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Chapter 2

Section 2.1

Exercise 2.1 Equations (2.1) and (2.2) imply the system





k = Φ−1 (1 − α)

k − δ

σ
√

2/n
= Φ−1(β) .

Therefore,

δ

σ
√

2/n
= Φ−1(1 − α) − Φ−1(β) .

Expressing n , arrive at (2.3),

n = 2
(
σ/δ

)2
(

Φ−1(1 − α) − Φ−1(β)
)2

.

Exercise 2.2 In this exercise, H0 : µA = µB is tested against H1 : µA 6=
µB, α = 0.05, β = 0.15, δ = 7, and σ = 16. Denote by x̄A and x̄B the

sample mean responses for group A and group B, respectively. Under H0,

the distribution of x̄A − x̄B is N (
0, 2σ2/n

)
, and under a specific alternative

H1 : µA − µB = δ , the distribution is N (
δ, 2σ2/n

)
. The acceptance region

for the test is

{
− k <

x̄A − x̄B

σ
√

2/n
< k

}
=

{
− k σ

√
2/n < x̄A − x̄B < k σ

√
2/n

}
,

where the critical value k > 0. The equations for α and β are of the form

1− α = P

(
− k <

x̄A − x̄B

σ
√

2/n
< k

∣∣∣ x̄A − x̄B

σ
√

2/n
∼ N (0, 1)

)
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= P
( ∣∣ Z

∣∣ < k
)
, where Z ∼ N (0, 1) ,

and

β = P
(
− k σ

√
2/n < x̄A − x̄B < k σ

√
2/n

∣∣∣ x̄A − x̄B ∼ N (δ, 2σ2/n)
)

= P

(∣∣∣∣∣ Z +
δ

σ
√

2/n

∣∣∣∣∣ < k

)
, where Z ∼ N (0, 1) .

From here,

k = Φ−1
(
1− α/2

)
,

and

β = Φ
(

k − δ

σ
√

2/n

)
− Φ

(
− k − δ

σ
√

2/n

)
.

For α = 0.05 and β = 0.15, δ = 7, and σ = 16, the numerical solution is

k = 1.96 and n ≥ 93.82 . Thus, in practice, n = 94, which corresponds to

β = 0.1493 .

Exercise 2.3 Take X ∼ Poisson(λ) , and assume that H0 : λ ≥ λ0 is

tested against H1 : λ < λ0 for some λ0 . To compute the likelihood ratio

Λ(x) =
max
λ≥λ0

λx e−λ/x!

max
λ > 0

λx e−λ/x!

consider the case x ≥ λ0. The maximum likelihood estimator of λ is x,

therefore,

Λ(x) =
xx e−x/x!

xx e−x/x!
= 1 .

Consider the case x < λ0 . Since when λ ≥ x the function λx e−λ/x! is

strictly decreasing, the maximum for λ ≥ λ0 > x is achieved at λ = λ0 .
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Hence, the likelihood ratio is

Λ(x) =
λx

0 e−λ0/x!

xx e−x/x!
= (λ0/x)x e−(λ0−x) .

The acceptance region for the likelihood ratio is given by
{
x : Λ(x) > c

}

for some constant c. From the graph of Λ(x) below, this region is equivalent

to {x : x > x0} for some x0 > 0. Since the distribution of X is discrete, x0

can be assumed integer.

-

6
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Λ(x)
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c

e−λ0◦

λ0x0

(b) By definition, the probability of type I error equals

α = max
λ≥λ0

P(X ≤ x0) = max
λ≥λ0

x0∑
i =0

λi e−λ

i !
.

Consider the function

g(λ) =

x0∑
i =0

λ i e−λ

i !
.

Taking the derivative of g(λ) , get

g ′(λ) =

x0∑
i =1

i λ i− 1 e−λ

i !
−

x0∑
i =0

λ i e−λ

i !

=

x0−1∑
i =0

λ i e−λ

i !
−

x0∑
i =0

λ i e−λ

i !
= − λx0 e−λ

x0 !
< 0 .
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Thus, g(λ) is a strictly decreasing function, and therefore reaches its maxi-

mum at the left-most point λ = λ0 .

