
Copyright © 2013 by John Wiley & Sons. All rights reserved. Slides by Rick Giles

OBJECT-

ORIENTED

DESIGN

CHAPTER 12

Chapter Goals

 To learn how to discover new classes and

methods

 To use CRC cards for class discovery

 To understand the concepts of cohesion and

coupling

 To identify inheritance, aggregation, and

dependency relationships between classes

 To describe class relationships using UML class

diagrams

 To apply object-oriented design techniques to

building complex programs

 To use packages to organize programs
Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 2

12.1 Classes and Their Responsibilities (1)

 To discover classes, look for nouns in the

problem description

 Example: Print an invoice

 Candidate classes:
• Invoice

• LineItem

• Customer

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 3

12.1 Classes and Their Responsibilities (2)

 Concepts from the problem domain are

good candidates for classes

 Examples:

• From science: Cannonball

• From business: CashRegister

• From a game: Monster

 The name for such a class should be a

noun that describes the class

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 4

The CRC Card Method

 A CRC card describes a class, its

responsibilities, and its collaborating

classes.

 For each responsibility of a class, its

collaborators are the other classes needed to

fulfill it

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 5

CRC Card

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 6

Cohesion (1)

 A class should represent a single concept

 The public interface of a class is cohesive

if all of its features are related to the

concept that the class represents

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 7

Cohesion (2)

 This class lacks cohesion:
public class CashRegister

{

public static final double NICKEL_VALUE = 0.05;

public static final double DIME_VALUE = 0.1;

public static final double QUARTER_VALUE = 0.25;

…

public void enterPayment(int dollars, int quarters,

int dimes, int nickels, int pennies)

. . .
}

 It involves two concepts: cash register and

coin
Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 8

Cohesion (3)

 Better: Make two classes:
public class Coin
{

public Coin(double aValue, String aName) { . . . }
public double getValue() { . . . }
. . .

}

public class CashRegister
{

public void enterPayment(int coinCount, Coin coinType)
{ . . . }
. . .

}

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 9

12.2 Relationships Between Classes

 A class depends on another if it uses

objects of that class

• “knows about” relationship

 CashRegister depends on Coin to

determine the value of the payment

 To visualize relationships, draw class

diagrams

 UML: Unified Modeling Language

• Notation for object-oriented analysis and design

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 10

Dependency Relationship

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 11

Coupling (1)

 If many classes depend on each other, the

coupling between classes is high

 Good practice: minimize coupling between

classes

 Change in one class may require update of all

coupled classes

 Using a class in another program requires

using all classes on which it depends

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 12

Coupling (2)

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 13

Aggregation (1)

 A class aggregates another of its objects

contain objects of another class

 “has-a” relationship

 Example: a quiz is made up of questions
 Class Quiz aggregates class Question

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 14

Aggregation (2)

 Finding out about aggregation helps in

implementing classes

 Example: since a quiz can have any

number of questions, use an array or array

list for collecting them
public class Quiz

{

private ArrayList<Question> questions;

. . .

}

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 15

Inheritance (1)

 Inheritance is the relationship between a

more general class (superclass) and a

more specialized class (subclass)

 “is-a” relationship

 Example: every car is a vehicle; every car

has tires

 Class Car is a subclass of class Vehicle; class

car aggregates class Tire

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 16

Inheritance (2)

public class Car extends Vehicle

{

private Tire[] tires;

. . .

}

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 17

UML Relationship Symbols

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 18

Parallel Arrays (1)

 Parallel arrays have the same length, each

of which stores a part of what conceptually

should be an object

 Example:
String[] descriptions;

double[] prices;

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 19

Parallel Arrays (2)

 Programmer must ensure arrays always

have the same length and that each slice is

filled with values that belong together

 Any method that operates on a slice must

get all values of the slice as parameters

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 20

Parallel Arrays (3)

 Avoid parallel arrays by changing them into

an array of objects

 Example:
public class Item

{

private String description;

private double price;

}

 Replace parallel arrays with
Item[] items;

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 21

Parallel Arrays (4)

 Each slot in the resulting array corresponds

to a slice in the set of parallel arrays

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 22

12.3 Application: Printing an Invoice

 Five-part development process:

1. Gather requirements.

2. Use CRC cards to find classes,

responsibilities, collaborators.

