
Chapter 20 – Streams and Binary Input/Output 

Big Java Early Objects by Cay Horstmann 

Copyright © 2014 by John Wiley & Sons.  All rights reserved. 



20.1 Readers, Writers, and Streams 

 Two ways to store data: 

 Text format: human-readable form, as a sequence of characters 

 E.g. Integer 12,345 stored as characters '1' '2' '3' '4' '5' 

 More convenient for humans: easier to produce input and to check 

output 

 Readers and writers handle data in text form 

 Binary format: data items are represented in bytes 

 E.g. Integer 12,345 stored as sequence of four bytes 0 0 48 57 

 More compact and more efficient 

 Streams handle binary data 

 

Copyright © 2014 by John Wiley & Sons.  All rights reserved. Page 2 



Java Classes for Input and Output 

 

Copyright © 2014 by John Wiley & Sons.  All rights reserved. Page 3 



Text Data 
  Reader and Writer and their subclasses were designed 

 to process text input and output  

  PrintWriter was used in Chapter 7  

  Scanner class is more convenient than Reader class 

  By default, these classes use the character encoding of  

 the computer executing the program 

 OK, when only exchanging data with users from same country 

 Otherwise, good idea to use UTF-8 encoding: 

Scanner in = new Scanner(input, "UTF-8"); 
   // Input can be a File or InputStream 
PrintWriter out = new PrintWriter(output, "UTF-8"); 
   // Output can be a File or OutputStream  

 
 

Copyright © 2014 by John Wiley & Sons.  All rights reserved. Page 4 



20.2 Binary Input and Output 
  Use InputStream and OutputStream and their  

 subclasses to process binary input and output  

  To read:  

FileInputStream inputStream = 
   new FileInputStream("input.bin"); 

  To write:  

FileOutputStream outputStream = 
      new FileOutputStream("output.bin"); 
 

  System.out is a PrintStream object 

 

 

Copyright © 2014 by John Wiley & Sons.  All rights reserved. Page 5 



Binary Input 
 Use read method of InputStream class to read a  

 single byte 

  returns the next byte as an int between 0 and 255  

  or, the integer -1 at end of file 

InputStream in = . . .; 
int next = in.read(); 
if (next != -1) 
{ 
   Process next // a value between 0 and 255 
} 

 

Copyright © 2014 by John Wiley & Sons.  All rights reserved. Page 6 



Binary Output 
  Use write method of OutputStream class to write a  

 single byte: 

OutputStream out = . . .;  
int value= . . .; // should be between 0 and 255 
out.write(value); 
 

  When finished writing to the file, close it: 

out.close(); 

 

 

 

Copyright © 2014 by John Wiley & Sons.  All rights reserved. Page 7 



20.3 Random Access 
  Sequential access: process file one byte at a time  

  Random access: access file at arbitrary locations  

 Only disk files support random access  

• System.in and System.out do not 

 Each disk file has a special file pointer position  

• Read or write at pointer position 

 

Copyright © 2014 by John Wiley & Sons.  All rights reserved. Page 8 



RandomAccessFile Class 
 Open a file with open mode: 

 Reading only ("r")  

 Reading and writing ("rw") 

RandomAccessFile f = 
   new RandomAcessFile("bank.dat","rw");  

 To move the file pointer to a specific byte: 

 f.seek(position);  

 To get the current position of the file pointer: 

 long position = f.getFilePointer(); 

// of type "long" because files can be very large  

 To find the number of bytes in a file: 

 long fileLength = f.length();  

 

Copyright © 2014 by John Wiley & Sons.  All rights reserved. Page 9 



Bank Account Program (1) 
 Use a random access file to store a set of bank accounts  

 Program lets you pick an account and deposit money  

into it  

 To manipulate a data set in a file, pay special attention to 

data formatting  

 Suppose we store the data as text 

• Say account 1001 has a balance of $900, and account 1015 has a 

balance of 0: 

 

• Want to deposit $100 into account 1001: 

 

 