Exercise 2.4 Suppose Nt is a random number of events in the interval

[ 0 , t ] . Then Nt ∼ Poisson(λ t) . The interarrival times between two events

are Exponential
(
1/λ

)
random variables. Let Tn be the waiting time for

the n-th event. Then Tn is a sum of n independent interarrival times, and

therefore has a Gamma
(
n , 1/λ

)
distribution with the density

fTn(y) =
λn yn−1

Γ(n)
e−λ y , y > 0 , λ > 0 ,

where Γ(n) =
∫∞
0

xn−1 e−x dx is the gamma function. Thus,

P(Nt > n) = P(Nt ≥ n+1) = P
(
(n+1)st arrival occurred before time t

)

= P(Tn+1 < t) =

∫ t

0

λn+1 yn

Γ(n + 1)
e−λ y dy =

∫ λ t

0

un

Γ(n + 1)
e−u du .

Finally, note that n in the definition of the gamma function does not need

to be an integer. This proves (2.6).

Also, note that (2.6) is in agreement with the usual definition of the

Poisson probability mass function. Indeed,

P(Nt = n) = P(Nt > n− 1) − P(Nt > n)

=
1

n !

∫ λ

0

(
nun− 1 − un

)
e−u du =

un

n !
e−u

∣∣∣
λ

0
=

λn

n !
e−λ .
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Section 2.2

Subsection 2.2.1

Exercise 2.5 In (2.11), writing the probabilities as integrals, obtain

0.95 =

∫ k

−∞

∫ √
2 k−x

−∞
(2π)−1 e−(x2+y2)/2 dy dx ,

and

0.25 =

∫ k−√n∗

−∞

∫ √
2 k−2

√
n∗−x

−∞
(2π)−1 e−(x2+y2)/2 dy dx .

The solution of this system is k = 1.875 and n∗ = 3.029 .

Exercise 2.6 Consider the m-th test, m = 1, . . . , N . Denote by x̄
(i)
tr and

x̄
(i)
c the respective group sample means in the i-th set of 2n subjects, i =

1, . . . , m . Let

x̄tr =
x̄

(1)
tr + . . . + x̄

(m)
tr

m
and x̄c =

x̄
(1)
c + . . . + x̄

(m)
c

m

be the respective group sample means in the combined set of 2nm subjects.

The difference

x̄tr − x̄c =
x̄

(1)
tr − x̄

(1)
c

m
+ . . . +

x̄
(m)
tr − x̄

(m)
c

m

is the sum of m independent random variables, which under H0 have dis-

tribution N (
0, 2σ2/(m2 n)

)
, and under a specific alternative H1 : µtr −

µc = δ, have distribution N (
δ, 2σ2/(m2 n)

)
. Thus, under H0, x̄tr − x̄c ∼
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N (
0, 2σ2/(mn)

)
, and the acceptance region is

{
x̄tr − x̄c < k σ

√
2

m n

}
=

{
(
x̄

(1)
tr − x̄(1)

c

)
+ . . . +

(
x̄

(m)
tr − x̄(m)

c

)
<
√

mk σ

√
2

n

}
.

The equation for α is

1−α = P

(
N⋂

m =1

{
(
x̄

(1)
tr − x̄(1)

c

)
+ . . . +

(
x̄

(m)
tr − x̄(m)

c

)
<
√

mk σ

√
2

n

})
,

where x̄
(i)
tr − x̄

(i)
c , i = 1, . . . , N , are independent N (

0, 2σ2/n
)

random

variables,

= P

(
N⋂

m =1

{
Z1 + . . . + Zm <

√
mk

} )
,

where

Zi =
x̄

(i)
tr − x̄

(i)
c

σ
√

2/n
, i = 1, . . . , N ,

are independent N (0, 1) random variables.

The equation for β is

β = P

(
N⋂

m = 1

{
(
x̄

(1)
tr − x̄(1)

c

)
+ . . . +

(
x̄

(m)
tr − x̄(m)

c

)
<
√

mk σ

√
2

n

})
,

where x̄
(i)
tr − x̄

(i)
c , i = 1, . . . , N , are independent N (

δ, 2σ2/n
)

random

variables,

= P

(
N⋂

m =1

{
Z1 + . . . + Zm +

mδ

σ
√

2/n
<
√

mk

})
,
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where

Zi =
x̄

(i)
tr − x̄

(i)
c − δ

σ
√

2/n
, i = 1, . . . , N ,

are independent N (0, 1) random variables. These equations are equivalent

to (2.12) with n∗ = (1/2)(δ/σ)2 n .

