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o 20.1 Readers, Writers, and Streams

o Two ways to store data:
= Text format: human-readable form, as a sequence of characters
= E.g. Integer 12,345 stored as characters "1 '2" '3" '4" '5'

= More convenient for humans: easier to produce input and to check
output

= Readers and writers handle data in text form

= Binary format: data items are represented in bytes
= E.g. Integer 12,345 stored as sequence of four bytes © 0 48 57
= More compact and more efficient

» Streams handle binary data
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Text Data

o Reader and Writer and their subclasses were designed
to process text input and output

o PrintWriter was used in Chapter 7
o Scanner class Is more convenient than Reader class

o By default, these classes use the character encoding of
the computer executing the program
= OK, when only exchanging data with users from same country

= Otherwise, good idea to use UTF-8 encoding:

Scanner in = new Scanner(input, "UTF-8");
// Input can be a File or InputStream
PrintWriter out = new PrintWriter(output, "UTF-8");
// Output can be a File or OutputStream

Copyright © 2014 by John Wiley & Sons. All rights reserved. Page 4



20.2 Binary Input and Output

o Use InputStream and OutputStream and their
subclasses to process binary input and output

o To read:

FileInputStream inputStream =
new FileInputStream("input.bin");

o To write:

FileOutputStream outputStream =
new FileOutputStream("output.bin");

o System.out iIsaPrintStream object
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Binary Input

Q Use read method of InputStream class to read a
single byte

= returns the next byte as an int between 0 and 255

= or, the integer -1 at end of file

InputStream in = . . .;
int next = in.read();
if (next != -1)

{

Process next // a value between © and 255

¥
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Binary Output

o Use write method of OutputStream class to write a
single byte:

OutputStream out = . . .;
int value= . . .; // should be between © and 255
out.write(value);

o When finished writing to the file, close it:

out.close();
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- w 20.3 Random Access
o Sequential access: process file one byte at a time

o0 Random access: access file at arbitrary locations

= Only disk files support random access
e System.in and System.out do not

= Each disk file has a special file pointer position
* Read or write at pointer position

Sequential access
AN AN ANE ANE AN ANE AN ANE AN ANS J

N~ "
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RandomAccessFile Class

o Open a file with open mode:
= Reading only ("r")
= Reading and writing ("rw"

RandomAccessFile f =
new RandomAcessFile("bank.dat","rw");

o To move the file pointer to a specific byte:
f.seek(position);
o To get the current position of the file pointer:

long position = f.getFilePointer();
// of type "long" because files can be very large

o To find the number of bytes in a file:
long filelLength = f.length();
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- w Bank Account Program (1)
o Use a random access file to store a set of bank accounts

o Program lets you pick an account and deposit money
Into it

o To manipulate a data set in a file, pay special attention to
data formatting

= Suppose we store the data as text

« Say account 1001 has a balance of $900, and account 1015 has a
balance of O:

1001 900 1015 0
« Want to deposit $100 into account 1001:

1 0 0 1 9 0 0 1 0 1 5 0
i

« Writing out the new value:

1 S 1 0 OMB1 0O 1 5 0
[
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Bank Account Program (2)

o Better way to manipulate a data set in a file:
= Give each value a fixed size that is sufficiently large
= Every record has the same size
= Easy to skip quickly to a given record

= To store numbers, it is easier to store them in binary format
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Bank Account Program (3)

o RandomAccessFile class stores binary data

o readInt and writeInt methods read/write integers as
four-byte quantities

o readDouble and writeDouble methods use eight-byte
guantities

o To find out how many bank accounts are in the file:

public int size() throws IOException
{
return (int) (file.length() / RECORD SIZE);
// RECORD SIZE is 12 bytes:
// 4 bytes for account number plus
// 8 bytes for balance
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Bank Account Program (4)

a2 To read the nt" account in the file:

public BankAccount read(int n) throws IOException

{

file.seek(n * RECORD_SIZE);

int accountNumber = file.readInt();

double balance = file.readDouble();

return new BankAccount(accountNumber, balance);
}
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Bank Account Program (5)

2 To write the nt™ account in the file:

public void write(int n, BankAccount account)
throws IOException

{
file.seek(n * RECORD_SIZE);
file.writeInt(account.getAccountNumber());
file.writeDouble(account.getBalance());

}
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BankSimulator.java

import java.io.IOException;
import java.util.Scanner;

/ * %
This program demonstrates random access. You can access existing
accounts and deposit money, or create new accounts. The
accounts are saved in a random access file.

