
Chapter 20 – Streams and Binary Input/Output

Big Java Early Objects by Cay Horstmann

Copyright © 2014 by John Wiley & Sons. All rights reserved.

20.1 Readers, Writers, and Streams

 Two ways to store data:

 Text format: human-readable form, as a sequence of characters

 E.g. Integer 12,345 stored as characters '1' '2' '3' '4' '5'

 More convenient for humans: easier to produce input and to check

output

 Readers and writers handle data in text form

 Binary format: data items are represented in bytes

 E.g. Integer 12,345 stored as sequence of four bytes 0 0 48 57

 More compact and more efficient

 Streams handle binary data

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 2

Java Classes for Input and Output

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 3

Text Data
 Reader and Writer and their subclasses were designed

 to process text input and output

 PrintWriter was used in Chapter 7

 Scanner class is more convenient than Reader class

 By default, these classes use the character encoding of

 the computer executing the program

 OK, when only exchanging data with users from same country

 Otherwise, good idea to use UTF-8 encoding:

Scanner in = new Scanner(input, "UTF-8");
 // Input can be a File or InputStream
PrintWriter out = new PrintWriter(output, "UTF-8");
 // Output can be a File or OutputStream

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 4

20.2 Binary Input and Output
 Use InputStream and OutputStream and their

 subclasses to process binary input and output

 To read:

FileInputStream inputStream =
 new FileInputStream("input.bin");

 To write:

FileOutputStream outputStream =
 new FileOutputStream("output.bin");

 System.out is a PrintStream object

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 5

Binary Input
 Use read method of InputStream class to read a

 single byte

 returns the next byte as an int between 0 and 255

 or, the integer -1 at end of file

InputStream in = . . .;
int next = in.read();
if (next != -1)
{
 Process next // a value between 0 and 255
}

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 6

Binary Output
 Use write method of OutputStream class to write a

 single byte:

OutputStream out = . . .;
int value= . . .; // should be between 0 and 255
out.write(value);

 When finished writing to the file, close it:

out.close();

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 7

20.3 Random Access
 Sequential access: process file one byte at a time

 Random access: access file at arbitrary locations

 Only disk files support random access

• System.in and System.out do not

 Each disk file has a special file pointer position

• Read or write at pointer position

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 8

RandomAccessFile Class
 Open a file with open mode:

 Reading only ("r")

 Reading and writing ("rw")

RandomAccessFile f =
 new RandomAcessFile("bank.dat","rw");

 To move the file pointer to a specific byte:

 f.seek(position);

 To get the current position of the file pointer:

 long position = f.getFilePointer();

// of type "long" because files can be very large

 To find the number of bytes in a file:

 long fileLength = f.length();

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 9

Bank Account Program (1)
 Use a random access file to store a set of bank accounts

 Program lets you pick an account and deposit money

into it

 To manipulate a data set in a file, pay special attention to

data formatting

 Suppose we store the data as text

• Say account 1001 has a balance of $900, and account 1015 has a

balance of 0:

• Want to deposit $100 into account 1001:

• Writing out the new value:

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 10

Bank Account Program (2)

 Better way to manipulate a data set in a file:

 Give each value a fixed size that is sufficiently large

 Every record has the same size

 Easy to skip quickly to a given record

 To store numbers, it is easier to store them in binary format

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 11

Bank Account Program (3)
 RandomAccessFile class stores binary data

 readInt and writeInt methods read/write integers as

four-byte quantities

 readDouble and writeDouble methods use eight-byte
quantities

 To find out how many bank accounts are in the file:

public int size() throws IOException
{
 return (int) (file.length() / RECORD_SIZE);
 // RECORD_SIZE is 12 bytes:
 // 4 bytes for account number plus
 // 8 bytes for balance

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 12

Bank Account Program (4)

 To read the nth account in the file:

 public BankAccount read(int n) throws IOException

{
 file.seek(n * RECORD_SIZE);
 int accountNumber = file.readInt();
 double balance = file.readDouble();
 return new BankAccount(accountNumber, balance);
}

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 13

Bank Account Program (5)
 To write the nth account in the file:

 public void write(int n, BankAccount account)

 throws IOException
{
 file.seek(n * RECORD_SIZE);
 file.writeInt(account.getAccountNumber());
 file.writeDouble(account.getBalance());
}

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 14

BankSimulator.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 15

Continued

 1 import java.io.IOException;

 2 import java.util.Scanner;

 3

 4 /**

 5 This program demonstrates random access. You can access existing

 6 accounts and deposit money, or create new accounts. The

 7 accounts are saved in a random access file.