Exercise 2.7 For N = 3, the system (2.12) has the form

1 − α = P
(

Z1 < k, Z1 + Z2 <
√

2 k, Z1 + Z2 + Z3 <
√

3 k
)

,

and

β = P
(

Z1 +
√

n∗ < k, Z1 + Z2 + 2
√

n∗ <
√

2k, Z1 + Z2 + Z3+3
√

n∗ <
√

3k
)

,

where Z1, Z2, and Z3 are independentN (0, 1) random variables. These equa-

tions can be written as a system of integral equations

1 − α =

∫ k

−∞

∫ √
2 k−x

−∞

∫ √
3 k−x− y

−∞
(2π)−3/2 e−(x2+y2+z2)/2 dz dy dx ,

and

β =

∫ k−√n∗

−∞

∫ √
2 k− 2

√
n∗−x

−∞

∫ √
3 k− 3

√
n∗−x− y

−∞
(2π)−3/2 e−(x2+y2+z2)/2 dz dy dx .

For α = 0.05 and β = 0.25, the numerical solution is k = 1.992
(
equivalently, α ′ = 1 − Φ(k) = 0.023

)
, and n∗ = 2.137 . Thus, the interim

group size n ≥ 2(σ/δ)2 n∗ = 38.47, or n = 39. The actual probability of

type II error that corresponds to this group size is 0.245.

In this group sequential testing, the first test is conducted at 2.3% signifi-
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cance level with the group size n = 39. If the null is rejected, the trial stops.

Otherwise, the trial continues until (39)(2)= 78 subjects in each group are

accrued. The second test is carried out at 2.3% significance level. If the null

is rejected, the trial is discontinued. If H0 is accepted, then more subjects

are enrolled. The trial is terminated and the third test at 2.3% significance

level is done when the group size reaches (39)(3) = 117 subjects.

When N = 1, the required group size is 97. For N = 2, the maximum

size is 110. Thus, for N = 3 there is a possibility that the trial continues

longer than when N = 1 or N = 2, but as a trade-off, there are two chances

to stop the trial earlier.

Exercise 2.8 In Exercise 2.2, H0 : µA = µB is tested against H1 : µA 6=
µB, α = 0.05, β = 0.15, δ = 7, and σ = 16. The non-sequential test

(N = 1) is conducted with the group size n = 94.

Fix any N ≥ 1, and consider the m-th interim test, m = 1, . . . , N . As

in the solution to Exercise 2.6, denote by x̄
(i)
tr and x̄

(i)
c the respective group

sample means in the i-th set of 2 n subjects, i = 1, . . . , m . Let

x̄tr =
x̄

(1)
tr + . . . + x̄

(m)
tr

m
and x̄c =

x̄
(1)
c + . . . + x̄

(m)
c

m

be the respective group sample means in the combined set of 2nm subjects.

The difference

x̄tr − x̄c =
x̄

(1)
tr − x̄

(1)
c

m
+ . . . +

x̄
(m)
tr − x̄

(m)
c

m

is the sum of m independent random variables, which under H0 have dis-
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tribution N (
0, 2σ2/(m2 n)

)
, and under a specific alternative H1 : µtr −

µc = δ , have distribution N (
δ, 2σ2/(m2 n)

)
. Thus, under H0, x̄tr − x̄c ∼

N (
0, 2σ2/(mn)

)
, and the acceptance region is

{
− k σ

√
2

mn
< x̄tr − x̄c < k σ

√
2

mn

}

=

{
−√mk σ

√
2

n
<

(
x̄

(1)
tr − x̄(1)

c

)
+ . . . +

(
x̄

(m)
tr − x̄(m)

c

)
<
√

mk σ

√
2

n

}

=

{ ∣∣∣
(
x̄

(1)
tr − x̄(1)

c

)
+ . . . +

(
x̄

(m)
tr − x̄(m)

c

) ∣∣∣ <
√

mk σ

√
2

n

}
.

The relation between the significance level α ′ and the critical value of

the acceptance region k is given by the formula k = Φ−1
(
1 − α ′/2

)
, or,

equivalently, α ′ = 2
(
1 − Φ(k)

)
.

The equation for α is

1−α = P

(
N⋂

m =1

{ ∣∣∣
(
x̄

(1)
tr − x̄(1)

c

)
+ . . . +

(
x̄

(m)
tr − x̄(m)

c

) ∣∣∣ <
√

mk σ

√
2

n

})
,

where x̄
(i)
tr − x̄

(i)
c , i = 1, . . . , N , are independent N (

0, 2σ2/n
)

random

variables,

= P
( N⋂

m =1

{ ∣∣∣ Z1 + . . . + Zm

∣∣∣ <
√

mk
})

,

where

Zi =
x̄

(i)
tr − x̄

(i)
c

σ
√

2/n
, i = 1, . . . , N ,

are independent N (0, 1) random variables.
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The equation for β is

