionEvent ListSelectionListener
Text component changed DocumentEvent DocumentListener
Radio button selected ActionEvent

ItemEvent
ActionListener
ItemListener

Check box selected ActionEvent
ItemEvent

ActionListener
ItemListener

Scroll bar repositioned AdjustmentEvent AdjustmentListener

Slide 5

Low-level events
Action Event object Listener interface
Window changed WindowEvent WindowListener
Focus changed FocusEvent FocusListener
Key pressed KeyEvent KeyListener
Mouse moved or clicked MouseEvent MouseListener

Slide 6

The two types of Java events
• Two types of events exist in Java: semantic events and low-level

events.
• A semantic event is related to a specific component such as

clicking a button or selecting an item from a list.
• Low-level events are less specific, like clicking a mouse button,

pressing a key on the keyboard, or closing a window.
• Most events and listeners are stored in the java.awt.event package,

but some of the newer events and listeners are stored in the
javax.swing.event package.

• Some user actions create more than one event. You can use
listeners to respond to any of them.

Slide 7

Two steps to handle any event
1. Create a class that implements the appropriate listener interface. In

this class, you must code an implementation of the appropriate
listener interface method to respond to the event.

2. Register an instance of the listener class to the event source by
calling the appropriate addeventListener method

Slide 8

Four options for implementing the listener
interface
• Implement it in the panel itself
• Implement it in a separate class
• Implement it in an inner class within the panel
• Implement it in an anonymous inner class

Two options for handling multiple event sources
• Create one listener that handles all events for the panel
• Create a separate listener for each event

Slide 9

Code for a panel that implements the
ActionListener interface

class FutureValuePanel extends JPanel
 implements ActionListener
{
 private JButton calculateButton;
 private JButton exitButton;

 public FutureValuePanel()
 {
 calculateButton = new JButton("Calculate");
 calculateButton.addActionListener(this);
 this.add(calculateButton);

 exitButton = new JButton("Exit");
 exitButton.addActionListener(this);
 this.add(exitButton);
 }

Slide 10

Code for a panel that implements the
ActionListener interface (continued)

 public void actionPerformed(ActionEvent e)
 {
 Object source = e.getSource();
 if (source == exitButton)
 System.exit(0);
 else if (source == calculateButton)
 calculateButton.setText("Clicked!");
 }
}

Notes
• The easiest way to implement a listener interface is in the class

that defines the panel or frame that contains the components that
generate the events.

• When the panel or frame class itself implements the listener, you
can specify the this keyword as the parameter to the method that
registers the listener.

Slide 11

Code for a panel that uses a separate listener
class: The panel class
class FutureValuePanel extends JPanel
{
 public JButton calculateButton;
 public JButton exitButton;

 public FutureValuePanel()
 {
 ActionListener listener =
 new FutureValueActionListener(this);
 calculateButton = new JButton("Calculate");
 calculateButton.addActionListener(listener);
 this.add(calculateButton);

 exitButton = new JButton("Exit");
 exitButton.addActionListener(listener);
 this.add(exitButton);
 }
}

Slide 12

Code for a panel that uses a separate listener
class: The listener class
class FutureValueActionListener implements ActionListener
{
 private FutureValuePanel panel;

 public FutureValueActionListener(FutureValuePanel p)
 {
 this.panel = p;
 }

 public void actionPerformed(ActionEvent e)
 {
 Object source = e.getSource();
 if (source == panel.exitButton)
 System.exit(0);
 else if (source == panel.calculateButton)
 panel.calculateButton.setText("Clicked!");
 }
}

Slide 13

How to implement an event listener as a separate
class
• If you implement a listener as a separate class, you’ll need to

provide a way for the listener class to access the source
components and any other panel components that are required to
respond to the event.

• One way to do that is to pass the panel to the constructor of the
listener class and declare the components that need to be referred
to as public.

Slide 14

How to implement an event listener as an inner
class
• An inner class is a class that is contained within another class.
• An inner class has access to all of the members of its containing

class. Because of that, inner classes are often used to implement
event listeners.

Slide 15

Code that implements the listener as an inner
class
class FutureValuePanel extends JPanel
{
 private JButton calculateButton;
 private JButton exitButton;

 public FutureValuePanel()
 {
 ActionListener listener =
 new FutureValueActionListener();
 calculateButton = new JButton("Calculate");
 calculateButton.addActionListener(listener);
 this.add(calculateButton);

 exitButton = new JButton("Exit");
 exitButton.addActionListener(listener);
 this.add(exitButton);
 }

Slide 16

Code that implements the listener as an inner
class (continued)
 class FutureValueActionListener
 implements ActionListener
 {

 public void actionPerformed(ActionEvent e)
 {
 Object source = e.getSource();
 if (source == exitButton)
 System.exit(0);
 else if (source == calculateButton)
 calculateButton.setText("Clicked!");
 }
 }
}

Slide 17

How to implement separate event listeners for
each event
• You can eliminate the code in the event listener class that

determines the event source by creating a separate listener class
for each component that raises the event.