 8 */

 9 public class BankSimulator

 10 {

 11 public static void main(String[] args) throws IOException

 12 {

 13 Scanner in = new Scanner(System.in);

 14 BankData data = new BankData();

 15 try

 16 {

 17 data.open("bank.dat");

 18

BankSimulator.java (cont.)

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 16

Continued

 19 boolean done = false;

 20 while (!done)

 21 {

 22 System.out.print("Account number: ");

 23 int accountNumber = in.nextInt();

 24 System.out.print("Amount to deposit: ");

 25 double amount = in.nextDouble();

 26

 27 int position = data.find(accountNumber);

 28 BankAccount account;

 29 if (position >= 0)

 30 {

 31 account = data.read(position);

 32 account.deposit(amount);

 33 System.out.println("New balance: " +

 account.getBalance());

 34 }

BankSimulator.java (cont.)

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 17

 35 else // Add account

 36 {

 37 account = new BankAccount(accountNumber, amount);

 38 position = data.size();

 39 System.out.println("Adding new account.");

 40 }

 41 data.write(position, account);

 42

 43 System.out.print("Done? (Y/N) ");

 44 String input = in.next();

 45 if (input.equalsIgnoreCase("Y")) done = true;

 46 }

 47 }

 48 finally

 49 {

 50 data.close();

 51 }

 52 }

 53 }

BankData.java

Copyright © 2014 by John Wiley & Sons. All rights reserved.

Page 18

Continued

 1 import java.io.IOException;

 2 import java.io.RandomAccessFile;

 3

 4 /**

 5 This class is a conduit to a random access file

 6 containing bank account records.

 7 */

 8 public class BankData

 9 {

 10 private RandomAccessFile file;

 11

 12 public static final int INT_SIZE = 4;

 13 public static final int DOUBLE_SIZE = 8;

 14 public static final int RECORD_SIZE = INT_SIZE + DOUBLE_SIZE;

 15

 16 /**

 17 Constructs a BankData object that is not associated with a file.

 18 */

 19 public BankData()

 20 {

 21 file = null;

 22 }

 23

BankData.java (cont.)

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 19

Continued

 24 /**

 25 Opens the data file.

 26 @param filename the name of the file containing bank

 27 account information

 28 */

 29 public void open(String filename)

 30 throws IOException

 31 {

 32 if (file != null) { file.close(); }

 33 file = new RandomAccessFile(filename, "rw");

 34 }

 35

 36 /**

 37 Gets the number of accounts in the file.

 38 @return the number of accounts

 39 */

 40 public int size()

 41 throws IOException

 42 {

 43 return (int) (file.length() / RECORD_SIZE);

 44 }

 45

BankData.java (cont.)

Page 20

Continued

 46 /**

 47 Closes the data file.

 48 */

 49 public void close()

 50 throws IOException

 51 {

 52 if (file != null) { file.close(); }

 53 file = null;

 54 }

 55

 56 /**

 57 Reads a bank account record.

 58 @param n the index of the account in the data file

 59 @return a bank account object initialized with the file data

 60 */

 61 public BankAccount read(int n)

 62 throws IOException

 63 {

 64 file.seek(n * RECORD_SIZE);

 65 int accountNumber = file.readInt();

 66 double balance = file.readDouble();

 67 return new BankAccount(accountNumber, balance);

 68 }

 69

BankData.java (cont.)

