

Generic Programming

Simple Generic Methods

In addition to generic classes, Java also has generic methods. An example is the method
Collections.sort(), which can sort collections of objects of any type. To see how to
write generic methods, let's start with a non-generic method for counting the number of times
that a given string occurs in an array of strings:

/**
 * Returns the number of times that itemToCount occurs in list.
Items in the
 * list are tested for equality using itemToCount.equals(),
except in the
 * special case where itemToCount is null.
 */
public static int countOccurrences(String[] list, String
itemToCount) {
 int count = 0;
 if (itemToCount == null) {
 for (String listItem : list)
 if (listItem == null)
 count++;
 }
 else {
 for (String listItem : list)
 if (itemToCount.equals(listItem))
 count++;
 }
 return count;
}

Once again, we have some code that works for type String, and we can imagine writing almost
identical code to work with other types of objects. By writing a generic method, we get to write a
single method definition that will work for objects of any type. We need to replace the specific
type String in the definition of the method with the name of a type parameter, such as T.
However, if that's the only change we make, the compiler will think that "T" is the name of an
actual type, and it will mark it as an undeclared identifier. We need some way of telling the
compiler that "T" is a type parameter. That's what the "<T>" does in the definition of the generic
class "class Queue<T> { ...". For a generic method, the "<T>" goes just before the
name of the return type of the method:

public static <T> int countOccurrences(T[] list, T itemToCount)
{
 int count = 0;
 if (itemToCount == null) {
 for (T listItem : list)
 if (listItem == null)
 count++;

 }
 else {
 for (T listItem : list)
 if (itemToCount.equals(listItem))
 count++;
 }
 return count;
}

The "<T>" marks the method as being generic and specifies the name of the type parameter that
will be used in the definition. Of course, the name of the type parameter doesn't have to be "T"; it
can be anything. (The "<T>" looks a little strange in that position, I know, but it had to go
somewhere and that's just where the designers of Java decided to put it.)

Given the generic method definition, we can apply it to objects of any type. If wordList is a
variable of type String[] and word is a variable of type String, then

int ct = countOccurrences(wordList, word);

will count the number of times that word occurs in wordList. If palette is a variable of
type Color[] and color is a variable of type Color, then

int ct = countOccurrences(palette, color);

will count the number of times that color occurs in palette. If numbers is a variable of
type Integer[], then

int ct = countOccurrences(numbers, 17);

will count the number of times that 17 occurs in numbers. This last example uses autoboxing;
the 17 is automatically converted to a value of type Integer, as if we had said
"countOccurrences(numbers, new Integer(17))". Note that, since generic
programming in Java applies only to objects, we cannot use countOccurrences to count the
number of occurrences of 17 in an array of type int[].

A generic method can have one or more type parameters, such as the "T" in
countOccurrences. Note that when a generic method is used, as in the function call
"countOccurrences(wordlist, word)", there is no explicit mention of the type that is
substituted for the type parameter. The compiler deduces the type from the types of the actual
parameters in the method call. Since wordlist is of type String[], the compiler can tell
that in "countOccurrences(wordlist, word)", the type that replaces T is String. This
contrasts with the use of generic classes, as in "new Queue<String>()", where the type
parameter is specified explicitly.

The countOccurrences method operates on an array. We could also write a similar method
to count occurrences of an object in any collection:

public static <T> int countOccurrences(Collection<T>
collection, T itemToCount) {
 int count = 0;
 if (itemToCount == null) {
 for (T item : collection)
 if (item == null)
 count++;
 }
 else {
 for (T item : collection)
 if (itemToCount.equals(item))
 count++;
 }
 return count;
}

Since Collection<T> is itself a generic type, this method is very general. It can operate on an
ArrayList of Integers, a TreeSet of Strings, a LinkedList of JButtons,

Type Wildcards

There is a limitation on the sort of generic classes and methods that we have looked at so far:
The type parameter in our examples, usually named T, can be any type at all. This is OK in many
cases, but it means that the only things that you can do with T are things that can be done with
every type, and the only things that you can do with objects of type T are things that you can do
with every object. With the techniques that we have covered so far, you can't, for example, write
a generic method that compares objects with the compareTo() method, since that method is
not defined for all objects. The compareTo() method is defined in the Comparable interface.
What we need is a way of specifying that a generic class or method only applies to objects of
type Comparable and not to arbitrary objects. With that restriction, we should be free to use
compareTo() in the definition of the generic class or method.

