
Copyright © 2014 by John Wiley & Sons. All rights reserved. 1

Chapter 11 – Input/Output and Exception Handling

Copyright © 2014 by John Wiley & Sons. All rights reserved. 2

Exception Handling - Throwing Exceptions

 Exception handling provides a flexible mechanism for

passing control from the point of error detection to a

handler that can deal with the error.

 When you detect an error condition, throw an exception

object to signal an exceptional condition

 If someone tries to withdraw too much money from a

bank account

• Throw an IllegalArgumentException

IllegalArgumentException exception =

 new IllegalArgumentException("Amount exceeds balance");

throw exception;

Copyright © 2014 by John Wiley & Sons. All rights reserved. 3

Exception Handling - Throwing Exceptions

 When an exception is thrown, method terminates

immediately

• Execution continues with an exception handler

 When you throw an exception, the normal control flow is

terminated. This is similar to a circuit breaker that cuts

off the flow of electricity in a dangerous situation.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 4

Syntax 11.1 Throwing an Exception

Copyright © 2014 by John Wiley & Sons. All rights reserved. 5

Hierarchy of Exception Classes

Figure 2 A Part of the Hierarchy of Exception Classes

Copyright © 2014 by John Wiley & Sons. All rights reserved. 6

Catching Exceptions

 Every exception should be handled somewhere in your

program

 Place the statements that can cause an exception inside a

try block, and the handler inside a catch clause.

try

{

 String filename = . . .;

 Scanner in = new Scanner(new File(filename));

 String input = in.next();

 int value = Integer.parseInt(input);

 . . .

}

catch (IOException exception)

{

 exception.printStackTrace();

}

catch (NumberFormatException exception)

{

 System.out.println(exception.getMessage());

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 7

Catching Exceptions

 Three exceptions may be thrown in the try block:

• The Scanner constructor can throw a FileNotFoundException.

• Scanner.next can throw a NoSuchElementException.

• Integer.parseInt can throw a NumberFormatException.

 If any of these exceptions is actually thrown, then the rest

of the instructions in the try block are skipped.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 8

Catching Exceptions

 What happens when each exception is thrown:

 If a FileNotFoundException is thrown,

• then the catch clause for the IOException is executed because

FileNotFoundException is a descendant of IOException.

• If you want to show the user a different message for a

FileNotFoundException, you must place the catch clause

before the clause for an IOException

 If a NumberFormatException occurs,

• then the second catch clause is executed.

 A NoSuchElementException is not caught by any of the

catch clauses.

• The exception remains thrown until it is caught by another try

block.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 9

Syntax 11.2 Catching Exceptions

Copyright © 2014 by John Wiley & Sons. All rights reserved. 10

Catching Exceptions

 Each catch clause contains a handler.

 Our example just informed the user of a problem.

 Often better to give the user another chance.

 When you throw an exception, you can provide your own

message string.

 For example, when you call

throw new IllegalArgumentException("Amount exceeds balance");

the message of the exception is the string provided in

the constructor.

 You should only catch those exceptions that you can

handle.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 11

Checked Exceptions

 Exceptions fall into three categories

 Internal errors are reported by descendants of the type

Error.

• Example: OutOfMemoryError

 Descendants of RuntimeException,

• Example: IndexOutOfBoundsException or

IllegalArgumentException

• Indicate errors in your code.

• They are called unchecked exceptions.

 All other exceptions are checked exceptions.

• Indicate that something has gone wrong for some external reason

beyond your control

• Example: IOException

Copyright © 2014 by John Wiley & Sons. All rights reserved. 12

Checked Exceptions

 Checked exceptions are due to external circumstances

that the programmer cannot prevent.

• The compiler checks that your program handles these exceptions.

 The unchecked exceptions are your fault.

• The compiler does not check whether you handle an unchecked

exception.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 13

Checked Exceptions - throws

 You can handle the checked exception in the same

method that throws it

try

{

 File inFile = new File(filename);

 Scanner in = new Scanner(inFile); // ThrowsFileNotFoundException

 . . .

}

catch (FileNotFoundException exception) // Exception caught here

{

 . . .

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 14

Checked Exceptions - throws

 Often the current method cannot handle the exception.

Tell the compiler you are aware of the exception

 You want the method to terminate if the exception occurs

 Add a throws clause to the method header

public void readData(String filename) throws FileNotFoundException

{

 File inFile = new File(filename);

 Scanner in = new Scanner(inFile);

 . . .

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 15

Checked Exceptions - throws

 The throws clause signals to the caller of your method

that it may encounter a FileNotFoundException.

