
Singleton design pattern in Java

 We can make constructor as private. So that We can not create an

object outside of the class.

 This property is useful to create singleton class in java.

 Singleton pattern helps us to keep only one instance of a class at any

time.

 The purpose of singleton is to control object creation by keeping private
constructor.

We're going to create a SingleObject class. SingleObject class have its

constructor as private and have a static instance of itself.

SingleObject class provides a static method to get its static instance to

outside world. SingletonPatternDemo, our demo class will

use SingleObject class to get a SingleObject object.

Step 1

Create a Singleton Class.

SingleObject.java

public class SingleObject {

 //create an object of SingleObject

 private static SingleObject instance = new SingleObject();

 //make the constructor private so that this class cannot be

 //instantiated

 private SingleObject(){}

 //Get the only object available

 public static SingleObject getInstance(){

 return instance;

 }

 public void showMessage(){

 System.out.println("Hello World!");

 }

}

Step 2

Get the only object from the singleton class.

SingletonPatternDemo.java

public class SingletonPatternDemo {

 public static void main(String[] args) {

 //illegal construct

 //Compile Time Error: The constructor SingleObject() is not visible

 //SingleObject object = new SingleObject();

 //Get the only object available

 SingleObject object = SingleObject.getInstance();

 //show the message

 object.showMessage();

 }

}

Output

Hello World!

Following implementation shows a classic Singleton design pattern −

public class ClassicSingleton {

 private static ClassicSingleton instance = null;

 private ClassicSingleton() {

 // Exists only to defeat instantiation.

 }

 public static ClassicSingleton getInstance() {

 if(instance == null) {

 instance = new ClassicSingleton();

 }

 return instance;

 }

}

The ClassicSingleton class maintains a static reference to the lone singleton

instance and returns that reference from the static getInstance() method.

Here, ClassicSingleton class employs a technique known as lazy instantiation

to create the singleton; as a result, the singleton instance is not created until

the getInstance() method is called for the first time. This technique ensures

that singleton instances are created only when needed.

