
BankAccountThreadRunner.java

Page 1

Continued

 1 /**

 2 This program runs threads that deposit and withdraw

 3 money from the same bank account.

 4 */

 5 public class BankAccountThreadRunner

 6 {

 7 public static void main(String[] args)

 8 {

 9 BankAccount account = new BankAccount();

 10 final double AMOUNT = 100;

 11 final int REPETITIONS = 100;

 12 final int THREADS = 100;

 13

 14 for (int i = 1; i <= THREADS; i++)

 15 {

 16 DepositRunnable d = new DepositRunnable(

 17 account, AMOUNT, REPETITIONS);

 18 WithdrawRunnable w = new WithdrawRunnable(

 19 account, AMOUNT, REPETITIONS);

 20

BankAccountThreadRunner.java (cont.)

Page 2

 21 Thread dt = new Thread(d);

 22 Thread wt = new Thread(w);

 23

 24 dt.start();

 25 wt.start();

 26 }

 27 }

 28 }

DepositRunnable.java

Page 3

Continued

 1 /**

 2 A deposit runnable makes periodic deposits to a bank account.

 3 */

 4 public class DepositRunnable implements Runnable

 5 {

 6 private static final int DELAY = 1;

 7 private BankAccount account;

 8 private double amount;

 9 private int count;

 10

 11 /**

 12 Constructs a deposit runnable.

 13 @param anAccount the account into which to deposit money

 14 @param anAmount the amount to deposit in each repetition

 15 @param aCount the number of repetitions

 16 */

 17 public DepositRunnable(BankAccount anAccount, double anAmount,

 18 int aCount)

 19 {

 20 account = anAccount;

 21 amount = anAmount;

 22 count = aCount;

 23 }

 24

DepositRunnable.java (cont.)

Page 4

 25 public void run()

 26 {

 27 try

 28 {

 29 for (int i = 1; i <= count; i++)

 30 {

 31 account.deposit(amount);

 32 Thread.sleep(DELAY);

 33 }

 34 }

 35 catch (InterruptedException exception) {}

 36 }

 37 }

WithdrawRunnable.java

Page 5

Continued

 1 /**

 2 A withdraw runnable makes periodic withdrawals from a bank account.

 3 */

 4 public class WithdrawRunnable implements Runnable

 5 {

 6 private static final int DELAY = 1;

 7 private BankAccount account;

 8 private double amount;

 9 private int count;

 10

 11 /**

 12 Constructs a withdraw runnable.

 13 @param anAccount the account from which to withdraw money

 14 @param anAmount the amount to withdraw in each repetition

 15 @param aCount the number of repetitions

 16 */

 17 public WithdrawRunnable(BankAccount anAccount, double anAmount,

 18 int aCount)

 19 {

 20 account = anAccount;

 21 amount = anAmount;

 22 count = aCount;

 23 }

WithdrawRunnable.java (cont.)

Page 6

 24

 25 public void run()

 26 {

 27 try

 28 {

 29 for (int i = 1; i <= count; i++)

 30 {

 31 account.withdraw(amount);

 32 Thread.sleep(DELAY);

 33 }

 34 }

 35 catch (InterruptedException exception) {}

 36 }

 37 }

BankAccount.java

Page 7

Continued

 1 /**

 2 A bank account has a balance that can be changed by

 3 deposits and withdrawals.

 4 */

 5 public class BankAccount

 6 {

 7 private double balance;

 8

 9 /**

 10 Constructs a bank account with a zero balance.

 11 */

 12 public BankAccount()

 13 {

 14 balance = 0;

 15 }

 16

BankAccount.java (cont.)

Page 8

Continued

 17 /**

 18 Deposits money into the bank account.

 19 @param amount the amount to deposit

 20 */

 21 public void deposit(double amount)

 22 {

 23 System.out.print("Depositing " + amount);

 24 double newBalance = balance + amount;

 25 System.out.println(", new balance is " + newBalance);

 26 balance = newBalance;

 27 }

 28

BankAccount.java (cont.)