There are two different but related syntaxes for putting restrictions on the types that are used in
generic programming. One of these is bounded type parameters, which are used as formal type
parameters in generic class and method definitions; a bounded type parameter would be used in
place of the simple type parameter T in "class GenericClass<T> ..." or in "public
static <T> void genericMethod(...". The second syntax is wildcard types, which
are used as type parameters in the declarations of variables and of formal method parameters; a
wildcard type could be used in place of the type parameter String in the declaration statement
"List<String> list;" or in the formal parameter list "void
max(Collection<String> c)". We will look at wildcard types first, and we will return to
the topic of bounded types later in this section.

Let's start with a simple example in which a wildcard type is useful. Suppose that Shape is a
class that defines a method public void draw(), and suppose that Shape has subclasses

such as Rect and Oval. Suppose that we want a method that can draw all the shapes in a
collection of Shapes. We might try:

public static void drawAll(Collection<Shape> shapes) {
 for (Shape s : shapes)
 s.draw();
}

This method works fine if we apply it to a variable of type Collection<Shape>, or
ArrayList<Shape>, or any other collection class with type parameter Shape. Suppose, however,
that you have a list of Rects stored in a variable named rectangles of type Collection<Rect>.
Since Rects are Shapes, you might expect to be able to call drawAll(rectangles).
Unfortunately, this will not work; a collection of Rects is not considered to be a collection of
Shapes! The variable rectangles cannot be assigned to the formal parameter shapes. The
solution is to replace the type parameter "Shape" in the declaration of shapes with the
wildcard type "? extends Shape":

public static void drawAll(Collection<? extends Shape> shapes)
{
 for (Shape s : shapes)
 s.draw();
}

The wildcard type "? extends Shape" means roughly "any type that is either equal to Shape
or that is a subclass of Shape". When the parameter shapes is declared to be of type
Collection<? extends Shape>, it becomes possible to call the drawAll method with an actual
parameter of type Collection<Rect> since Rect is a subclass of Shape and therefore matches the
wildcard "? extends Shape". We could also pass actual parameters to drawAll of type
ArrayList<Rect> or Set<Oval> or List<Oval>. And we can still pass variables of type
Collection<Shape> or ArrayList<Shape>, since the class Shape itself matches
"? extends Shape". We have greatly increased the usefulness of the method by using the
wildcard type.

(Although it is not essential, you might be interested in knowing why Java does not allow a
collection of Rects to be used as a collection of Shapes, even though every Rect is considered to
be a Shape. Consider the rather silly but legal method that adds an oval to a list of shapes:

static void addOval(List<Shape> shapes, Oval oval) {
 shapes.add(oval);
}

Suppose that rectangles is of type List<Rect>. It's illegal to call
addOval(rectangles,oval), because of the rule that a list of Rects is not a list of Shapes.
If we dropped that rule, then addOval(rectangles,oval) would be legal, and it would
add an Oval to a list of Rects. This would be bad: Since Oval is not a subclass of Rect, an Oval is
not a Rect, and a list of Rects should never be able to contain an Oval. The method call

addOval(rectangles,oval) does not make sense and should be illegal, so the rule that a
collection of Rects is not a collection of Shapes is a good rule.)