• The caller must decide

o To handle the exception

o Or declare the exception may be thrown

 Throw early, catch late

• Throw an exception as soon as a problem is detected.

• Catch it only when the problem can be handled

 Just as trucks with large or hazardous loads carry

warning signs, the throws clause warns the caller that an

exception may occur.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 16

Syntax 11.3 throws Clause

Copyright © 2014 by John Wiley & Sons. All rights reserved. 17

The finally Clause

 Once a try block is entered, the statements in a finally

clause are guaranteed to be executed - whether or not an

exception is thrown.

 Use when you do some clean up

 Example - closing files

PrintWriter out = new PrintWriter(filename);

try

{

 writeData(out);

}

finally

{

 out.close();

}

 Executes the close even if an exception is thrown.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 18

The finally Clause

All visitors to a foreign country have to go

through passport control, no matter what

happened on their trip. Similarly, the

code in a finally clause is always

executed, even when an exception has

occurred.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 19

Syntax 11.4 finally Clause

Copyright © 2014 by John Wiley & Sons. All rights reserved. 20

Designing Your Own Exception Types

 You can design your own exception types — subclasses

of Exception or RuntimeException.

 Throw an InsufficientFundsException when the

amount to withdraw an amount from a bank account

exceeds the current balance.

if (amount > balance)

{

 throw new InsufficientFundsException("withdrawal of " +

 amount + " exceeds balance of " + balance);

}

 Make InsufficientFundsException an unchecked

exception

• Programmer could have avoided it by calling getBalance first

• Extend RuntimeException or one of its subclasses

Copyright © 2014 by John Wiley & Sons. All rights reserved. 21

Designing Your Own Exception Types

 Supply two constructors for the class

• A constructor with no arguments

• A constructor that accepts a message string describing reason for

exception

public class InsufficientFundsException extends RuntimeException

{

 public InsufficientFundsException() {}

 public InsufficientFundsException(String message)

 {

 super(message);

 }

}

 When the exception is caught, its message string can be

retrieved

• Using the getMessage method of the Throwable class.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 22

Self Check 11.16

Answer: It is still 100. The last statement was not

executed because the exception was thrown.

 Suppose balance is 100 and amount is 200. What is the

value of balance after these statements?

if (amount > balance)

{

 throw new IllegalArgumentException("Amount exceeds balance");

}

balance = balance – amount;

Copyright © 2014 by John Wiley & Sons. All rights reserved. 23

Self Check 11.17

Answer:

if (amount < 0)

{

 throw new IllegalArgumentException("Negative amount");

}

 When depositing an amount into a bank account, we

don’t have to worry about overdrafts—except when the

amount is negative. Write a statement that throws an

appropriate exception in that case.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 24

Self Check 11.18

 Consider the method

public static void main(String[] args)

{

 try

 {

 Scanner in = new Scanner(new File("input.txt"));

 int value = in.nextInt();

 System.out.println(value);

 }

 catch (IOException exception)

 {

 System.out.println("Error opening file.");

 }

}

 Suppose the file with the given file name exists and has

no contents. Trace the flow of execution.
Continued

Copyright © 2014 by John Wiley & Sons. All rights reserved. 25

Self Check 11.18

Answer: The Scanner constructor succeeds because

the file exists. The nextInt method throws a

NoSuchElementException. This is not an

IOException. Therefore, the error is not caught.

Because there is no other handler, an error message

is printed and the program terminates.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 26

Self Check 11.19

Answer: Because programmers should simply check

that their array index values are valid instead of

trying to handle an

ArrayIndexOutOfBoundsException.

 Why is an ArrayIndexOutOfBoundsException not a

checked exception?

Copyright © 2014 by John Wiley & Sons. All rights reserved. 27

Self Check 11.20

Answer: No. You can catch both exception types in the

same way, as you can see in the code example on

page 536.

 Is there a difference between catching checked and

unchecked exceptions?

Copyright © 2014 by John Wiley & Sons. All rights reserved. 28

Self Check 11.21

Answer: There are two mistakes. The PrintWriter

constructor can throw a FileNotFoundException. You

should supply a throws clause. And if one of the array

elements is null, a NullPointerException is thrown. In

that case, the out.close() statement is never executed.

You should use a try/finally statement.

 What is wrong with the following code, and how can you

fix it?

public static void writeAll(String[] lines, String filename)

{

 PrintWriter out = new PrintWriter(filename);

 for (String line : lines)

 {

 out.println(line.toUpperCase());

 }

 out.close();

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 29

Self Check 11.22

Answer: To pass the exception message string to the

IllegalArgumentException superclass.

 What is the purpose of the call super(message) in the

second InsufficientFundsException

constructor?