Page 9

Continued

 29 /**

 30 Withdraws money from the bank account.

 31 @param amount the amount to withdraw

 32 */

 33 public void withdraw(double amount)

 34 {

 35 System.out.print("Withdrawing " + amount);

 36 double newBalance = balance - amount;

 37 System.out.println(", new balance is " + newBalance);

 38 balance = newBalance;

 39 }

 40

 41 /**

 42 Gets the current balance of the bank account.

 43 @return the current balance

 44 */

 45 public double getBalance()

 46 {

 47 return balance;

 48 }

 49 }

BankAccount.java (cont.)

Page 10

Program Run:
 Depositing 100.0, new balance is 100.0
 Withdrawing 100.0, new balance is 0.0
 Depositing 100.0, new balance is 100.0
 Withdrawing 100.0, new balance is 0.0
 ...
 Withdrawing 100.0, new balance is 400.0
 Depositing 100.0, new balance is 500.0
 Withdrawing 100.0, new balance is 400.0
 Withdrawing 100.0, new balance is 300.0

21.3 Race Conditions
 When threads share a common object, they can conflict

with each other

 Sample program: multiple threads manipulate a bank

account

 Create two sets of threads:

• Each thread in the first set repeatedly deposits $100

• Each thread in the second set repeatedly withdraws $100

Page 11

Sample Program (1)
 run method of DepositRunnable class:

public void run()
{
 try
 {
 for (int i = 1; i <= count; i++)
 {
 account.deposit(amount);
 Thread.sleep(DELAY);
 }
 }
 catch (InterruptedException exception)
 {
 }
}

 Class WithdrawRunnable is similar – it withdraws money

instead
Page 12

Sample Program (2)

 Create a BankAccount object, where deposit and

withdraw methods have been modified to print messages:

public void deposit(double amount)
{
 System.out.print("Depositing " + amount);
 double newBalance = balance + amount;
 System.out.println(", new balance is "
 + newBalance);
 balance = newBalance;
}

Page 13

Sample Program (3)
 Normally, the program output looks somewhat like this:

Depositing 100.0, new balance is 100.0
Withdrawing 100.0, new balance is 0.0
Depositing 100.0, new balance is 100.0
Depositing 100.0, new balance is 200.0
Withdrawing 100.0, new balance is 100.0
...
Withdrawing 100.0, new balance is 0.0

 The end result should be zero, but sometimes the output

 is messed up, and sometimes end result is not zero:

Depositing 100.0Withdrawing 100.0, new balance is
100.0, new balance is -100.0

Page 14

Sample Program (4)
 Scenario to explain problem:

1. A deposit thread executes the lines:

System.out.print("Depositing " + amount);
double newBalance = balance + amount;

The balance variable is still 0, and the newBalance local

variable is 100

2. The deposit thread reaches the end of its time slice and a

withdraw thread gains control

3. The withdraw thread calls the withdraw method which withdraws

$100 from the balance variable; it is now -100

4. The withdraw thread goes to sleep

Page 15

Sample Program (5)
 Scenario to explain problem (cont.):

5. The deposit thread regains control and picks up where it was

iterrupted. It now executes:

System.out.println(", new balance is " + newBalance);

balance = newBalance;

The balance variable is now 100 instead of 0 because the

deposit method used the old balance to compute the value

of its local variable newBalance

Page 16

Corrupting the Contents of the balance Variable

Page 17

Race Condition
 Occurs if the effect of multiple threads on shared data

depends on the order in which they are scheduled

 It is possible for a thread to reach the end of its time slice

 in the middle of a statement

 It may evaluate the right-hand side of an equation but not

 be able to store the result until its next turn:

public void deposit(double amount)
{
 balance = balance + amount;
 System.out.print("Depositing " + amount
 + ", new balance is " + balance);
}

 Race condition can still occur:

balance = the right-hand-side value

Page 18

21.4 Synchronizing Object Access

 To solve problems such as the one just seen, use a

 lock object

 Lock object: used to control threads that manipulate

 shared resources

 In Java library: Lock interface and several classes that

 implement it

 ReentrantLock: most commonly used lock class

 Locks are a feature of Java version 5.0

 Earlier versions of Java have a lower-level facility for thread

synchronization

Page 19

Synchronizing Object Access (2)
 Typically, a Lock object is added to a class whose

methods access shared resources, like this:

public class BankAccount

{

 private Lock balanceChangeLock;

 . . .

 public BankAccount()

 {

 balanceChangeLock = new ReentrantLock();

 . . .

 }

 . . .

