
Algorithm Efficiency and
Sorting

Measuring the Efficiency of Algorithms

• Analysis of algorithms
– Provides tools for contrasting the efficiency of different

methods of solution

• A comparison of algorithms
– Should focus of significant differences in efficiency

– Should not consider reductions in computing costs due to
clever coding tricks

10 A-2

Measuring the Efficiency of Algorithms

• Three difficulties with comparing programs instead
of algorithms
– How are the algorithms coded?
– What computer should you use?
– What data should the programs use?

• Algorithm analysis should be independent of
– Specific implementations
– Computers
– Data

10 A-3

The Execution Time of Algorithms

• Counting an algorithm's operations is a way to access
its efficiency
– An algorithm’s execution time is related to the number of

operations it requires

– Examples

• Traversal of a linked list

• The Towers of Hanoi

• Nested Loops

10 A-4

Algorithm Growth Rates

• An algorithm’s time requirements can be measured
as a function of the problem size

• An algorithm’s growth rate
– Enables the comparison of one algorithm with another

– Examples
Algorithm A requires time proportional to n2

Algorithm B requires time proportional to n

• Algorithm efficiency is typically a concern for large
problems only

10 A-5

Algorithm Growth Rates

Figure 10-1
Time requirements as a function of the problem size n

10 A-6

Order-of-Magnitude Analysis and Big
O Notation

• Definition of the order of an algorithm
Algorithm A is order f(n) – denoted O(f(n)) – if constants k
and n0 exist such that A requires no more than k * f(n) time
units to solve a problem of size n ≥ n0

• Growth-rate function
– A mathematical function used to specify an algorithm’s

order in terms of the size of the problem

• Big O notation
– A notation that uses the capital letter O to specify an

algorithm’s order
– Example: O(f(n))

10 A-7

Order-of-Magnitude Analysis and Big
O Notation

Figure 10-3a
A comparison of growth-rate functions: a) in tabular form

10 A-8

Order-of-Magnitude Analysis and Big
O Notation

Figure 10-3b
A comparison of growth-rate functions: b) in graphical form

10 A-9

Order-of-Magnitude Analysis and Big
O Notation

• Order of growth of some common functions
O(1) < O(log2n) < O(n) < O(n * log2n) < O(n2) < O(n3) < O(2n)

• Properties of growth-rate functions
– You can ignore low-order terms

– You can ignore a multiplicative constant in the high-order
term

– O(f(n)) + O(g(n)) = O(f(n) + g(n))

10 A-10

Order-of-Magnitude Analysis and Big
O Notation

• Worst-case and average-case analyses
– An algorithm can require different times to solve different

problems of the same size

• Worst-case analysis
– A determination of the maximum amount of time that an

algorithm requires to solve problems of size n

• Average-case analysis
– A determination of the average amount of time that an

algorithm requires to solve problems of size n

10 A-11

Keeping Your Perspective

• Throughout the course of an analysis, keep in mind
that you are interested only in significant differences
in efficiency

• When choosing an ADT’s implementation, consider
how frequently particular ADT operations occur in a
given application

• Some seldom-used but critical operations must be
efficient

10 A-12

Keeping Your Perspective

• If the problem size is always small, you can probably
ignore an algorithm’s efficiency

• Weigh the trade-offs between an algorithm’s time
requirements and its memory requirements

• Compare algorithms for both style and efficiency

• Order-of-magnitude analysis focuses on large
problems

10 A-13

The Efficiency of Searching Algorithms

• Sequential search
– Strategy

• Look at each item in the data collection in turn,
beginning with the first one

• Stop when
– You find the desired item

– You reach the end of the data collection

10 A-14

The Efficiency of Searching Algorithms

• Sequential search
– Efficiency

• Worst case: O(n)

• Average case: O(n)

• Best case: O(1)

10 A-15

The Efficiency of Searching Algorithms

• Binary search
– Strategy

• To search a sorted array for a particular item
– Repeatedly divide the array in half

– Determine which half the item must be in, if it is indeed present, and
discard the other half

– Efficiency
• Worst case: O(log2n)

• For large arrays, the binary search has an enormous
advantage over a sequential search

10 A-16

Sorting Algorithms and Their Efficiency

• Sorting
– A process that organizes a collection of data into either

ascending or descending order

• Categories of sorting algorithms
– An internal sort

• Requires that the collection of data fit entirely in the computer’s
main memory

– An external sort
• The collection of data will not fit in the computer’s main memory

all at once but must reside in secondary storage

10 A-17

Sorting Algorithms and Their Efficiency

• Data items to be sorted can be
– Integers
– Character strings
– Objects

• Sort key
– The part of a record that determines the sorted order of

the entire record within a collection of records

10 A-18

Selection Sort
• Selection sort

– Strategy
• Select the largest item and put it in its correct place
• Select the next largest item and put it in its correct place, etc.