• Writing out the new value: 

  

 

Copyright © 2014 by John Wiley & Sons.  All rights reserved. Page 10 



Bank Account Program (2) 

 Better way to manipulate a data set in a file:  

 Give each value a fixed size that is sufficiently large  

 Every record has the same size 

 Easy to skip quickly to a given record 

 To store numbers, it is easier to store them in binary format 

 

Copyright © 2014 by John Wiley & Sons.  All rights reserved. Page 11 



Bank Account Program (3) 
 RandomAccessFile class stores binary data  

 readInt and writeInt methods read/write integers as 

four-byte quantities  

 readDouble and writeDouble methods use eight-byte 
quantities 

 To find out how many bank accounts are in the file:  

public int size() throws IOException 
{ 
   return (int) (file.length() / RECORD_SIZE);  
         // RECORD_SIZE is 12 bytes:  
         // 4 bytes for account number plus  
         // 8 bytes for balance 

} 

 

Copyright © 2014 by John Wiley & Sons.  All rights reserved. Page 12 



Bank Account Program (4) 

  To read the nth account in the file: 

 public BankAccount read(int n) throws IOException  

{ 
   file.seek(n * RECORD_SIZE);  
   int accountNumber = file.readInt();  
   double balance = file.readDouble();  
   return new BankAccount(accountNumber, balance);  
} 

 

Copyright © 2014 by John Wiley & Sons.  All rights reserved. Page 13 



Bank Account Program (5) 
 To write the nth account in the file: 

 public void write(int n, BankAccount account)  

      throws IOException  
{  
   file.seek(n * RECORD_SIZE); 
   file.writeInt(account.getAccountNumber()); 
   file.writeDouble(account.getBalance());  
} 

 

 

Copyright © 2014 by John Wiley & Sons.  All rights reserved. Page 14 



BankSimulator.java 

 

Copyright © 2014 by John Wiley & Sons.  All rights reserved. Page 15 

Continued 

  1  import java.io.IOException; 

  2  import java.util.Scanner; 

  3   

  4  /** 

  5     This program demonstrates random access. You can access existing 

  6     accounts and deposit money, or create new accounts. The 

  7     accounts are saved in a random access file. 

  8  */ 

  9  public class BankSimulator 

 10  {   

 11     public static void main(String[] args) throws IOException 

 12     {   

 13        Scanner in = new Scanner(System.in); 

 14        BankData data = new BankData(); 

 15        try 

 16        {   

 17           data.open("bank.dat"); 

 18  



BankSimulator.java (cont.) 

 

Copyright © 2014  by John Wiley & Sons.  All rights reserved. Page 16 

Continued 

 19           boolean done = false; 

 20           while (!done) 

 21           {   

 22              System.out.print("Account number: "); 

 23              int accountNumber = in.nextInt(); 

 24              System.out.print("Amount to deposit: "); 

 25              double amount = in.nextDouble(); 

 26   

 27              int position = data.find(accountNumber); 

 28              BankAccount account; 

 29              if (position >= 0) 

 30              { 

 31                 account = data.read(position); 

 32                 account.deposit(amount); 

 33                 System.out.println("New balance: " +  

                          account.getBalance()); 

 34              } 



BankSimulator.java (cont.) 

 

Copyright © 2014 by John Wiley & Sons.  All rights reserved. Page 17 

 35              else // Add account 

 36              {   

 37                 account = new BankAccount(accountNumber, amount); 

 38                 position = data.size(); 

 39                 System.out.println("Adding new account."); 

 40              } 

 41              data.write(position, account); 

 42   

 43              System.out.print("Done? (Y/N) "); 

 44              String input = in.next(); 

 45              if (input.equalsIgnoreCase("Y")) done = true; 

 46           }       

 47        } 

 48        finally 

 49        { 

 50           data.close(); 

 51        } 

 52     } 

 53  } 



BankData.java 

 

Copyright © 2014 by John Wiley & Sons.  All rights reserved. 