*/

public class BankSimulator

{

public static voild maln(String[] args) throws IOException

{

Scanner 1n = new Scanner (System.in);
BankData data = new BankDatal();
try

{
data.open ("bank.dat");

Continued
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BankSimulator.java (cont.)

boolean done = ;

while (!done)

{
System.out.print ("Account number: ");
int accountNumber = in.nextInt();
System.out.print ("Amount to deposit: ")y
double amount = in.nextDouble () ;

int position = data.find(accountNumber) ;

BankAccount account;

if (position >= 1))

{
account = data.read(position);
account.deposit (amount) ;
System.out.println("New balance: " +

account.getBalance ()) ;

Continued
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BankSimulator.java (cont.)

35 else // Add account

36 {

37 account = new BankAccount (accountNumber, amount);
38 position = data.size();

39 System.out.println ("Adding new account.™);
40 }

41 data.write(position, account);

42

43 System.out.print ("Done? (Y/N) ");

44 String input = in.next();

45 if (input.equalsIgnoreCase("Y")) done = ;
46 }

47 }

48 finally

49 {

50 data.close() ;

51 }

52 }

53 }
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BankData.java

import java.io.IOException;
import java.lo.RandomAccessFile;

/* *
This class is a conduit to a random access file
containing bank account records.

*/

public class BankData

{

private RandomAccessFile file;

public static final int INT SIZE = 4;
public static final int DOUBLE SIZE = ©5;
public static final int RECORD SIZE = INT SIZE + DOUBLE SIZE;

/ * %
Constructs a BankData object that is not associated with a file.
*/
public BankData ()
{
file = ; i
} Continued
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/ * %
Opens the data file.
@param filename the name of the file containing bank
account information

*/
public void open (String filename)
throws IOException

if (file != ) { file.close(); }

file = new RandomAccessFile(filename, "rw'");

/ * %
Gets the number of accounts in the file.
@return the number of accounts
*/
public int size()
throws IOException

return (int) (file.length() / RECORD SIZE);
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BankData.java (cont.)
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/**
Closes the data file.
*/
public void close()
throws IOException
{
1f (file != ) { file.close(); }
file = ;
}

/ * %
Reads a bank account record.
@param n the index of the account in the data file
@return a bank account object initialized with the file data
*/
public BankAccount read(int n)
throws IOException

file.seek(n * RECORD SIZE);

int accountNumber = file.readInt();

double balance = file.readDouble () ;

return new BankAccount (accountNumber, balance);

BankData.java (cont.)

Continued
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/ * %
Finds the position of a bank account with a given number
@param accountNumber the number to find

@return the position of the account with the given number,

or -1 if there is no such account
*/
public int find(int accountNumber)
throws IOException

for (int 1 = 0; 1 < size(); i++)
{
file.seek (i * RECORD SIZE);
int a = file.readInt ()
if (a == accountNumber) {return i;
// Found a match

}
return ; // No match in the entire file
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BankData.java (cont.)

89 /**

90 Writes a bank account record to the data file
91 @param n the index of the account in the data file
92 @param account the account to write
93 */
94 public void write(int n, BankAccount account)
95 throws IOException
96 {
97 file.seek(n * RECORD SIZE);
o8 file.writelInt (account.getAccountNumber () ) ;
99 file.writeDouble (account.getBalance())
100 }
101 }

Continued
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BankData.java (cont.)

Program Run:
Account number: 1001
Amount to deposit: 100
Adding new account.
Done? (Y/N) N
Account number: 1018
Amount to deposit: 200
Adding new account.
Done? (Y/N) N
Account number: 1001
Amount to deposit: 1000
New balance: 1100.0
Done? (Y/N) Y
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20.4 Object Streams

o ObjectOutputStream class can save entire objects to
disk

o ObjectInputStream class can read them back in

o Use streams, not writers because objects are saved in
binary format
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Writing an Object to File

o The object output stream saves all instance variables:

BankAccount b = ...;

ObjectOutputStream out = new ObjectOutputStream(
new FileOutputStream("bank.dat"));

out.writeObject(b);

Copyright © 2011 by John Wiley & Sons. All rights reserved. Page 25



Reading an Object From File

o readObject method returns an Object reference

o Need to remember the types of the objects that you saved
and use a cast:

ObjectInputStream in = new ObjectInputStream(
new FileInputStream("bank.dat"));
BankAccount b =(BankAccount) in.readObject();

o readObject method can throw
ClassNotFoundException

= Checked exception = you must catch or declare it
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s Write and Read Array List
o Write:

