
1

Command Pattern

Command pattern is a behavioral design pattern which is useful to abstract

business logic into discrete actions which we call commands. This command

object helps in loose coupling between two classes where one class (invoker)

shall call a method on other class (receiver) to perform a business operation.

Design Participants

Participants for command design pattern are:

 Command interface – for declaring an operation.

 Concrete command classes – which extends the Command interface, and has

execute method for invoking business operation methods on receiver. It

internally has reference of the receiver of command.

 Invoker – which is given the command object to carry out the operation.

 Receiver – which execute the operation.

In command pattern, the invoker is decoupled from the action performed by the

receiver. The invoker has no knowledge of the receiver. The invoker invokes a

command, and the command executes the appropriate action of the receiver.

Thus, the invoker can invoke commands without knowing the details of the action

to be performed. In addition, this decoupling means that changes to the

receiver’s action don’t directly affect the invocation of the action.

In the command pattern, the invoker is decoupled from the action performed by the
receiver. The invoker has no knowledge of the receiver. The invoker invokes a
command, and the command executes the appropriate action of the receiver. Thus, the
invoker can invoke commands without knowing the details of the action to be
performed. In addition, this decoupling means that changes to the receiver's action don't
directly affect the invocation of the action.

https://howtodoinjava.com/gang-of-four-java-design-patterns/

2

Problem Statement

Suppose we need to build a remote control for home automation system which

shall control different lights/electrical units of the home. A single button in

remote may be able to perform same operation on similar devices e.g. a TV

ON/OFF button can be used to turn ON/OFF different TV set in different rooms.

Here this remote will be a programmable remote and it would be used to turn on

and off various lights/fan etc.

First of all, let’s see how the problem can be solved with any design approach.

Her the code of the remote control may look like –

If(buttonName.equals(“Light”))

{

 //Logic to turn on that light

}

else If(buttonName.equals(“Fan”))

{

 //Logic to turn on that Fan

}

But above solution apparently has many visible issues like –

3

 Any new item (e.g. TubeLight) will require change in the code of the remote

control. You will need to add more if-elses.

 If we want to change the button for any other purpose, then we need to

change the code as well.

 On top of that, complexity and maintainability of the code will increase in

case there are lots of items in the home.

 Finally, code is not clean and is tightly coupled and we are not following

best practices like coding to interfaces etc.

Command Pattern Implementation

Let’s solve above home automation problem with command design pattern and

design each component one at a time.

 ICommand interface which is the command interface

 Light is one of a receiver component. It can accept multiple commands

related to Light like turn on and off

 Fan is also another type of a receiver component. It can accept multiple

commands related to Fan like turn on and off

 HomeAutomationRemote is the invoker object, which asks the command to

carry out the request. Here Fan on/off, Light on/off.

 StartFanCommand,StopFanCommand,TurnOffLightCommand,TurnOnLightCom

mand etc. are different type of command implementations.

4

Class Diagram

Lets see the java source of each class and interface.

ICommand.java

/**

 * Command Interface which will be implemented by the exact commands.

 *

 */

@FunctionalInterface

public interface ICommand {

 public void execute();

}

Light.java

package com.cecs277.command.homeautomation.light;

/**

5

 * Light is a Receiver component in command pattern terminology.

 *

 */

public class Light {

 public void turnOn() {

 System.out.println("Light is on");

 }

 public void turnOff() {

 System.out.println("Light is off");

 }

}

Fan.java

package com.cecs277.command.homeautomation.fan;

/**

 * Fan class is a Receiver component in command pattern terminology.

 *

 */

public class Fan {

 void start() {

 System.out.println("Fan Started..");

 }

 void stop() {

 System.out.println("Fan stopped..");

 }

}

TurnOffLightCommand.java

package com.cecs277.command.homeautomation.light;

import com.cecs277.command.homeautomation.ICommand;

/**

 * Light Start Command where we are encapsulating both Object[light] and

*the operation[turnOn] together as command. This is the essence of the

*command.

 **/

public class TurnOffLightCommand implements ICommand {

 Light light;

6

 public TurnOffLightCommand(Light light) {

 super();

 this.light = light;

 }

 public void execute() {

 System.out.println("Turning off light.");

 light.turnOff();

 }

}

TurnOnLightCommand.java

package com.cecs277.command.homeautomation.light;

import com.cecs277.command.homeautomation.ICommand;

/**

 * Light stop Command where we are encapsulating both Object[light] and

*the operation[turnOff] together as command. This is the essence of the

command.