Copyright © 2014 by John Wiley & Sons. All rights reserved. 30

Self Check 11.23

Answer: Because file corruption is beyond the control

of the programmer, this should be a checked

exception, so it would be wrong to extend

RuntimeException or IllegalArgumentException.

Because the error is related to input, IOException

would be a good choice.

 Suppose you read bank account data from a file. Contrary

to your expectation, the next input value is not of type

double. You decide to implement a BadDataException.

Which exception class should you extend?

Copyright © 2014 by John Wiley & Sons. All rights reserved. 31

Application: Handling Input Errors

 Program asks user for name of file

• File expected to contain data values

• First line of file contains total number of values

• Remaining lines contain the data

• Typical input file:

3

1.45

-2.1

0.05

Copyright © 2014 by John Wiley & Sons. All rights reserved. 32

Case Study: A Complete Example

 What can go wrong?

• File might not exist

• File might have data in wrong format

 Who can detect the faults?

• Scanner constructor will throw an exception when file does not

exist

• Methods that process input need to throw exception if they find

error in data format

 What exceptions can be thrown?

• FileNotFoundException can be thrown by Scanner constructor

• BadDataException, a custom checked exception class for

reporting wrong data format

Copyright © 2014 by John Wiley & Sons. All rights reserved. 33

Case Study: A Complete Example

 Who can remedy the faults that the exceptions report?

• Only the main method of DataAnalyzer program interacts with

user

• Catches exceptions

• Prints appropriate error messages

• Gives user another chance to enter a correct file

Copyright © 2014 by John Wiley & Sons. All rights reserved. 34

section_5/DataAnalyzer.java

 1 import java.io.FileNotFoundException;

 2 import java.io.IOException;

 3 import java.util.Scanner;

 4

 5 /**

 6 This program reads a file containing numbers and analyzes its contents.

 7 If the file doesn't exist or contains strings that are not numbers, an

 8 error message is displayed.

 9 */

 10 public class DataAnalyzer

 11 {

 12 public static void main(String[] args)

 13 {

 14 Scanner in = new Scanner(System.in);

 15 DataSetReader reader = new DataSetReader();

 16

Continued

code/section_5/DataAnalyzer.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 35

section_5/DataAnalyzer.java

 17 boolean done = false;

 18 while (!done)

 19 {

 20 try

 21 {

 22 System.out.println("Please enter the file name: ");

 23 String filename = in.next();

 24

 25 double[] data = reader.readFile(filename);

 26 double sum = 0;

 27 for (double d : data) { sum = sum + d; }

 28 System.out.println("The sum is " + sum);

 29 done = true;

 30 }

 31 catch (FileNotFoundException exception)

 32 {

 33 System.out.println("File not found.");

 34 }

 35 catch (BadDataException exception)

 36 {

 37 System.out.println("Bad data: " + exception.getMessage());

 38 }

 39 catch (IOException exception)

 40 {

 41 exception.printStackTrace();

 42 }

 43 }

 44 }

 45 }

code/section_5/DataAnalyzer.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 36

The readFile Method of the DataSetReader Class

 Constructs Scanner object

 Calls readData method

 Completely unconcerned with any exceptions

 If there is a problem with input file, it simply passes the

exception to caller:

public double[] readFile(String filename) throws IOException

{

 File inFile = new File(filename);

 Scanner in = new Scanner(inFile);

 try

 {

 readData(in);

 return data;

 }

 finally { in.close(); }

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 37

The readData Method of the DataSetReader Class

 Reads the number of values

 Constructs an array

 Calls readValue for each data value:

private void readData(Scanner in) throws BadDataException

{

 if (!in.hasNextInt())

 {

 throw new BadDataException("Length expected");

 }

 int numberOfValues = in.nextInt();

 data = new double[numberOfValues];

 for (int i = 0; i < numberOfValues; i++)

 readValue(in, i);

 if (in.hasNext())

 throw new BadDataException("End of file expected");

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 38

The readData Method of the DataSetReader Class

 Checks for two potential errors:

1. File might not start with an integer

2. File might have additional data after reading all values.

 Makes no attempt to catch any exceptions.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 39

The readValue Method of the DataSetReader Class

private void readValue(Scanner in, int i) throws BadDataException

{

 if (!in.hasNextDouble())

 throw new BadDataException("Data value expected");

 data[i] = in.nextDouble();

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 40

Error Scenario

1. DataAnalyzer.main calls DataSetReader.readFile

2. readFile calls readData

3. readData calls readValue

4. readValue doesn't find expected value and throws

BadDataException

5. readValue has no handler for exception and terminates

6. readData has no handler for exception and terminates

7. readFile has no handler for exception and terminates

after executing finally clause and closing the Scanner

object

8. DataAnalyzer.main has handler for

BadDataException

• Handler prints a message

• User is given another chance to enter file name

Copyright © 2014 by John Wiley & Sons. All rights reserved. 41

section_5/DataSetReader.java

 1 import java.io.File;

 2 import java.io.IOException;

 3 import java.util.Scanner;

 4

 5 /**

 6 Reads a data set from a file. The file must have the format

 7 numberOfValues

 8 value1

 9 value2

 10 . . .