3. Use UML diagrams to record relationships.

4. Use javadoc to document method behavior.

5. Implement your program.

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 23

Requirements

 Program prints the billing address, all line

items, and the amount due

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 24

 Nouns from requirements:

CRC Cards (1)

Invoice

LineItem

Description

Quantity

Amount due

Address

Product

Price

Total

Copyright © 2011 by John Wiley & Sons. All rights reserved. Page 25

 Description and Price are attributes of the

Product class

 Quantity is an attribute of the LineItem class

 Total and Amount due are computed

 Left with four candidate classes:

CRC Cards (2)

Invoice

Address

LineItem

Product

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 26

CRC Cards (3)

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 27

UML Class Diagram

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 28

Method Documentation (1)

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 29

Method Documentation (2)

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 30

Method Documentation (3)

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 31

Method Documentation (4)

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 32

Class Documentation in HTML Format

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 33

InvoicePrinter.java

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 34

1 /**

2 This program demonstrates the invoice classes by printing

3 a sample invoice.

4 */

5 public class InvoicePrinter

6 {

7 public static void main(String[] args)

8 {

9 Address samsAddress

10 = new Address("Sam's Small Appliances",

11 "100 Main Street", "Anytown", "CA", "98765");

12

13 Invoice samsInvoice = new Invoice(samsAddress);

14 samsInvoice.add(new Product("Toaster", 29.95), 3);

15 samsInvoice.add(new Product("Hair dryer", 24.95), 1);

16 samsInvoice.add(new Product("Car vacuum", 19.99), 2);

17

18 System.out.println(samsInvoice.format());

19 }

20 }

Invoice.java

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 35

1 import java.util.ArrayList;

2

3 /**

4 Describes an invoice for a set of purchased products.

5 */

6 public class Invoice

7 {

8 private Address billingAddress;

9 private ArrayList<LineItem> items;

10

11 /**

12 Constructs an invoice.

13 @param anAddress the billing address

14 */

15 public Invoice(Address anAddress)

16 {

17 items = new ArrayList<LineItem>();

18 billingAddress = anAddress;

19 }

20
Continued

Invoice.java (cont.)

Copyright © 2013 John Wiley & Sons. All rights reserved. Page 36

Continued

21 /**

22 Adds a charge for a product to this invoice.

23 @param aProduct the product that the customer ordered

24 @param quantity the quantity of the product

25 */

26 public void add(Product aProduct, int quantity)

27 {

28 LineItem anItem = new LineItem(aProduct, quantity);

29 items.add(anItem);

30 }

31

Invoice.java (cont.)

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 37

Continued

32 /**

33 Formats the invoice.

34 @return the formatted invoice

35 */

36 public String format()

37 {

38 String r = " I N V O I C E\n\n"

39 + billingAddress.format()

40 + String.format("\n\n%-30s%8s%5s%8s\n",

41 "Description", "Price", "Qty", "Total");

42

43 for (LineItem item : items)

44 {

45 r = r + item.format() + "\n";

46 }

47

48 r = r + String.format("\nAMOUNT DUE: $%8.2f", getAmountDue());

49

50 return r;

51 }

52

Invoice.java (cont.)

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 38

53 /**

54 Computes the total amount due.

55 @return the amount due

56 */

57 public double getAmountDue()

58 {

59 double amountDue = 0;

60 for (LineItem item : items)

61 {

62 amountDue = amountDue + item.getTotalPrice();

63 }

64 return amountDue;

65 }

66 }

LineItem.java

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 39

1 /**

2 Describes a quantity of an article to purchase.

3 */

4 public class LineItem

5 {

6 private int quantity;

7 private Product theProduct;

8

9 /**

10 Constructs an item from the product and quantity.

11 @param aProduct the product

12 @param aQuantity the item quantity

13 */

14 public LineItem(Product aProduct, int aQuantity)

15 {

16 theProduct = aProduct;

17 quantity = aQuantity;

18 }

19

Continued

LineItem.java (cont.)

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 40

20 /**

21 Computes the total cost of this line item.

22 @return the total price

23 */

24 public double getTotalPrice()

25 {

26 return theProduct.getPrice() * quantity;

27 }

28

29 /**

30 Formats this item.

31 @return a formatted string of this item

32 */

33 public String format()

34 {

35 return String.format("%-30s%8.2f%5d%8.2f",

36 theProduct.getDescription(), theProduct.getPrice(),

37 quantity, getTotalPrice());

38 }

39 }

Product.java

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 41

Continued

1 /**

2 Describes a product with a description and a price.

3 */

4 public class Product

5 {

6 private String description;

7 private double price;

8

9 /**

10 Constructs a product from a description and a price.

11 @param aDescription the product description

12 @param aPrice the product price

13 */

14 public Product(String aDescription, double aPrice)

15 {

16 description = aDescription;

17 price = aPrice;

18 }

19

Product.java (cont.)