 **/

public class TurnOnLightCommand implements ICommand {

 Light light;

 public TurnOnLightCommand(Light light) {

 super();

 this.light = light;

 }

 public void execute() {

 System.out.println("Turning on light.");

 light.turnOn();

 }

}

StartFanCommand.java

package com.cecs277.command.homeautomation.fan;

import com.cecs277.command.homeautomation.ICommand;

/**

 * Fan Start Command where we are encapsulating both Object[fan] and the

 * operation[start] together as command. This is the essence of the

command.

 *

7

 */

public class StartFanCommand implements ICommand {

 Fan fan;

 public StartFanCommand(Fan fan) {

 super();

 this.fan = fan;

 }

 public void execute() {

 System.out.println("starting Fan.");

 fan.start();

 }

}

StopFanCommand.java

package com.cecs277.command.homeautomation.fan;

import com.cecs277.command.homeautomation.ICommand;

/**

 * Fan stop Command where we are encapsulating both Object[fan] and the

 * operation[stop] together as command. This is the essence of the command.

 *

 */

public class StopFanCommand implements ICommand {

 Fan fan;

 public StopFanCommand(Fan fan) {

 super();

 this.fan = fan;

 }

 public void execute() {

 System.out.println("stopping Fan.");

 fan.stop();

 }

}

HomeAutomationRemote.java

package com.cecs277.command.homeautomation;

/**

 * Remote Control for Home automation where it will accept the command *and

execute. This is the invoker in terms of command pattern *terminology

8

 **/

public class HomeAutomationRemote {

 //Command Holder

 ICommand command;

 //Set the command in runtime to trigger.

 public void setCommand(ICommand command) {

 this.command = command;

 }

 //Will call the command interface method so that particular command

 //can be invoked.

 public void buttonPressed() {

 command.execute();

 }

}

Demo

Lets code and excute the client code to see how commands are executed.

package com.cec277.designpattern.command.homeautomation;

import com.cecs277.command.homeautomation.fan.Fan;

import com.cecs277.command.homeautomation.fan.StartFanCommand;

import com.cecs277.command.homeautomation.fan.StopFanCommand;

import com.cecs277.command.homeautomation.light.Light;

import com.cecs277.command.homeautomation.light.TurnOnLightCommand;

/**

 * Demo class for HomeAutomation

 *

 */

public class Demo //client

{

 public static void main(String[] args)

 {

 Light livingRoomLight = new Light(); //receiver 1

 Fan livingRoomFan = new Fan(); //receiver 2

 Light bedRoomLight = new Light(); //receiver 3

 Fan bedRoomFan = new Fan(); //receiver 4

9

 HomeAutomationRemote remote = new

 homeAutomationRemote(); //Invoker

 remote.setCommand(new TurnOnLightCommand(livingRoomLight));

 remote.buttonPressed();

 remote.setCommand(new TurnOnLightCommand(bedRoomLight));

 remote.buttonPressed();

 remote.setCommand(new StartFanCommand(livingRoomFan));

 remote.buttonPressed();

 remote.setCommand(new StopFanCommand(livingRoomFan));

 remote.buttonPressed();

 remote.setCommand(new StartFanCommand(bedRoomFan));

 remote.buttonPressed();

 remote.setCommand(new StopFanCommand(bedRoomFan));

 remote.buttonPressed();

 }

}

Output:

Turning on light.

Light is on

Turning on light.

Light is on

starting Fan.

Fan Started..

stopping Fan.

Fan stopped..

starting Fan.

Fan Started..

stopping Fan.

Fan stopped..

Implementation of Command Design Pattern

10

1. Define a Command interface having an execute method execute().

2. All command objects must implements a Command interface. The execute
method delegates the request to a receiver to execute the command.

3. A receiver class holds the logic of performing any specific task requested
as command. It is called from execute method of command object.

4. The client creates a set of command objects and associates receiver with
it. Client passes commands to invoker to store it. Later, client calls invoker to
execute the commands.

Here is a sample code of a classic implementation of this pattern for placing
orders for buying and selling stocks:

We have created an interface Order which is acting as a command. We have

created a Stock class which acts as a request (Receiver). We have concrete
command classes BuyStock and SellStock implementing Order interface which

will do actual command processing. A class Broker is created which acts as an
invoker object. It can take and place orders.

Broker object uses command pattern to identify which object will execute which
command based on the type of command. CommandPatternDemo, our demo
class, will use Broker class to demonstrate command pattern.

11

Step 1

Create a command interface.

Order.java

public interface Order {

 void execute();

}

Step 2

Create a request class or Receiver

Stock.java

public class Stock {

 private String name = "ABC";

 private int quantity = 10;

 public void buy(){

 System.out.println("Stock [Name: "+name+",

 Quantity: " + quantity +"] bought");

 }

 public void sell(){

 System.out.println("Stock [Name: "+name+",

 Quantity: " + quantity +"] sold");

 }

}

Step 3

Create concrete classes implementing the Order interface.