Page 18 

Continued 

  1  import java.io.IOException; 

  2  import java.io.RandomAccessFile; 

  3   

  4  /** 

  5     This class is a conduit to a random access file 

  6     containing bank account records. 

  7  */ 

  8  public class BankData 

  9  { 

 10     private RandomAccessFile file; 

 11   

 12     public static final int INT_SIZE = 4;   

 13     public static final int DOUBLE_SIZE = 8;   

 14     public static final int RECORD_SIZE = INT_SIZE + DOUBLE_SIZE; 

 15   

 16     /** 

 17        Constructs a BankData object that is not associated with a file. 

 18     */ 

 19     public BankData() 

 20     { 

 21        file = null; 

 22     } 

 23  



BankData.java (cont.) 

 

Copyright © 2014 by John Wiley & Sons.  All rights reserved. Page 19 

Continued 

 24     /** 

 25        Opens the data file. 

 26        @param filename the name of the file containing bank 

 27        account information 

 28     */ 

 29     public void open(String filename) 

 30           throws IOException 

 31     { 

 32        if (file != null) { file.close(); } 

 33        file = new RandomAccessFile(filename, "rw"); 

 34     } 

 35   

 36     /** 

 37        Gets the number of accounts in the file. 

 38        @return the number of accounts 

 39     */ 

 40     public int size() 

 41           throws IOException 

 42     { 

 43        return (int) (file.length() / RECORD_SIZE); 

 44     } 

 45  



BankData.java (cont.) 

Page 20 

Continued 

 46     /** 

 47        Closes the data file. 

 48     */ 

 49     public void close() 

 50           throws IOException 

 51     { 

 52        if (file != null) { file.close(); } 

 53        file = null; 

 54     } 

 55   

 56     /** 

 57        Reads a bank account record. 

 58        @param n the index of the account in the data file 

 59        @return a bank account object initialized with the file data 

 60     */ 

 61     public BankAccount read(int n) 

 62           throws IOException 

 63     {   

 64        file.seek(n * RECORD_SIZE);       

 65        int accountNumber = file.readInt(); 

 66        double balance = file.readDouble(); 

 67        return new BankAccount(accountNumber, balance); 

 68     } 

 69  



BankData.java (cont.) 

 

Copyright © 2014 by John Wiley & Sons.  All rights reserved. Page 21 

Continued 

 70     /** 

 71        Finds the position of a bank account with a given number 

 72        @param accountNumber the number to find 

 73        @return the position of the account with the given number,  

 74        or -1 if there is no such account 

 75     */ 

 76     public int find(int accountNumber) 

 77           throws IOException 

 78     { 

 79        for (int i = 0; i < size(); i++) 

 80        { 

 81           file.seek(i * RECORD_SIZE); 

 82           int a = file.readInt();          

 83           if (a == accountNumber) {return i; } 

 84              // Found a match 

 85        }  

 86        return -1; // No match in the entire file 

 87     } 

 88  



BankData.java (cont.) 

 

Copyright © 2014 by John Wiley & Sons.  All rights reserved. Page 22 

 89     /** 

 90        Writes a bank account record to the data file 

 91        @param n the index of the account in the data file 

 92        @param account the account to write 

 93     */ 

 94     public void write(int n, BankAccount account) 

 95           throws IOException 

 96     {   

 97        file.seek(n * RECORD_SIZE); 

 98        file.writeInt(account.getAccountNumber()); 

 99        file.writeDouble(account.getBalance()); 

100     } 

101  } 

Continued 



BankData.java (cont.) 

