ErIy(Jh]ects

Chapter 20 — Streams and Binary Input/Output

Big Java Early Objects by Cay Horstmann
Copyright © 2014 by John Wiley & Sons. All rights reserved.

o 20.1 Readers, Writers, and Streams

o Two ways to store data:
= Text format: human-readable form, as a sequence of characters
= E.g. Integer 12,345 stored as characters "1 '2" '3" '4" '5'

= More convenient for humans: easier to produce input and to check
output

= Readers and writers handle data in text form

= Binary format: data items are represented in bytes
= E.g. Integer 12,345 stored as sequence of four bytes © 0 48 57
= More compact and more efficient

» Streams handle binary data

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 2

InputStream

s

File Object
InputStream InputStream

OutputStream

$

File
OutputStream

Object
OutputStream

Copyright © 2014 by John Wiley & Sons. All rights reserved.

PrintStream

Java Classes for Input and Output

Reader Writer
Input Output . .
StreamBeader StreamWriter PrintWriter

FileReader FileWriter
Page 3

Text Data

o Reader and Writer and their subclasses were designed
to process text input and output

o PrintWriter was used in Chapter 7
o Scanner class Is more convenient than Reader class

o By default, these classes use the character encoding of
the computer executing the program
= OK, when only exchanging data with users from same country

= Otherwise, good idea to use UTF-8 encoding:

Scanner in = new Scanner(input, "UTF-8");
// Input can be a File or InputStream
PrintWriter out = new PrintWriter(output, "UTF-8");
// Output can be a File or OutputStream

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 4

20.2 Binary Input and Output

o Use InputStream and OutputStream and their
subclasses to process binary input and output

o To read:

FileInputStream inputStream =
new FileInputStream("input.bin");

o To write:

FileOutputStream outputStream =
new FileOutputStream("output.bin");

o System.out iIsaPrintStream object

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 5

Binary Input

Q Use read method of InputStream class to read a
single byte

= returns the next byte as an int between 0 and 255

= or, the integer -1 at end of file

InputStream in = . . .;
int next = in.read();
if (next != -1)

{

Process next // a value between © and 255

¥

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 6

Binary Output

o Use write method of OutputStream class to write a
single byte:

OutputStream out = . . .;
int value= . . .; // should be between © and 255
out.write(value);

o When finished writing to the file, close it:

out.close();

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 7

- w 20.3 Random Access
o Sequential access: process file one byte at a time

o0 Random access: access file at arbitrary locations

= Only disk files support random access
e System.in and System.out do not

= Each disk file has a special file pointer position
* Read or write at pointer position

Sequential access
AN AN ANE ANE AN ANE AN ANE AN ANS J

N~ "

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 8

Random access

RandomAccessFile Class

o Open a file with open mode:
= Reading only ("r")
= Reading and writing ("rw"

RandomAccessFile f =
new RandomAcessFile("bank.dat","rw");

o To move the file pointer to a specific byte:
f.seek(position);
o To get the current position of the file pointer:

long position = f.getFilePointer();
// of type "long" because files can be very large

o To find the number of bytes in a file:
long filelLength = f.length();

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 9

- w Bank Account Program (1)
o Use a random access file to store a set of bank accounts

o Program lets you pick an account and deposit money
Into it

o To manipulate a data set in a file, pay special attention to
data formatting

= Suppose we store the data as text

« Say account 1001 has a balance of $900, and account 1015 has a
balance of O:

1001 900 1015 0
« Want to deposit $100 into account 1001:

1 0 0 1 9 0 0 1 0 1 5 0
i

« Writing out the new value:

1 S 1 0 OMB1 0O 1 5 0
[

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 10

Bank Account Program (2)

o Better way to manipulate a data set in a file:
= Give each value a fixed size that is sufficiently large
= Every record has the same size
= Easy to skip quickly to a given record

= To store numbers, it is easier to store them in binary format

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 11

Bank Account Program (3)

o RandomAccessFile class stores binary data

o readInt and writeInt methods read/write integers as
four-byte quantities

o readDouble and writeDouble methods use eight-byte
guantities

o To find out how many bank accounts are in the file:

public int size() throws IOException
{
return (int) (file.length() / RECORD SIZE);
// RECORD SIZE is 12 bytes:
// 4 bytes for account number plus
// 8 bytes for balance

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 12

Bank Account Program (4)

a2 To read the nt" account in the file:

public BankAccount read(int n) throws IOException

{

file.seek(n * RECORD_SIZE);

int accountNumber = file.readInt();

double balance = file.readDouble();

return new BankAccount(accountNumber, balance);
}

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 13

Bank Account Program (5)

2 To write the nt™ account in the file:

public void write(int n, BankAccount account)
throws IOException

{
file.seek(n * RECORD_SIZE);
file.writeInt(account.getAccountNumber());
file.writeDouble(account.getBalance());

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 14

1
2
3
4
5
6
7
8
9

RRRPRRRRRRBR
oOdoOUBd WNKRO

BankSimulator.java

import java.io.IOException;
import java.util.Scanner;

/ * %
This program demonstrates random access. You can access existing
accounts and deposit money, or create new accounts. The
accounts are saved in a random access file.