}

Page 20

Synchronizing Object Access (3)

 Code that manipulates shared resource is surrounded by

calls to lock and unlock:

balanceChangeLock.lock();
Manipulate the shared resource.
balanceChangeLock.unlock();

 If code between calls to lock and unlock throws an

exception, call to unlock never happens

Page 21

Synchronizing Object Access (4)
 To overcome this problem, place call to unlock into a

finally clause:

balanceChangeLock.lock();
try
{
 Manipulate the shared resource.
}
finally
{
 balanceChangeLock.unlock();
}

Page 22

Synchronizing Object Access (5)
 Code for deposit method:

public void deposit(double amount)
{
 balanceChangeLock.lock();
 try
 {
 System.out.print("Depositing " + amount);
 double newBalance = balance + amount;
 System.out.println(", new balance is "
 + newBalance);
 balance = newBalance;
 }
 finally
 {
 balanceChangeLock.unlock();
 }
}

Page 23

Synchronizing Object Access (6)

 When a thread calls lock, it owns the lock until it calls

 unlock

 A thread that calls lock while another thread owns the

 lock is temporarily deactivated

 Thread scheduler periodically reactivates thread so it can

 try to acquire the lock

 Eventually, waiting thread can acquire the lock

Page 24

21.5 Avoiding Deadlocks
 A deadlock occurs if no thread can proceed because each

 thread is waiting for another to do some work first

 BankAccount example:

public void withdraw(double amount)
{
 balanceChangeLock.lock();
 try
 {
 while (balance < amount)
 Wait for the balance to grow
 ...
 }
 finally
 {
 balanceChangeLock.unlock();
 }
} Page 25

Avoiding Deadlocks (2)

 How can we wait for the balance to grow?

 We can’t simply call sleep inside withdraw method;

 thread will block all other threads that want to use

 balanceChangeLock

 In particular, no other thread can successfully execute

 deposit

 Other threads will call deposit, but will be blocked until

 withdraw exits

 But withdraw doesn’t exit until it has funds available

 DEADLOCK

Page 26

Condition Objects (1)

 To overcome problem, use a condition object

 Condition objects allow a thread to temporarily release a

 lock, and to regain the lock at a later time

 Each condition object belongs to a specific lock object

Page 27

Condition Objects (2)
 You obtain a condition object with newCondition method

of Lock interface:

public class BankAccount
{
 private Lock balanceChangeLock;
 private Condition sufficientFundsCondition;
 . . .
 public BankAccount()
 {
 balanceChangeLock = new ReentrantLock();
 sufficientFundsCondition =
 balanceChangeLock.newCondition();
 . . .
 }
}

Page 28

Condition Objects (3)

 It is customary to give the condition object a name that

 describes condition to test; e.g. “sufficient funds”

 You need to implement an appropriate test

Page 29

Condition Objects (4)

Page 30

 As long as test is not fulfilled, call await on the condition

 object:

public void withdraw(double amount)
{
 balanceChangeLock.lock();
 try
 {
 while (balance < amount)
 {
 sufficientFundsCondition.await();
 }
 . . .
 }
 finally
 {
 balanceChangeLock.unlock();
 }
}

Condition Objects (5)

Page 31

 Calling await

 Makes current thread wait

 Allows another thread to acquire the lock object

 To unblock, another thread must execute signalAll on

 the same condition object :

sufficientFundsCondition.signalAll();

 signalAll unblocks all threads waiting on the condition

 signal randomly picks just one thread waiting on the

object and unblocks it

 signal can be more efficient, but you need to know that

every waiting thread can proceed

 Recommendation: always call signalAll

 1 import java.util.concurrent.locks.Condition;

 2 import java.util.concurrent.locks.Lock;

 3 import java.util.concurrent.locks.ReentrantLock;

 4

 5 /**

 6 A bank account has a balance that can be changed by

 7 deposits and withdrawals.

 8 */

 9 public class BankAccount

 10 {

 11 private double balance;

 12 private Lock balanceChangeLock;

 13 private Condition sufficientFundsCondition;

 14

 15 /**

 16 Constructs a bank account with a zero balance.

 17 */

 18 public BankAccount()

 19 {

 20 balance = 0;

 21 balanceChangeLock = new ReentrantLock();

 22 sufficientFundsCondition = balanceChangeLock.newCondition();

 23 }

BankAccount.java

Page 32
Continued

BankAccount.java (cont.)