Figure 10-4
A selection sort of an array of

five integers

10 A-19

Selection Sort

• Analysis
– Selection sort is O(n2)

• Advantage of selection sort
– It does not depend on the initial arrangement of the data

• Disadvantage of selection sort
– It is only appropriate for small n

10 A-20

Selection Code

// This code will compile with warnings about unchecked exceptions

public class SortsClass {

public static void selectionSort(Comparable[] theArray,

int n) {

// ---

// Sorts the items in an array into ascending order.

// Precondition: theArray is an array of n items.

// Postcondition: theArray is sorted into

// ascending order.

// Calls: indexOfLargest.

// ---

// last = index of the last item in the subarray of

// items yet to be sorted

// largest = index of the largest item found

10 A-21

Selection Code

for (int last = n-1; last >= 1; last--) {

// Invariant: theArray[last+1..n-1] is sorted

// and > theArray[0..last]

// select largest item in theArray[0..last]

int largest = indexOfLargest(theArray, last+1);

// swap largest item theArray[largest] with

// theArray[last]

Comparable temp = theArray[largest];

theArray[largest] = theArray[last];

theArray[last] = temp;

} // end for

} // end selectionSort

10 A-22

Selection Code
private static int indexOfLargest(Comparable[] theArray,

int size) {
// ---
// Finds the largest item in an array.
// Precondition: theArray is an array of size items;
// size >= 1.
// Postcondition: Returns the index of the largest
// item in the array.
// ---

int indexSoFar = 0; // index of largest item found so far
// Invariant: theArray[indexSoFar]>=theArray[0..currIndex-1]

for (int currIndex = 1; currIndex < size; ++currIndex) {
if (theArray[currIndex].compareTo(theArray[indexSoFar])>0) {

indexSoFar = currIndex;
} // end if

} // end for
return indexSoFar; // index of largest item

} // end indexOfLargest

10 A-23

Performance Analysis

10 A-24

Bubble Sort

• Bubble sort
– Strategy

• Compare adjacent elements and exchange them if they
are out of order

– Comparing the first two elements, the second and third
elements, and so on, will move the largest (or smallest)
elements to the end of the array

– Repeating this process will eventually sort the array into
ascending (or descending) order

10 A-25

Bubble Sort

Figure 10-5
The first two passes of a bubble sort of an array of five integers: a) pass 1;
b) pass 2

10 A-26

Bubble Sort Code
public static void bubbleSort(Comparable[] theArray, int n) {

// ---
// Sorts the items in an array into ascending order.
// Precondition: theArray is an array of n items.
// Postcondition: theArray is sorted into ascending
// order.
// ---

boolean sorted = false; // false when swaps occur
for (int pass = 1; (pass < n) && !sorted; ++pass) {
// Invariant: theArray[n+1-pass..n-1] is sorted
// and > theArray[0..n-pass]

sorted = true; // assume sorted
for (int index = 0; index < n-pass; ++index) {
// Invariant: theArray[0..index-1] <= theArray[index]

int nextIndex = index + 1;
if (theArray[index].compareTo(theArray[nextIndex]) > 0) {
// exchange items

Comparable temp = theArray[index];
theArray[index] = theArray[nextIndex];
theArray[nextIndex] = temp;
sorted = false; // signal exchange

} // end if
} // end for

// Assertion: theArray[0..n-pass-1] < theArray[n-pass]
} // end for

} // end bubbleSort

10 A-27

Bubble Sort Analysis
• Analysis

– Worst case: O(n2)

– Best case: O(n)

10 A-28

Insertion Sort
• Insertion sort

– Strategy
• Partition the array into two regions: sorted and unsorted
• Take each item from the unsorted region and insert it into its

correct order in the sorted region

Figure 10-6
An insertion sort partitions the array into two regions

10 A-29

Insertion Sort

Figure 10-7
An insertion sort of an array of five integers.

10 A-30

Insertion Sort Code
public static void insertionSort(Comparable[] theArray,

int n) {
// ---
// Sorts the items in an array into ascending order.
// Precondition: theArray is an array of n items.
// Postcondition: theArray is sorted into ascending
// order.
// ---
// unsorted = first index of the unsorted region,
// loc = index of insertion in the sorted region,
// nextItem = next item in the unsorted region
// initially, sorted region is theArray[0],
// unsorted region is theArray[1..n-1];

for (int unsorted = 1; unsorted < n; ++unsorted) {
// Invariant: theArray[0..unsorted-1] is sorted
// find the right position (loc) in
// theArray[0..unsorted] for theArray[unsorted],
// which is the first item in the unsorted
// region; shift, if necessary, to make room

10 A-31

Insertion Sort Code
Comparable nextItem = theArray[unsorted];

int loc = unsorted;

while ((loc > 0) &&

(theArray[loc-1].compareTo(nextItem) > 0)) {

// shift theArray[loc-1] to the right

theArray[loc] = theArray[loc-1];

loc--;

