Threading
Multi-threading
	Def. concurrent running of multiple tasks within a program
· A program may consist of many tasks that can run concurrently
· A thread is a flow of execution from beginning to end of a task
· Multiple threads run multiple CPUS
· Multiple threads can share a single CPU--- known as time sharing
· The operating system is responsible for scheduling and allocating resources for threads
· Threading is an example of asynchronous programming
· Multithreading can make your program more responsive and interactive, as well as enhance performance
· In java, each task is an instance of the Runnable interface, also called a runnable object
· a thread is essentially an object that facilitates the execution of a task
creating tasks and threads
· Tasks are objects
· To create a task you must first define a class for tasks
· A task class must implement the runnable interface
· The runnable interface contains a run method
· You need to implement the method run to tell the system how you thread is going to run
a template for developing a class Task
public class TaskClass implements Runnable
{
	public TaskClass(…) // constructors
	{…}

	//implement the method run
	public void run()
	{
		//tell the system how to run the custom thread
	}
	
} //end the TaskClass

· A task must be executed in the thread.
· The thread class contains the constructors for creating threads and many useful methods & controlling threads
· To create a task object:
· TaskClass task = new TaskClass();
· To create a thread for a task
· Thread thread = new Thread(task);
· You can then invoke the start method to tell the Java Virtual Machine that thread is ready to run

 major steps for creating a task, a thread, and starting the thread
public class Client
{
	public void someMethod()
	{
		//create an instance of TaskClass
		TaskClass task = new TaskClass(…);
		//create a thread
		Thread thread = new Thread(task);
		//start the thread
		thread.start(); //JVM will execute the task by invoking the task’s run method
		…
	} //end someMethod
} //end class Client

Example
Create a console program that has three tasks and three threads to run them.
· The first task prints the letter a 100 times
· The second task prints the letter b 100 times
· The third task prints the integers 1 to 100

Example implementation
//create a TaskClass called PrintChar
public char PrintChar implements Runnable
{
	private char charToPrint;
	private int times;
	//constructors
	public PrintChar(char c, int t) {
 charToPrint =c;
 times =t; }
	
//overriding the run method to tell the system what task to perform
	public void run()
	{
[bookmark: _GoBack]for (int i = 1; i <= times; i++)
{
System.out.print(charToPrint + “ ”);
}
} //end class

//Create a TaskClass called PrintNum for printing numbers from 1 to n for a given n
public class PrintNum() implements Runnable
{
	private int lastNum;
	public printNum(int n) { lastNum = n;}
	
//tell thread to how to run
	public void run()
	{
		for (int ii = 1; ii <= lastNum; ii++)
 {System.out.print(ii + “ “);
	} //end method run
} //end class

//create a class to run the tasks in the main() method
public class Test
{
	_________ main()
	{
//create tasks
Runnable printA = new PrintChar(‘a’, 100);
Runnable printB = new PrintChar(‘b’, 100);
Runnable print100 = new PrintNum(100);
//create threads run tasks
Thread t1 = new Thread(printA);
Thread t2 = new Thread(printB);
Thread t3 = new Thread(print100);
//start threads	Comment by Mathew Choi: Calling the start methods on the thread don’t cause them to run immediately. It just signals to the JVM that they are ready to be run.
t1.start();
t2.start();
t3.start();
}
}	
Sample output:
a a a 1 b 2 b a a a 3 4 …

The thread class
· The thread class contains the constructors for creating threads for tasks, and methods for controlling threads.
· Import java.lang.Runnable to use the Thread class.

Thread class
public class Thread
{
	//constructors
	public Thread(){…}	//creates an empty thread
	public Thread(Runnable task) {…}	//creates a task for a specific task
	
	//methods
	public void start(){…}	/*starts the thread that causes the run method to be invoked by the JVM*/
	public Boolean isAlive() {…}	//test whether the thread is currently running
	public void setPriority(int i) {…}	/*sets priority p (ranging from 1(lowest)j to 10 (highest)) for the thread*/
	public void join() {…}	//waits for this thread to finish
	public void sleep(long milliseconds) {…}	/*puts a thread to sleep for a specified time in milliseconds*/
	public void yield() {…}	/*causes the thread to pause temporarily and allow other threads to execute*/
	public void interrupt() {…}	//interrupts this thread (will be discussed in upper div. classes)
}

Note these methods are unstable and should be avoided:
· stop()
· suspend()
· resume()