β = P

(
N⋂

m =1

{ ∣∣∣
(
x̄

(1)
tr − x̄(1)

c

)
+ . . . +

(
x̄

(m)
tr − x̄(m)

c

) ∣∣∣ <
√

mk σ

√
2

n

})
,

where x̄
(i)
tr − x̄

(i)
c , i = 1, . . . , N , are independent N (

δ, 2σ2/n
)

random

variables,

= P

(
N⋂

m =1

{ ∣∣∣∣∣Z1 + · · ·+ Zm +
mδ

σ
√

2/n

∣∣∣∣∣ <
√

m k

})
,

where

Zi =
x̄

(i)
tr − x̄

(i)
c − δ

σ
√

2/n
, i = 1, . . . , N ,

are independent N (0, 1) random variables. Let n∗ = (1/2)(δ/σ)2 n . Then

these equations become

1 − α = P

(
N⋂

m =1

{ ∣∣∣ Z1 + . . . + Zm

∣∣∣ <
√

mk
} )

,

and

β = P

(
N⋂

m =1

{ ∣∣∣Z1 + . . . + Zm + m
√

n∗
∣∣∣ <

√
mk

} )
,

where Z1, . . . , ZN are independent N (0, 1) random variables. A schematic

plot of the acceptance region for the m-th test is given below.

-

6

1 2 3 N0

Test Statistic

Test Number

Reject H0

Accept H0

Accept H0

Reject H0

k

−k
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Consider the case N = 2. The equations for α and β are

1 − α = P
( ∣∣Z1

∣∣ < k,
∣∣Z1 + Z2

∣∣ <
√

2 k
)

,

and

β = P
( ∣∣ Z1 +

√
n∗

∣∣ < k,
∣∣Z1 + Z2 + 2

√
n∗

∣∣ <
√

2 k
)

,

where Z1 and Z2 are independent N (0, 1) random variables. In the integral

form these equations are

1 − α =

∫ k

− k

∫ √
2 k−x

−√2 k−x

(2π)−1 e−(x2+y2)/2 dy dx ,

and

β =

∫ k−√n∗

−k−√n∗

∫ √
2 k− 2

√
n∗−x

−√2 k− 2
√

n∗−x

(2π)−1 e−(x2+y2)/2 dy dx .

The solution of this system with α = 0.05 and β = 0.15 is k = 2.178
(
equivalently, α ′ = 2

(
1 − Φ(k)

)
= 0.029

)
and n∗ = 4.963. The interim

group sample size is n ≥ 2(16/7)2(4.963) = 51.86, hence n = 52. The

corresponding β = 0.149.

Consider the case N = 3. The equations for α and β are

1 − α = P
( ∣∣Z1

∣∣ < k,
∣∣ Z1 + Z2

∣∣ <
√

2 k,
∣∣Z1 + Z2 + Z3

∣∣ <
√

3 k
)

,
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=

∫ k

− k

∫ √
2 k−x

−√2 k−x

∫ √
3 k−x− y

−√3 k−x− y

(2π)−3/2 e−(x2+y2+z2)/2 dz dy dx ,

and

β = P
( ∣∣ Z1 +

√
n∗

∣∣ < k,
∣∣Z1 + Z2 + 2

√
n∗

∣∣ <
√

2 k ,

∣∣Z1 + Z2 + Z3 + 3
√

n∗
∣∣ <

√
3 k

)
,

=

∫ k−√n∗

−k−√n∗

∫ √
2 k− 2

√
n∗−x

−√2 k− 2
√

n∗−x

∫ √
3 k− 3

√
n∗−x− y

−√3 k− 3
√

n∗−x− y

(2π)−3/2 e−(x2+y2+z2)/2 dz dy dx .

For α = 0.05 and β = 0.15, the solution is k = 2.289
(
equivalently,

α ′ = 2
(
1 − Φ(k)

)
= 0.022

)
, and n∗ = 3.467. The interim sample

size n ≥ 2(16/7) 2 (3.467) = 36.23, hence n = 37. The corresponding

β = 0.1425.

For N = 1, the group size is 94. For N = 2, the maximum group size is

(2)(52) = 104, and for N = 3, it is (3)(37) = 111.