Page 33
Continued

 24

 25 /**

 26 Deposits money into the bank account.

 27 @param amount the amount to deposit

 28 */

 29 public void deposit(double amount)

 30 {

 31 balanceChangeLock.lock();

 32 try

 33 {

 34 System.out.print("Depositing " + amount);

 35 double newBalance = balance + amount;

 36 System.out.println(", new balance is " + newBalance);

 37 balance = newBalance;

 38 sufficientFundsCondition.signalAll();

 39 }

 40 finally

 41 {

 42 balanceChangeLock.unlock();

 43 }

 44 }

 45

BankAccount.java (cont.)

Page 34
Continued

 46 /**

 47 Withdraws money from the bank account.

 48 @param amount the amount to withdraw

 49 */

 50 public void withdraw(double amount)

 51 throws InterruptedException

 52 {

 53 balanceChangeLock.lock();

 54 try

 55 {

 56 while (balance < amount)

 57 {

 58 sufficientFundsCondition.await();

 59 }

 60 System.out.print("Withdrawing " + amount);

 61 double newBalance = balance - amount;

 62 System.out.println(", new balance is " + newBalance);

 63 balance = newBalance;

 64 }

BankAccount.java (cont.)

Page 35
Continued

 65 finally

 66 {

 67 balanceChangeLock.unlock();

 68 }

 69 }

 70

 71 /**

 72 Gets the current balance of the bank account.

 73 @return the current balance

 74 */

 75 public double getBalance()

 76 {

 77 return balance;

 78 }

 79 }

BankAccountThreadRunner.java

Page 36

Continued

 1 /**

 2 This program runs threads that deposit and withdraw

 3 money from the same bank account.

 4 */

 5 public class BankAccountThreadRunner

 6 {

 7 public static void main(String[] args)

 8 {

 9 BankAccount account = new BankAccount();

 10 final double AMOUNT = 100;

 11 final int REPETITIONS = 100;

 12 final int THREADS = 100;

 13

 14 for (int i = 1; i <= THREADS; i++)

 15 {

 16 DepositRunnable d = new DepositRunnable(

 17 account, AMOUNT, REPETITIONS);

 18 WithdrawRunnable w = new WithdrawRunnable(

 19 account, AMOUNT, REPETITIONS);

BankAccountThreadRunner.java (cont.)

Page 37

 20

 21 Thread dt = new Thread(d);

 22 Thread wt = new Thread(w);

 23

 24 dt.start();

 25 wt.start();

 26 }

 27 }

 28 }

BankAccountThreadRunner.java (cont.)

Page 38

 Program Run:

 Depositing 100.0, new balance is 100.0
 Withdrawing 100.0, new balance is 0.0
 Depositing 100.0, new balance is 100.0
 Depositing 100.0, new balance is 200.0
 ...
 Withdrawing 100.0, new balance is 100.0
 Depositing 100.0, new balance is 200.0
 Withdrawing 100.0, new balance is 100.0
 Withdrawing 100.0, new balance is 0.0

Review: Running Threads
 A thread is a program unit that is executed concurrently

with other parts of the program.

 The start method of the Thread class starts a new

thread that executes the run method of the associated

Runnable object.

 The sleep method puts the current thread to sleep for a

given number of milliseconds.

 When a thread is interrupted, the most common response

is to terminate the run method.

 The thread scheduler runs each thread for a short amount

of time, called a time slice.

Page 39

Review: Terminating Threads

 A thread terminates when its run method terminates.

 The run method can check whether its thread has been

interrupted by calling the interrupted method.

Page 40

Review: Race Conditions

 A race condition occurs if the effect of multiple threads on

shared data depends on the order in which the threads

are scheduled.

Page 41

Review: Synchronizing Object Access

 By calling the lock method, a thread acquires a Lock

object. Then no other thread can acquire the lock until the

first thread releases the lock.

Page 42

Review: Avoiding Deadlocks

 A deadlock occurs if no thread can proceed because each

thread is waiting for another to do some work first.

 Calling await on a condition object makes the current

thread wait and allows another thread to acquire the lock

object.

 A waiting thread is blocked until another thread calls

signalAll or signal on the condition object for which

the thread is waiting.

Page 43