ArraylList<BankAccount> a =

new ArraylList<BankAccount>();
// Now add many BankAccount objects into a
out.writeObject(a);

o Read:

ArraylList<BankAccount> a =
(ArrayList<BankAccount>) in.readObject();
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4 Serializable Interface
o Objects that are written to an object stream must belong to
a class that implements the Serializable Interface:

class BankAccount implements Serializable

{

}
o Serializable interface has no methods

o Serialization: Process of saving objects to a stream
= Each object is assigned a serial number on the stream

= |If the same object is saved twice, only serial number is written out
the second time

= When reading, duplicate serial numbers are restored as references
to the same object
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Bank.java

1 import java.io.Serializable;
2 import java.util.Arraylist;
3
4 ll,uf'kw
5 This bank contains a collection of bank accounts.
6 */
7 public class Bank implements Serializable
8 {
9 private Arraylist<BankAccount> accounts;
10
11 Jr
12 Constructs a bank with no bank accounts.
13 &/
14 public Bank()
15 {
16 accounts = new Arraylist<BankAccount>();
17 }
18
19 Jes
20 Adds an account to this bank.
21 @param a the account to add
22 % f
23 public void addAccount{Account a)
24 {
25 accounts.add(a);
26 1
27
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Bank.java (cont.)

‘I.r'k'k
Finds a bank account with a given number.
@param accountNumber the number to tind

@return the account with the given number, or nu1l if there
15 no such account

*/

public BankAccount find(int accountNumber)

{

for (BankAccount a : accounts)
{

if (a.getAccountNumber() == accountNumber) // Found a mawch

{
}

return a,

}

return null; // No match in the entire array list
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SerialDemo.java

1 import java.io.File;

2 import java.io.IOException;

3 import java.io.FileInputStream;

4 import java.io.FileQutputStream;

5 import java.io.ObjectInputStream;

©& import java.io.ObjectOutputStream;

; J

9 This program demonstrates serialization of a Bank object.
10 If a file with serialized data exists, then it is loaded.
11 Otherwise the program starts with a new bank.

12 Bank accounts are added to the bank. Then the bank
13 object is saved.

14 */

15 public class SerialDemo

16 {

17 public static void main(String[] args)

18 throws I0Exception, ClassMotFoundException
19 {

20 Bank firstBank0flava;

21

22 File f = new File("bank.dat");

23 if (f.exists())

24 {

25 ObjectInputStream in = new ObjectInputStream(
26 new FileInputStream(f)):

27 firstBankOflJava = (Bank) in.readObject();
28 in.close();:

29 1
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49 }

SerialDemo.java (cont.)

glse

{
firstBankOflava = new Bank();
firstBank0flava.addAccount(new BankAccount(1001, 20000)):
firstBankOflava.addAccount(new BankAccount(1015, 10000));

}

Iy Di_‘pm;il SOIME Money
BankAccount a = firstBankOfJava.find(1001);
a.deposit{100);
System.out.printin{a.getAccountNumber() +
a = firstBankOflava.find(1015);
System.out.printin(a.getAccountNumber() +

+ a.getBalance());

""" 4+ a.getBalance());
ObjectOutputStream out = new ObjectOutputStream(

new FileQutputStream(f));
out .writelObject(firstBankOfJava);

out.clase();

Continued
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SerialDemo.java (cont.)

Program Run

1001:20100.0
1015:10000.0

Second Program Run

1001:20200.0
1015:10000.0
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Summary: Java Class Hierarchy for Handling
Input and Output

o Streams access sequences of bytes. Readers and writers
access sequences of characters.
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Summary: Input and Output of Binary Data

o Use FileInputStream and FileOutputStream classes
to read and write binary data from and to disk files.

o The InputStream.read method returns an integer, either
-1 to indicate end of input, or a byte between 0 and 255.

o The OutputStream.write method writes a single byte.
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¢ Summary: Random Access

"
In sequential file access, a file is processed one byte at a
time.

Random access allows access at arbitrary locations in the
file, without first reading the bytes preceding the access
location.

A file pointer is a position in a random access file.
Because files can be very large, the file pointer is of type
long.

The RandomAccessFile class reads and writes numbers
In binary form.
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Summary: Object Streams

..............

i
o Use object streams to save and restore all instance
variables of an object automatically.

o Objects saved to an object stream must belong to
classes that implement the Serializable interface.
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