BuyStock.java

public class BuyStock implements Order {

12

 private Stock abcStock;

 public BuyStock(Stock abcStock){

 this.abcStock = abcStock;

 }

 public void execute() {

 abcStock.buy();

 }

}

SellStock.java

public class SellStock implements Order {

 private Stock abcStock;

 public SellStock(Stock abcStock){

 this.abcStock = abcStock;

 }

 public void execute() {

 abcStock.sell();

 }

}

Step 4

Create command invoker class.

Broker.java

import java.util.ArrayList;

import java.util.List;

13

 public class Broker {

 private List<Order> orderList = new ArrayList<Order>();

 public void takeOrder(Order order){

 orderList.add(order);

 }

 public void placeOrders(){

 for (Order order : orderList) {

 order.execute();

 }

 orderList.clear();

 }

}

Step 5

Client class. Use the Broker class to take and execute commands.

CommandPatternDemo.java

public class CommandPatternDemo {

 public static void main(String[] args) {

 Stock abcStock = new Stock();

 BuyStock buyStockOrder = new BuyStock(abcStock);

 SellStock sellStockOrder = new SellStock(abcStock);

 Broker broker = new Broker();

 broker.takeOrder(buyStockOrder);

 broker.takeOrder(sellStockOrder);

 broker.placeOrders();

 }

}

14

Step 6

Verify the output.

Stock [Name: ABC, Quantity: 10] bought

Stock [Name: ABC, Quantity: 10] sold

Let's use a remote control as the example. Our remote is the center of home automation
and can control everything. We'll just use a light as an example, that we can switch on
or off, but we could add many more commands.

// A simple Java program to demonstrate

// implementation of Command Pattern using

// a remote control example.

// An interface for command

interface Command

{

 public void execute();

}

// Light class (Receiver class)

class Light

{

 public void on()

 {

 System.out.println("Light is on");

 }

 public void off()

 {

 System.out.println("Light is off");

 }

}

// and its corresponding command classes

class LightOnCommand implements Command

{

 Light light;

 // The constructor is passed the light it

15

 // is going to control.

 public LightOnCommand(Light light)

 {

 this.light = light;

 }

 public void execute()

 {

 light.on();

 }

}

class LightOffCommand implements Command

{

 Light light;

 public LightOffCommand(Light light)

 {

 this.light = light;

 }

 public void execute()

 {

 light.off();

 }

}

// Stereo (Receiver class)

class Stereo

{

 public void on()

 {

 System.out.println("Stereo is on");

 }

 public void off()

 {

 System.out.println("Stereo is off");

 }

 public void setCD()

 {

16

 System.out.println("Stereo is set " +

 "for CD input");

 }

 public void setDVD()

 {

 System.out.println("Stereo is set"+

 " for DVD input");

 }

 public void setRadio()

 {

 System.out.println("Stereo is set" +

 " for Radio");

 }

 public void setVolume(int volume)

 {

 // code to set the volume

 System.out.println("Stereo volume set"

 + " to " + volume);

 }

}

class StereoOffCommand implements Command

{

 Stereo stereo;

 public StereoOffCommand(Stereo stereo)

 {

 this.stereo = stereo;

 }

 public void execute()

 {

 stereo.off();

 }

}

// and its corresponding command classes

class StereoOnWithCDCommand implements Command

{

 Stereo stereo;

 public StereoOnWithCDCommand(Stereo stereo)

 {

17

 this.stereo = stereo;

 }

 public void execute()

 {

 stereo.on();

 stereo.setCD();

 stereo.setVolume(11);

 }

}

// Invoker - A Simple remote control with one button

class SimpleRemoteControl

{

 Command button; // only one button

 public SimpleRemoteControl()

 {

 }

 public void setCommand(Command command)

 {

 // set the command the remote will

 // execute

 button = command;

 }

 public void buttonWasPressed()

 {

 button.execute();

 }

}

// Driver class or client class

class RemoteControlTest

{

 public static void main(String[] args)

 {

 SimpleRemoteControl remote =

18

 new SimpleRemoteControl();

 Light light = new Light();

 Stereo stereo = new Stereo();

 // we can change command dynamically

 remote.setCommand(new

 LightOnCommand(light));

 remote.buttonWasPressed();

 remote.setCommand(new

 StereoOnWithCDCommand(stereo));

 remote.buttonWasPressed();

 remote.setCommand(new

 StereoOffCommand(stereo));

 remote.buttonWasPressed();

 }

}

Watch Out for the Downsides

This pattern ends up forcing a lot of Command classes that will make your design look
cluttered - more operations being made possible leads to more command classes.
Intelligence required of which Command to use and when leads to possible
maintenance issues for the central controller.