 11 */

 12 public class DataSetReader

 13 {

 14 private double[] data;

 15

Continued

code/section_5/DataSetReader.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 42

section_5/DataSetReader.java

 16 /**

 17 Reads a data set.

 18 @param filename the name of the file holding the data

 19 @return the data in the file

 20 */

 21 public double[] readFile(String filename) throws IOException

 22 {

 23 File inFile = new File(filename);

 24 Scanner in = new Scanner(inFile);

 25 try

 26 {

 27 readData(in);

 28 return data;

 29 }

 30 finally

 31 {

 32 in.close();

 33 }

 34 }

 35

Continued

code/section_5/DataSetReader.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 43

section_5/DataSetReader.java

 36 /**

 37 Reads all data.

 38 @param in the scanner that scans the data

 39 */

 40 private void readData(Scanner in) throws BadDataException

 41 {

 42 if (!in.hasNextInt())

 43 {

 44 throw new BadDataException("Length expected");

 45 }

 46 int numberOfValues = in.nextInt();

 47 data = new double[numberOfValues];

 48

 49 for (int i = 0; i < numberOfValues; i++)

 50 {

 51 readValue(in, i);

 52 }

 53

 54 if (in.hasNext())

 55 {

 56 throw new BadDataException("End of file expected");

 57 }

 58 }

 59

Continued

code/section_5/DataSetReader.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 44

section_5/DataSetReader.java

 60 /**

 61 Reads one data value.

 62 @param in the scanner that scans the data

 63 @param i the position of the value to read

 64 */

 65 private void readValue(Scanner in, int i) throws BadDataException

 66 {

 67 if (!in.hasNextDouble())

 68 {

 69 throw new BadDataException("Data value expected");

 70 }

 71 data[i] = in.nextDouble();

 72 }

 73 }

code/section_5/DataSetReader.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 45

section_5/BadDataException.java

 1 import java.io.IOException;

 2

 3 /**

 4 This class reports bad input data.

 5 */

 6 public class BadDataException extends IOException

 7 {

 8 public BadDataException() {}

 9 public BadDataException(String message)

 10 {

 11 super(message);

 12 }

 13 }

code/section_5/BadDataException.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 46

Self Check 11.24

Answer: It would not be able to do much with them.

The DataSetReader class is a reusable class that

may be used for systems with different languages

and different user interfaces. Thus, it cannot engage

in a dialog with the program user.

 Why doesn't the DataSetReader.readFile method

catch any exceptions?

Copyright © 2014 by John Wiley & Sons. All rights reserved. 47

Self Check 11.25

Answer: DataAnalyzer.main calls

DataSetReader.readFile, which calls readData.

The call in.hasNextInt() returns false, and

readData throws a BadDataException. The

readFile method doesn't catch it, so it propagates

back to main, where it is caught.

 Suppose the user specifies a file that exists and is empty.

Trace the flow of execution.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 48

Self Check 11.26

Answer: It could simply be

private void readValue(Scanner in, int i)

{

 data[i] = in.nextDouble();

}

 The nextDouble method throws a

NoSuchElementException or a

InputMismatchException (which is a subclass of

NoSuchElementException) when the next input isn’t a

floating-point number. That exception isn’t a checked

exception, so it need not be declared.

 If the readValue method had to throw a

NoSuchElementException instead of a

BadDataException when the next input isn’t a floating-

point number, how would the implementation change?

Copyright © 2014 by John Wiley & Sons. All rights reserved. 49

Self Check 11.27

Answer: If it had been declared inside the try block, its

scope would only have extended until the end of the

try block, and it would not have been accessible in

the finally clause.

 Consider the try/finally statement in the readFile

method. Why was the in variable declared outside the

try block?

Copyright © 2014 by John Wiley & Sons. All rights reserved. 50

Self Check 11.28

Answer: The try/finally statement in the readFile

method can be rewritten as

try (Scanner in = new Scanner(inFile))

{

 readData(in);

 return data;

}

 How can the program be simplified when you use the

“automatic resource management” feature described in

Special Topic 11.6?