As another example, consider the method addAll() from the interface Collection<T>. In my
description of this method in Subsection 10.1.4, I say that for a collection, coll, of type
Collection<T>, coll.addAll(coll2) "adds all the objects in coll2 to coll. The
parameter, coll2, can be any collection of type Collection<T>. However, it can also be more
general. For example, if T is a class and S is a sub-class of T, then coll2 can be of type
Collection<S>. This makes sense because any object of type S is automatically of type T and so
can legally be added to coll." If you think for a moment, you'll see that what I'm describing
here, a little awkwardly, is a use of wildcard types: We don't want to require coll2 to be a
collection of of objects of type T; we want to allow collections of any subclass of T. To be more
specific, let's look at how a similar addAll() method could be added to the generic Queue
class that was defined earlier in this section:

class Queue<T> {
 private LinkedList<T> items = new LinkedList<T>();
 public void enqueue(T item) {
 items.addLast(item);
 }
 public T dequeue() {
 return items.removeFirst();
 }
 public boolean isEmpty() {
 return (items.size() == 0);
 }
 public void addAll(Collection<? extends T> collection) {
 // Add all the items from the collection to the end of
the queue
 for (T item : collection)
 enqueue(item);
 }
}

Here, T is a type parameter in the generic class definition. We are combining wildcard types with
generic classes. Inside the generic class definition, "T" is used as if it is a specific, though
unknown, type. The wildcard type "? extends T" means some type that extends that specific
type. When we create a queue of type Queue<Shape>, "T" refers to "Shape", and the wildcard
type "? extends T" in the class definition means "? extends Shape", meaning that the
addAll method of the queue can be applied to collections of Rects and Ovals as well as to
collections of Shapes.

The for-each loop in the definition of addAll iterates through the collection using a
variable, item, of type T. Now, collection can be of type Collection<S>, where S is a
subclass of T. Since item is of type T, not S, do we have a problem here? No, no problem. As
long as S is a subclass of T, a value of type S can be assigned to a variable of type T. The
restriction on the wildcard type makes everything work nicely.

http://math.hws.edu/javanotes/c10/s1.html#generics.1.4�

The addAll method adds all the items from a collection to the queue. Suppose that we wanted
to do the opposite: Add all the items that are currently on the queue to a given collection. An
instance method defined as

public void addAllTo(Collection<T> collection)

would only work for collections whose base type is exactly the same as T. This is too restrictive.
We need some sort of wildcard. However, "? extends T" won't work. Suppose we try it:

public void addAllTo(Collection<? extends T> collection) {
 // Remove all items currently on the queue and add them
to collection
 while (! isEmpty()) {
 T item = dequeue(); // Remove an item from the queue.
 collection.add(item); // Add it to the collection.
ILLEGAL!!
 }
}

The problem is that we can't add an item of type T to a collection that might only be able to
hold items belonging to some subclass, S, of T. The containment is going in the wrong direction:
An item of type T is not necessarily of type S. For example, if we have a queue of type
Queue<Shape>, it doesn't make sense to add items from the queue to a collection of type
Collection<Rect>, since not every Shape is a Rect. On the other hand, if we have a
Queue<Rect>, it would make sense to add items from that queue to a Collection<Shape> or
indeed to any collection Collection<S> where S is a superclass of Rect.

To express this type of relationship, we need a new kind of type wildcard: "? super T". This
wildcard means, roughly, "either T itself or any class that is a superclass of T." For example,
Collection<? super Rect> would match the types Collection<Shape>, ArrayList<Object>, and
Set<Rect>. This is what we need for our addAllTo method. With this change, our complete
generic queue class becomes:

class Queue<T> {
 private LinkedList<T> items = new LinkedList<T>();
 public void enqueue(T item) {
 items.addLast(item);
 }
 public T dequeue() {
 return items.removeFirst();
 }
 public boolean isEmpty() {
 return (items.size() == 0);
 }
 public void addAll(Collection<? extends T> collection) {
 // Add all the items from the collection to the end of
the queue
 for (T item : collection)
 enqueue(item);
 }
 public void addAllTo(Collection<? super T> collection) {