} // end while

// insert nextItem into sorted region

theArray[loc] = nextItem;

} // end for

} // end insertionSort

10 A-32

Insertion Sort
• Analysis

– Worst case: O(n2)

– For small arrays

• Insertion sort is appropriate due to its simplicity

– For large arrays

• Insertion sort is prohibitively inefficient

10 A-33

Mergesort

• Important divide-and-conquer sorting algorithms
– Mergesort
– Quicksort

• Mergesort
– A recursive sorting algorithm
– Gives the same performance, regardless of the initial order

of the array items
– Strategy

• Divide an array into halves
• Sort each half
• Merge the sorted halves into one sorted array

Mergesort

Figure 10-8
A mergesort with an auxiliary temporary array

Mergesort

Figure 10-9
A mergesort of an array of six integers

Mergesort

• Analysis
– Worst case: O(n * log2n)
– Average case: O(n * log2n)
– Advantage

• It is an extremely efficient algorithm with respect to
time

– Drawback
• It requires a second array as large as the original array

Mergesort
Click here to open the mergesort program

Quicksort
• Quicksort

– A divide-and-conquer algorithm
– Strategy

• Partition an array into items that are less than the pivot and those
that are greater than or equal to the pivot

• Sort the left section
• Sort the right section

Figure 10-12
A partition about a pivot

Quicksort
• Using an invariant to develop a partition

algorithm
– Invariant for the partition algorithm

The items in region S1 are all less than the pivot, and those in
S2 are all greater than or equal to the pivot

Figure 10-14
Invariant for the partition algorithm

Quicksort
• Analysis

– Worst case
• quicksort is O(n2) when the array is already sorted and the

smallest item is chosen as the pivot

Figure 10-19
A worst-case partitioning

with quicksort

Quicksort
• Analysis

– Average case
• quicksort is O(n * log2n) when S1 and S2 contain the same – or

nearly the same – number of items arranged at random

Figure 10-20
A average-case partitioning with

quicksort

Quicksort

• Analysis
– quicksort is usually extremely fast in practice

– Even if the worst case occurs, quicksort’s performance
is acceptable for moderately large arrays

– Click here to open the quicksort program

Radix Sort

• Radix sort
– Treats each data element as a character string

– Strategy

• Repeatedly organize the data into groups according to
the ith character in each element

• Analysis
– Radix sort is O(n)

Radix Sort

Figure 10-21
A radix sort of eight integers

A Comparison of Sorting Algorithms

Figure 10-22
Approximate growth rates of time required for eight sorting algorithms

Summary

• Order-of-magnitude analysis and Big O notation
measure an algorithm’s time requirement as a
function of the problem size by using a growth-rate
function

• To compare the inherit efficiency of algorithms
– Examine their growth-rate functions when the problems

are large

– Consider only significant differences in growth-rate
functions

Summary
• Worst-case and average-case analyses

– Worst-case analysis considers the maximum amount of
work an algorithm requires on a problem of a given size

– Average-case analysis considers the expected amount of
work an algorithm requires on a problem of a given size

• Order-of-magnitude analysis can be used to choose
an implementation for an abstract data type

• Selection sort, bubble sort, and insertion sort are all
O(n2) algorithms

• Quicksort and mergesort are two very efficient
sorting algorithms

Acknowledgement
All of the material for the slides were adapted from

Data Abstraction and Problem Solving with Java, 2/E
Frank Carrano, University of Rhode Island

Janet Prichard, Bryant College

10 A-49

		
	Measuring the Efficiency of Algorithms
	Measuring the Efficiency of Algorithms
	The Execution Time of Algorithms
	Algorithm Growth Rates
	Algorithm Growth Rates
	Order-of-Magnitude Analysis and Big O Notation
	Order-of-Magnitude Analysis and Big O Notation
	Order-of-Magnitude Analysis and Big O Notation
	Order-of-Magnitude Analysis and Big O Notation
	Order-of-Magnitude Analysis and Big O Notation
	Keeping Your Perspective
	Keeping Your Perspective
	The Efficiency of Searching Algorithms
	The Efficiency of Searching Algorithms
	The Efficiency of Searching Algorithms
	Sorting Algorithms and Their Efficiency
	Sorting Algorithms and Their Efficiency
	Selection Sort
	Selection Sort
	Selection Code
	Selection Code
	Selection Code
	Performance Analysis
	Bubble Sort
	Bubble Sort
	Bubble Sort Code
	Bubble Sort Analysis
	Insertion Sort
	Insertion Sort
	Insertion Sort Code
	Insertion Sort Code
	Insertion Sort
	Mergesort
	Mergesort
	Mergesort
	Mergesort
	Mergesort
	Quicksort
	Quicksort
	Quicksort
	Quicksort
	Quicksort
	Radix Sort
	Radix Sort
	A Comparison of Sorting Algorithms
	Summary
	Summary
		