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 42

20 /**

21 Gets the product description.

22 @return the description

23 */

24 public String getDescription()

25 {

26 return description;

27 }

28

29 /**

30 Gets the product price.

31 @return the unit price

32 */

33 public double getPrice()

34 {

35 return price;

36 }

37 }

Address.java

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 43

Continued

1 /**

2 Describes a mailing address.

3 */

4 public class Address

5 {

6 private String name;

7 private String street;

8 private String city;

9 private String state;

10 private String zip;

11

12 /**

13 Constructs a mailing address.

14 @param aName the recipient name

15 @param aStreet the street

16 @param aCity the city

17 @param aState the two-letter state code

18 @param aZip the ZIP postal code

19 */

Address.java (cont.)

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 44

20 public Address(String aName, String aStreet,

21 String aCity, String aState, String aZip)

22 {

23 name = aName;

24 street = aStreet;

25 city = aCity;

26 state = aState;

27 zip = aZip;

28 }

29

30 /**

31 Formats the address.

32 @return the address as a string with three lines

33 */

34 public String format()

35 {

36 return name + "\n" + street + "\n"

37 + city + ", " + state + " " + zip;

38 }

39 }

12.4 Packages

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 45

 Package: a set of related classes

 Important packages in the Java library:

Package Purpose Sample Class

java.lang Language support Math

java.util Utilities Random

java.io Input and output PrintStream

java.awt Abstract Windowing Toolkit Color

java.applet Applets Applet

java.net Networking Socket

java.sql Database Access ResultSet

javax.swing Swing user interface JButton

omg.w3c.dom
Document Object Model for XML

documents
Document

Organizing Related Classes into Packages (1)

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 46

 To put a class in a package, you must place

package packageName;

as the first statement in its source

 Package name consists of one or more

identifiers separated by periods

Organizing Related Classes into Packages (2)

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 47

 For example, to put the BankAccount class into a

package named com.horstmann, the BankAccount.java
file must start as follows:

package com.horstmann;

public class BankAccount
{

. . .
}

 Default package has no name, no package statement

Importing Packages

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 48

 Can always use class without importing:

java.util.Scanner in = new java.util.Scanner(System.in);

 Tedious to use fully qualified name

 Import lets you use shorter class name:

import java.util.Scanner;

...

Scanner in = new Scanner(System.in);

 Can import all classes in a package:

import java.util.*;

 Never need to import classes in package java.lang

 Don’t need to import other classes in the same package

Package Names

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 49

 Use packages to avoid name clashes

java.util.Timer

vs.

javax.swing.Timer

 Package names should be unambiguous

 Recommendation: start with reversed domain name:

com.horstmann

 edu.sjsu.cs.walters: for Britney Walters’ classes

(walters@cs.sjsu.edu)

How Classes Are Located

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 50

 Base directory: holds your program's source files

 Path of a class source file, relative to base directory, must

match its package name

 Example: if base directory is

/home/britney/assignments

place source files for classes in package problem1 in directory

/homehome/britney/assignments/problem1

Summary

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 51

Discover Classes and their Responsibilities

 To discover classes, look for nouns in the problem

description.

 Concepts from the problem domain are good candidates for

classes.

 A CRC card describes a class, its responsibilities, and its

collaborating classes

 The public interface of a class is cohesive if all of its features

are related to the concept that the class represents.

Summary

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 52

Class Relationships and UML Diagrams

 A class depends on another class if it uses objects of that

class.

 It is a good practice to minimize the coupling (i.e.,

dependency) between classes.

 A class aggregates another if its objects contain objects of

the other class.

 Inheritance (the is-a relationship) is sometimes

inappropriately used when the has-a relationship would be

more appropriate.

 Aggregation (the has-a relationship) denotes that objects of

one class contain references to objects of another class.

Summary

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 53

 You need to be able to distinguish the UML notations for

inheritance, interface implementation, aggregation, and

dependency.

 Avoid parallel arrays by changing them into arrays of objects.

Summary

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 54

Object-Oriented Development Process

 Start the development process by gathering and

documenting program requirements.

 Use CRC cards to find classes, responsibilities, and

collaborators.

 Use UML diagrams to record class relationships.

 Use javadoc comments (with the method bodies left blank)

to record the behavior of classes.

 After completing the design, implement your classes.

Summary

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 55

Packages

 A package is a set of related classes.

 Use packages to structure the classes in your program.

 The import directive lets you refer to a class from a

package by its class name, without the package prefix.