 // Remove all items currently on the queue and add
them to collection
 while (! isEmpty()) {
 T item = dequeue(); // Remove an item from the queue.
 collection.add(item); // Add it to the collection.
 }
 }
}

In a wildcard type such as "? extends T", T can be an interface instead of a class. Note
that the term "extends" (not "implements") is used in the wildcard type, even if T is an
interface. For example, recall that Runnable is an interface that defines the method public
void run(). Runnable objects are usually associated with threads (see Section 8.5). Here is a
method that runs all the objects in a collection of Runnables in parallel, by creating a separate
thread for each object:

public static runAllInParallel(Collection<? extends Runnable>
runnables) {
 for (Runnable runnable : runnables) {
 Thread runner; // A thread to run the method
runnable.run()
 runner = new Thread(runnable); // Create the thread.
 runner.start(); // Start the thread running.
 }
}

Wildcard types are used only as type parameters in parameterized types, such as
Collection<? extends Runnable>. The place where a wildcard type is most likely to occur, by
far, is in a formal parameter list, where the wildcard type is used in the declaration of the type of
a formal parameter. However, they can also be used in a few other places. For example, they can
be used in the type specification in a variable declaration statement.

One final remark: The wildcard type "<?>" is equivalent to "<? extends Object>". That
is, it matches any possible type. For example, the removeAll() method in the generic
interface Collections<T> is declared as

public boolean removeAll(Collection<?> c) { ...

This just means that the removeAll method can be applied to any collection of any type of
object.

Bounded Types

Wildcard types don't solve all of our problems. They allow us to generalize method definitions
so that they can work with collections of objects of various types, rather than just a single type.

http://math.hws.edu/javanotes/c8/s5.html�

However, they do not allow us to restrict the types that are allowed as type parameters in a
generic class or method definition. Bounded types exist for this purpose.

Let's look at a generic method in which a bounded type parameter is essential. The code below
presented a code segment for inserting a string into a sorted list of strings, in such a way that the
modified list is still in sorted order:

static void sortedInsert(List<String> sortedList, String
newItem) {
 ListIterator<String> iter = sortedList.listIterator();
 while (iter.hasNext()) {
 String item = iter.next();
 if (newItem.compareTo(item) <= 0) {
 iter.previous();
 break;
 }
 }
 iter.add(newItem);
}

This method works fine for lists of strings, but it would be nice to have a generic method that can
be applied to lists of other types of objects. The problem, of course, is that the code assumes that
the compareTo() method is defined for objects in the list, so the method can only work for
lists of objects that implement the Comparable interface. We can't simply use a wildcard type to
enforce this restriction. Suppose we try to do it, by replacing List<String> with
List<? extends Comparable>:

static void sortedInsert(List<? extends Comparable> sortedList,
???? newItem) {
 ListIterator<????> iter = stringList.listIterator();
 ...

We immediately run into a problem, because we have no name for the unknown type represented
by the wildcard. We need a name for that type because the type of newItem and of iter
should be the same as the type of the items in the list. The problem is solved if we write a generic
method with a bounded type parameter, since then we have a name for the unknown type, and
we can write a valid generic method:

static <T extends Comparable> void sortedInsert(List<T>
sortedList, T newItem) {
 ListIterator<T> iter = sortedList.listIterator();
 while (iter.hasNext()) {
 T item = iter.next();
 if (newItem.compareTo(item) <= 0) {
 iter.previous();
 break;
 }
 }
 iter.add(newItem);
}

There is still one technicality to cover in this example. Comparable is itself a parameterized type,
but I have used it here without a type parameter. This is legal but the compiler might give you a
warning about using a "raw type." In fact, the objects in the list should implement the
parameterized interface Comparable<T>, since they are being compared to items of type T. This
just means that instead of using Comparable as the type bound, we should use Comparable<T>:

static <T extends Comparable<T>> void sortedInsert(List<T>
sortedList, ...

	Generic Programming
	Simple Generic Methods
	Type Wildcards
	Bounded Types