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 21

Continued

 70 /**

 71 Finds the position of a bank account with a given number

 72 @param accountNumber the number to find

 73 @return the position of the account with the given number,

 74 or -1 if there is no such account

 75 */

 76 public int find(int accountNumber)

 77 throws IOException

 78 {

 79 for (int i = 0; i < size(); i++)

 80 {

 81 file.seek(i * RECORD_SIZE);

 82 int a = file.readInt();

 83 if (a == accountNumber) {return i; }

 84 // Found a match

 85 }

 86 return -1; // No match in the entire file

 87 }

 88

BankData.java (cont.)

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 22

 89 /**

 90 Writes a bank account record to the data file

 91 @param n the index of the account in the data file

 92 @param account the account to write

 93 */

 94 public void write(int n, BankAccount account)

 95 throws IOException

 96 {

 97 file.seek(n * RECORD_SIZE);

 98 file.writeInt(account.getAccountNumber());

 99 file.writeDouble(account.getBalance());

100 }

101 }

Continued

BankData.java (cont.)

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 23

Program Run:
 Account number: 1001
 Amount to deposit: 100
 Adding new account.
 Done? (Y/N) N
 Account number: 1018
 Amount to deposit: 200
 Adding new account.
 Done? (Y/N) N
 Account number: 1001
 Amount to deposit: 1000
 New balance: 1100.0
 Done? (Y/N) Y

20.4 Object Streams

 ObjectOutputStream class can save entire objects to

disk

 ObjectInputStream class can read them back in

 Use streams, not writers because objects are saved in

binary format

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 24

Writing an Object to File

 The object output stream saves all instance variables:

BankAccount b = ...;
ObjectOutputStream out = new ObjectOutputStream(
 new FileOutputStream("bank.dat"));
out.writeObject(b);

Copyright © 2011 by John Wiley & Sons. All rights reserved. Page 25

Reading an Object From File

 readObject method returns an Object reference

 Need to remember the types of the objects that you saved

and use a cast:

ObjectInputStream in = new ObjectInputStream(
 new FileInputStream("bank.dat"));
BankAccount b =(BankAccount) in.readObject();

 readObject method can throw

ClassNotFoundException

 Checked exception ⇒ you must catch or declare it

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 26

Write and Read Array List
 Write:

ArrayList<BankAccount> a =
 new ArrayList<BankAccount>();
// Now add many BankAccount objects into a
out.writeObject(a);

 Read:

ArrayList<BankAccount> a =
 (ArrayList<BankAccount>) in.readObject();

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 27

Serializable Interface
 Objects that are written to an object stream must belong to

a class that implements the Serializable interface:

class BankAccount implements Serializable
{
 …
}

 Serializable interface has no methods

 Serialization: Process of saving objects to a stream

 Each object is assigned a serial number on the stream

 If the same object is saved twice, only serial number is written out

the second time

 When reading, duplicate serial numbers are restored as references
to the same object

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 28

Bank.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 29

Continued

Bank.java (cont.)

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 30

SerialDemo.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 31

Continued

SerialDemo.java (cont.)

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 32

Continued

SerialDemo.java (cont.)

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 33

Summary: Java Class Hierarchy for Handling

Input and Output

 Streams access sequences of bytes. Readers and writers

access sequences of characters.

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 34

Summary: Input and Output of Binary Data

 Use FileInputStream and FileOutputStream classes

to read and write binary data from and to disk files.

 The InputStream.read method returns an integer, either

-1 to indicate end of input, or a byte between 0 and 255.

 The OutputStream.write method writes a single byte.

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 35

Summary: Random Access

 In sequential file access, a file is processed one byte at a

time.

 Random access allows access at arbitrary locations in the

file, without first reading the bytes preceding the access

location.

 A file pointer is a position in a random access file.

Because files can be very large, the file pointer is of type

long.

 The RandomAccessFile class reads and writes numbers

in binary form.

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 36

Summary: Object Streams

 Use object streams to save and restore all instance

variables of an object automatically.

 Objects saved to an object stream must belong to

classes that implement the Serializable interface.

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 37