There’s is another way to implement multithreading using the class thread instead of the runnable
interface (not recommended)	Comment by Mathew Choi: This implementation is not scalable, meaning that it is difficult to maintain and expand. This will ultimately cause the program to cost more when expanding

implementation of multiThreading using THREAD CLASs (Not recommended)
//CustomThread class
public class CustomThread extend Thread
{
	…
	Public CustomThread(…) {…}
	
	//overriding the abstract method run
	public void run() {…}	Comment by Mathew Choi: The disadvantage of this implementation is that java only supports single inheritance. Thus, you cannot extend this class any further.
}

//Client class
public class Client
{
	…
	public void doSomething()
{
	…
CustomThread th = new CustomThread(…);
	th.start();
	…
}
}

Using yield()
public void run()
{
	For (int i = 0; i< lastNum; i++)
	{
		System.out.print(“ “ + i);
		Thread.yield();	Comment by Mathew Choi: Every time a number is printed, the thread of the print100 is yielded So each number is followed by some characters.
	}
}

Every time a number is printed, the thread of the print100 task is yielded. So each number is followed by
some characters.
Using sleep(int milliseconds)
· puts the thread to sleep for a specified time in milliseconds to allow other threads to execute
· sleep method might throw an interruptexception
public void run()
{
	try
	{
		for (int i = 0; i < lastNum; i++)
		{
		 System.out.print(“ “ + i);
	 If (i >= 50)
 {Thread.sleep(1);}
		}
	} //end try block
	Catch(InterruptedException e)
	{
	}
} //end method

Using join()
· forces one thread to wait for another to finish
public void run()
{
Thread t4 = new Thread(new PrintChar(‘c’, 40));
	t4.start();
	Try
	{
		for(int i = 0; i < lastNum; i++)
		{
		 System.out.print(“ “ + i);
 if(i==50)	Comment by Mathew Choi: The numbers 50-100 are printed after the thread T4 is finished
 {t4.join();}
 }
 } //end try
	Catch (InterruptedException e) {
 }

A new thread4 is created. It prints character c 40 times. The numbers from 50 to 100 are printed after
thread thread4 is finished.

Thread Priority
· If all runnable threads have the same priority, each is assigned an equal portion of CPU in a circular queue. This is called a round-robin scheduling.
· You can increase and decrease thread priority using the setPriority(int) method.
· 1 (lowest) – 10 (highest)
· You can also use int constants
· MIN_PRIORITY = 1
· NORM_PRIORITY = 5
· MAX_PRIORITY = 10
· setPriority(5) and setPriority(NORM_PRIORITY) are equivalent
· The JVM always picks up the current runnable thread with the highest priority. A lower priority thread can run only when no higher priority thread are running
Thread Pool
· Creating tasks and threads we learned are not efficient
Runnable task1 = new Task(task);
Thread t = new Thread (task1);
t.start();
· This approach is convenient for a single task execution but it isn’t efficient for a large number of tasks because you have to create a thread for each task
· Starting a new thread for each task could limit the throughput and cause poor performance
· A thread pool is ideal to manage the tasks
· Java provides:
· Executor interface- executing tasks in a thread pool
· To create an executor object use the static methods in the Executors class
· ExecutorService interface- managing and controlling tasks
Executors Class

Methods
1. ExecutorService newFixedThreadPool (int numOfThreads)
2. ExecutorService newCachedThreadPool()

newFixedThreadPool

Creates a thread pool with a fixed number of threads executing concurrently. A thread might be reused to execute another task after its current task is finished

newcachedthreadpool

Creates a thread pool that creates new threads as needed, but will reuse previously constructed threads when they’re available

using a thread pool
Main
//create a fixed thread pool with a maximum of three threads
ExecutorService executor = Executors.newFixedThreadPool(3);
//submit runnable tasks to executor
executor.execute(new PrintChar(‘c’, 100));
executor.execute(new PrintChar(‘a’, 100));
executor.execute(new PrintNum(100));

Notes:
· the executor creates three threads to execute three tasks concurrently
· if we change the executor to create only one thread in the thread pool

ExecutorService executor = Executors.newFixedThreadPool(1);
· Then the three runnable tasks will be executed sequentially

if we use newCachedThreadPool
ExecutorService executor = Executors.newCachedThreadPool();
· New threads will be created for each waiting task, so all the tasks will execute concurrently
· To shut down the executor uses the method shutdown
executor.shutdown();