• In that case, you simply register an instance of each event listener
class with the appropriate event source.

Slide 18

Code that implements separate listeners for each
event
class FutureValuePanel extends JPanel
{
 private JButton calculateButton;
 private JButton exitButton;

 public FutureValuePanel()
 {
 calculateButton = new JButton("Calculate");
 calculateButton.addActionListener(
 new CalculateListener());
 this.add(calculateButton);

 exitButton = new JButton("Exit");
 exitButton.addActionListener(new ExitListener());
 this.add(exitButton);
 }

Slide 19

Code that implements separate listeners for each
event (continued)
 class CalculateListener implements ActionListener
 {
 public void actionPerformed(ActionEvent e)
 {
 calculateButton.setText("Clicked!");
 }
 }

 class ExitListener implements ActionListener
 {
 public void actionPerformed(ActionEvent e)
 {
 System.exit(0);
 }
 }
}

Slide 20

The syntax for creating an anonymous class for
an event listener

new ListenerInterface() { class-body }

How to implement event listeners as anonymous
inner classes
• An anonymous inner class is a class that is both declared and

instantiated in one statement.
• Anonymous inner classes are often used as event listeners.
• Anonymous inner classes force you to mix the code that creates a

panel with the code that responds to the panel’s events. So they
should be used for only the simplest event listeners.

Slide 21

Code that implements event listeners as
anonymous classes
class FutureValuePanel extends JPanel
{
 private JButton calculateButton;
 private JButton exitButton;

 public FutureValuePanel()
 {
 calculateButton = new JButton("Calculate");
 calculateButton.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 calculateButton.setText("Clicked!");
 }
 });
 this.add(calculateButton);

Slide 22

Code that implements event listeners as
anonymous classes (continued)
 exitButton = new JButton("Exit");
 exitButton.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 System.exit(0);
 }
 });
 this.add(exitButton);
 }
}

Slide 23

The showMessageDialog method of the
JOptionPane class

Syntax
showMessageDialog(parentComponent, messageString,
 titleString, messageTypeInt);

Arguments
Argument Description
parentComponent An object representing the component that’s the

parent of the dialog box.
messageString A string representing the message to be

displayed in the dialog box.
titleString A string representing the title of the dialog box.
messageTypeInt An int that indicates the type of icon that will be

used for the dialog box.

Slide 24

Fields used for the message type parameter
Icon displayed Field
(none) PLAIN_MESSAGE

 INFORMATION_MESSAGE

 WARNING_MESSAGE

 ERROR_MESSAGE

 QUESTION_MESSAGE

How to display error messages
• The showMessageDialog method is a static method of the

JOptionPane class that is commonly used to display dialog boxes
with error messages for data validation.

• You can also use the JOptionPane class to accept input from the
user.

Slide 25

Code that displays the Invalid Entry dialog box
String message = "Monthly Investment is a required field.\n"
 + "Please re-enter.";
JOptionPane.showMessageDialog(this, // assumes "this" is a component
 message, "Invalid Entry",
 JOptionPane.ERROR_MESSAGE);

Slide 26

How to validate the data entered into a text field
• Like console applications, Swing applications should validate all

data entered by the user before processing the data.
• When an entry is invalid, the program needs to display an error

message and give the user another chance to enter valid data.
• To test whether a value has been entered into a text field, you can

use the getText method of the text field to get a string that
contains the text the user entered. Then, you can check whether
the length of that string is zero by using its length method.

• To test whether a text field contains valid numeric data, you can
code the statement that converts the data in a try block and use a
catch block to catch a NumberFormatException.

Slide 27

Code that checks if an entry has been made
if (investmentTextField.getText().length() == 0)
{
 JOptionPane.showMessageDialog(this,
 "Monthly Investment is "
 + "a required field.\nPlease re-enter.",
 "Invalid Entry", JOptionPane.ERROR_MESSAGE);
 investmentTextField.requestFocusInWindow();
 validData = false;
}

Slide 28

Code that checks if an entry is a valid number
try
{
 double d = Double.parseDouble(
 investmentTextField.getText());
}
catch (NumberFormatException e)
{
 JOptionPane.showMessageDialog(this,
 "Monthly Investment "
 + "must be a valid number.\nPlease re-enter.",
 "Invalid Entry", JOptionPane.ERROR_MESSAGE);
 investmentTextField.requestFocusInWindow();
 validData = false;
}

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28