*/

public class BankSimulator

{

public static voild maln(String[] args) throws IOException

{

Scanner 1n = new Scanner (System.in);
BankData data = new BankDatal();
try

{
data.open ("bank.dat");

Continued

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 15

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34

Copyright © 2014 by John Wiley & Sons. All rights reserved.

BankSimulator.java (cont.)

boolean done = ;

while (!done)

{
System.out.print ("Account number: ");
int accountNumber = in.nextInt();
System.out.print ("Amount to deposit: ")y
double amount = in.nextDouble () ;

int position = data.find(accountNumber) ;

BankAccount account;

if (position >= 1))

{
account = data.read(position);
account.deposit (amount) ;
System.out.println("New balance: " +

account.getBalance ()) ;

Continued

Page 16

BankSimulator.java (cont.)

35 else // Add account

36 {

37 account = new BankAccount (accountNumber, amount);
38 position = data.size();

39 System.out.println ("Adding new account.™);
40 }

41 data.write(position, account);

42

43 System.out.print ("Done? (Y/N) ");

44 String input = in.next();

45 if (input.equalsIgnoreCase("Y")) done = ;
46 }

47 }

48 finally

49 {

50 data.close() ;

51 }

52 }

53 }

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 17

MNNNMNNRRRERRPRRERRRERRRER
WNROWVWONIONWU®dWNROV

1
2
3
4
5
6
7
8

BankData.java

import java.io.IOException;
import java.lo.RandomAccessFile;

/* *
This class is a conduit to a random access file
containing bank account records.

*/

public class BankData

{

private RandomAccessFile file;

public static final int INT SIZE = 4;
public static final int DOUBLE SIZE = ©5;
public static final int RECORD SIZE = INT SIZE + DOUBLE SIZE;

/ * %
Constructs a BankData object that is not associated with a file.
*/
public BankData ()
{
file = ; i
} Continued

Page 18
Copyright © 2014 by John Wiley & Sons. All rights reserved.

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

/ * %
Opens the data file.
@param filename the name of the file containing bank
account information

*/
public void open (String filename)
throws IOException

if (file !=) { file.close(); }

file = new RandomAccessFile(filename, "rw'");

/ * %
Gets the number of accounts in the file.
@return the number of accounts
*/
public int size()
throws IOException

return (int) (file.length() / RECORD SIZE);

Copyright © 2014 by John Wiley & Sons. All rights reserved.

BankData.java (cont.)

Continued
Page 19

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

/**
Closes the data file.
*/
public void close()
throws IOException
{
1f (file !=) { file.close(); }
file = ;
}

/ * %
Reads a bank account record.
@param n the index of the account in the data file
@return a bank account object initialized with the file data
*/
public BankAccount read(int n)
throws IOException

file.seek(n * RECORD SIZE);

int accountNumber = file.readInt();

double balance = file.readDouble () ;

return new BankAccount (accountNumber, balance);

BankData.java (cont.)

Continued
Page 20

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

/ * %
Finds the position of a bank account with a given number
@param accountNumber the number to find

@return the position of the account with the given number,

or -1 if there is no such account
*/
public int find(int accountNumber)
throws IOException

for (int 1 = 0; 1 < size(); i++)
{
file.seek (i * RECORD SIZE);
int a = file.readInt ()
if (a == accountNumber) {return i;
// Found a match

}
return ; // No match in the entire file

Copyright © 2014 by John Wiley & Sons. All rights reserved.

}

BankData.java (cont.)

Continued
Page 21

BankData.java (cont.)

89 /**

90 Writes a bank account record to the data file
91 @param n the index of the account in the data file
92 @param account the account to write
93 */
94 public void write(int n, BankAccount account)
95 throws IOException
96 {
97 file.seek(n * RECORD SIZE);
o8 file.writelInt (account.getAccountNumber ()) ;
99 file.writeDouble (account.getBalance())
100 }
101 }

Continued

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 22

BankData.java (cont.)

Program Run:
Account number: 1001
Amount to deposit: 100
Adding new account.
Done? (Y/N) N
Account number: 1018
Amount to deposit: 200
Adding new account.
Done? (Y/N) N
Account number: 1001
Amount to deposit: 1000
New balance: 1100.0
Done? (Y/N) Y

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 23

20.4 Object Streams

o ObjectOutputStream class can save entire objects to
disk

o ObjectInputStream class can read them back in

o Use streams, not writers because objects are saved in
binary format

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 24

Writing an Object to File

o The object output stream saves all instance variables:

BankAccount b = ...;

ObjectOutputStream out = new ObjectOutputStream(
new FileOutputStream("bank.dat"));

out.writeObject(b);

Copyright © 2011 by John Wiley & Sons. All rights reserved. Page 25

Reading an Object From File

o readObject method returns an Object reference

o Need to remember the types of the objects that you saved
and use a cast:

ObjectInputStream in = new ObjectInputStream(
new FileInputStream("bank.dat"));
BankAccount b =(BankAccount) in.readObject();

o readObject method can throw
ClassNotFoundException

= Checked exception = you must catch or declare it

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 26

s Write and Read Array List
o Write:

ArraylList<BankAccount> a =

new ArraylList<BankAccount>();
// Now add many BankAccount objects into a
out.writeObject(a);

o Read:

ArraylList<BankAccount> a =
(ArrayList<BankAccount>) in.readObject();

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 27

4 Serializable Interface
o Objects that are written to an object stream must belong to
a class that implements the Serializable Interface:

class BankAccount implements Serializable

{

}
o Serializable interface has no methods

o Serialization: Process of saving objects to a stream
= Each object is assigned a serial number on the stream

= |If the same object is saved twice, only serial number is written out
the second time

= When reading, duplicate serial numbers are restored as references
to the same object

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 28

Bank.java

1 import java.io.Serializable;
2 import java.util.Arraylist;
3
4 ll,uf'kw
5 This bank contains a collection of bank accounts.
6 */
7 public class Bank implements Serializable
8 {
9 private Arraylist<BankAccount> accounts;
10
11 Jr
12 Constructs a bank with no bank accounts.
13 &/
14 public Bank()
15 {
16 accounts = new Arraylist<BankAccount>();
17 }
18
19 Jes
20 Adds an account to this bank.
21 @param a the account to add
22 % f
23 public void addAccount{Account a)
24 {
25 accounts.add(a);
26 1
27

Copyright © 2014 by John Wiley & Sons. All rights reserved.

Continued
Page 29

34

Bank.java (cont.)

‘I.r'k'k
Finds a bank account with a given number.
@param accountNumber the number to tind

@return the account with the given number, or nu1l if there
15 no such account

*/

public BankAccount find(int accountNumber)

{

for (BankAccount a : accounts)
{

if (a.getAccountNumber() == accountNumber) // Found a mawch

{
}

return a,

}

return null; // No match in the entire array list

Copyright © 2014 by John Wiley & Sons. All rights reserved.

Page 30

SerialDemo.java

1 import java.io.File;

2 import java.io.IOException;

3 import java.io.FileInputStream;

4 import java.io.FileQutputStream;

5 import java.io.ObjectInputStream;

©& import java.io.ObjectOutputStream;

; J

9 This program demonstrates serialization of a Bank object.
10 If a file with serialized data exists, then it is loaded.
11 Otherwise the program starts with a new bank.

12 Bank accounts are added to the bank. Then the bank
13 object is saved.

14 */

15 public class SerialDemo

16 {

17 public static void main(String[] args)

18 throws I0Exception, ClassMotFoundException
19 {

20 Bank firstBank0flava;

21

22 File f = new File("bank.dat");

23 if (f.exists())

24 {

25 ObjectInputStream in = new ObjectInputStream(
26 new FileInputStream(f)):

27 firstBankOflJava = (Bank) in.readObject();
28 in.close();:

29 1

Copyright © 2014 by John Wiley & Sons. All rights reserved.

Continued
Page 31

49 }

SerialDemo.java (cont.)

glse

{
firstBankOflava = new Bank();
firstBank0flava.addAccount(new BankAccount(1001, 20000)):
firstBankOflava.addAccount(new BankAccount(1015, 10000));

}

Iy Di_‘pm;il SOIME Money
BankAccount a = firstBankOfJava.find(1001);
a.deposit{100);
System.out.printin{a.getAccountNumber() +
a = firstBankOflava.find(1015);
System.out.printin(a.getAccountNumber() +

+ a.getBalance());

""" 4+ a.getBalance());
ObjectOutputStream out = new ObjectOutputStream(

new FileQutputStream(f));
out .writelObject(firstBankOfJava);

out.clase();

Continued

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 32

SerialDemo.java (cont.)

Program Run

1001:20100.0
1015:10000.0

Second Program Run

1001:20200.0
1015:10000.0

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 33

Summary: Java Class Hierarchy for Handling
Input and Output

o Streams access sequences of bytes. Readers and writers
access sequences of characters.

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 34

Summary: Input and Output of Binary Data

o Use FileInputStream and FileOutputStream classes
to read and write binary data from and to disk files.

o The InputStream.read method returns an integer, either
-1 to indicate end of input, or a byte between 0 and 255.

o The OutputStream.write method writes a single byte.

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 35

Q

Copyright © 2014 by John Wiley & Sons. All rights reserved.

'
|
r

¢ Summary: Random Access

"
In sequential file access, a file is processed one byte at a
time.

Random access allows access at arbitrary locations in the
file, without first reading the bytes preceding the access
location.

A file pointer is a position in a random access file.
Because files can be very large, the file pointer is of type
long.

The RandomAccessFile class reads and writes numbers
In binary form.

Page 36

Summary: Object Streams

..............

i
o Use object streams to save and restore all instance
variables of an object automatically.

o Objects saved to an object stream must belong to
classes that implement the Serializable interface.

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 37