 

Copyright © 2014 by John Wiley & Sons.  All rights reserved. Page 23 

Program Run:  
 Account number: 1001  
 Amount to deposit: 100  
 Adding new account.  
 Done? (Y/N) N  
 Account number: 1018  
 Amount to deposit: 200  
 Adding new account.  
 Done? (Y/N) N  
 Account number: 1001  
 Amount to deposit: 1000  
 New balance: 1100.0  
 Done? (Y/N) Y 



20.4 Object Streams 

 ObjectOutputStream class can save entire objects to 

disk 

 ObjectInputStream class can read them back in 

 Use streams, not writers because objects are saved in 

binary format 

 

Copyright © 2014 by John Wiley & Sons.  All rights reserved. Page 24 



Writing an Object to File 

 The object output stream saves all instance variables: 

BankAccount b = ...; 
ObjectOutputStream out = new ObjectOutputStream( 
   new FileOutputStream("bank.dat")); 
out.writeObject(b); 

 

Copyright © 2011 by John Wiley & Sons.  All rights reserved. Page 25 



Reading an Object From File 

 readObject method returns an Object reference 

 Need to remember the types of the objects that you saved 

and use a cast: 

ObjectInputStream in = new ObjectInputStream( 
   new FileInputStream("bank.dat")); 
BankAccount b =(BankAccount) in.readObject();  

 readObject method can throw 

ClassNotFoundException  

  Checked exception ⇒ you must catch or declare it 

 

Copyright © 2014 by John Wiley & Sons.  All rights reserved. Page 26 



Write and Read Array List 
 Write: 

ArrayList<BankAccount> a = 
   new ArrayList<BankAccount>(); 
// Now add many BankAccount objects into a 
out.writeObject(a);  
  

 Read: 

ArrayList<BankAccount> a = 
   (ArrayList<BankAccount>) in.readObject(); 

 

Copyright © 2014 by John Wiley & Sons.  All rights reserved. Page 27 



Serializable Interface 
 Objects that are written to an object stream must belong to 

a class that implements the Serializable interface:  

class BankAccount implements Serializable 
{ 
   … 
}  

  Serializable interface has no methods  

  Serialization: Process of saving objects to a stream  

 Each object is assigned a serial number on the stream  

 If the same object is saved twice, only serial number is written out 

the second time  

 When reading, duplicate serial numbers are restored as references 
to the same object 

 

Copyright © 2014 by John Wiley & Sons.  All rights reserved. Page 28 



Bank.java 

 

Copyright © 2014 by John Wiley & Sons.  All rights reserved. Page 29 

Continued 



Bank.java (cont.) 

 

Copyright © 2014 by John Wiley & Sons.  All rights reserved. Page 30 



SerialDemo.java 

 

Copyright © 2014 by John Wiley & Sons.  All rights reserved. Page 31 

Continued 



SerialDemo.java (cont.) 

 

Copyright © 2014 by John Wiley & Sons.  All rights reserved. Page 32 

Continued 



SerialDemo.java (cont.) 

 

Copyright © 2014 by John Wiley & Sons.  All rights reserved. Page 33 



Summary: Java Class Hierarchy for Handling  

Input and Output 

 Streams access sequences of bytes. Readers and writers 

access sequences of characters. 

 

Copyright © 2014 by John Wiley & Sons.  All rights reserved. Page 34 



Summary: Input and Output of Binary Data 

 Use FileInputStream and FileOutputStream classes 

to read and write binary data from and to disk files.  

 The InputStream.read method returns an integer, either 

-1 to indicate end of input, or a byte between 0 and 255. 

 The OutputStream.write method writes a single byte. 

 

Copyright © 2014 by John Wiley & Sons.  All rights reserved. Page 35 



Summary: Random Access 

 In sequential file access, a file is processed one byte at a 

time. 

 Random access allows access at arbitrary locations in the 

file, without first reading the bytes preceding the access 

location. 

 A file pointer is a position in a random access file. 

Because files can be very large, the file pointer is of type 

long. 

 The RandomAccessFile class reads and writes numbers 

in binary form. 

 

Copyright © 2014 by John Wiley & Sons.  All rights reserved. Page 36 



Summary: Object Streams 

 Use object streams to save and restore all instance 

variables of an object automatically. 

 Objects saved to an object stream must belong to 

classes that implement the Serializable interface. 

 

Copyright © 2014 by John Wiley & Sons.  All rights reserved. Page 37 