Exercise 2.9 (a) A random variable Xmt ∼ Poisson(λm t) is a sum of

m independent random variables X
(1)
t , . . . , X

(m)
t ∼ Poisson(λ t). Therefore,

the equation for the overall probability of type I error α is

α = P
( N⋂

m =1

{ Xmt − 0.024 mt√
0.024 m t

≤ k
})

, Xmt ∼ Poisson(0.024 m t) ,

= P
( N⋂

m =1

{ X
(1)
t − 0.024 t√

0.024 t
+ . . . +

X
(m)
t − 0.024 t√

0.024 t
≤ √

mk
})

.

By the Central Limit Theorem, for large t, Zi = (X
(i)
t − 0.024 t)/

√
0.024 t is

approximately N (0, 1) random variable, i = 1, . . . , N . Hence, an approxi-
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mate expression for α is

α = P
( N⋂

m =1

{
Z1 + . . . + Zm ≤ √

m k
} )

,

where Z1, . . . , ZN are independent N (0, 1) random variables.

(b) The equation for the overall probability of type II error β is

1− β = P

(
N⋂

m =1

{
Xmt − 0.024 mt√

0.024 m t
≤ k

})
, Xmt ∼ Poisson(0.012 mt) ,

= P

(
N⋂

m =1

{
1√
2m

(
Z1 + . . . + Zm

) − √ 0.012 mt

0.024 m t
≤ k

})

= P

(
N⋂

m =1

{
Z1 + . . . + Zm ≤

√
2 m k + m

√
0.012 t

} )
,

where Zi = (X
(i)
t − 0.012 t)/

√
0.012 t are independent approximately N (0, 1)

random variables, X
(i)
t ∼ Poisson(0.012 t), i = 1, . . . , N .

(c) For N = 2, α = 0.05, and β = 0.2, the numerical solution is k =

−1.2571 and t = 577.67 . Thus, the first test is conducted at t = 577.67

(roughly 580) patient-years. If the observed number of endocarditis compli-

cations exceeds 9 (since 0.024t + k
√

0.024t = 9.18), then the alternative

is accepted and the trial is stopped. If the number of complications is 9 or

less, the trial continues until 2t = 1155.34 (roughly 1160) patient-years are

accumulated. At this point the trial is stopped. If the number of complica-

tions exceeds 21 (since (0.024) (2 t) + k
√

(0.024) (2 t) = 21.11), the null is

accepted. Otherwise, H1 is accepted.
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(d) For the m-th test,

α ′ = P
(

Z1 + . . . Zm <
√

mk
∣∣∣ Z1, . . . , Zm

iid∼ N (0, 1)
)

= P(Z < k) = Φ(k) .

For N = 2, α ′ = Φ(−1.2571) = 0.1044.

(e) The acceptance region for the m-th test, m = 1, . . . , N , is drawn below.

-

6

1 2 3 N0

Test Statistic

Test Number

Accept H0

Accept H0

Reject H0

k

Exercise 2.10 (a) The acceptance region for the first test is
{

Xt > tK
}
,

and for the second one,
{

X2 t > 2 tK
}
. The random variable X2 t ∼

Poisson( 2 λ t) can be written as the sum of two independent Poisson(λ t)

random variables, Xt and Yt. Therefore, the equations for α and β, the

overall probabilities of type I and II errors, are

α = P
(

Xt ≤ K t , Xt + Yt ≤ 2 K t
)

,

where Xt and Yt are independent Poisson(0.024 t) random variables,

=

[
K t∑
i =0

(0.024 t) i

i !
e−0.024 t

]2

+
K t∑
i =0

2 K t−i∑
j = K t+1

(0.024 t) i+j

i !j !
e−0.048 t ,
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and

1 − β = P
(

Xt ≤ K t , Xt + Yt ≤ 2 K t
)

,

where Xt and Yt are independent Poisson(0.012 t) random variables,

=

[
K t∑
i =0

(0.012 t) i

i !
e−0.012 t

]2

+
K t∑
i =0

2 K t−i∑
j = K t+1

(0.012 t) i+j

i !j !
e−0.024 t .

(b) The acceptance regions are drawn below.

-

6

t 2t0

Xτ

τ

Reject H0

Accept H0

Xτ = K τ

(c) The closest values to α = 0.05 and β = 0.2 are achieved when t = 500,

and K = 0.016. The actual values of α and β are 0.0401 and 0.1917, respec-

tively.

(d) This sequential testing is carried out the following way. The first test is

conducted at t = 500 patient-years. If K t + 1 = 9 or more endocarditis

cases are observed, then H0 is accepted and the trial is stopped. If K t = 8

or less cases are observed, the trial continues until a total of 2 t = 1000

patient-years are accumulated. Then the trial is stopped and the second test

is conducted. If 2 K t + 1 = 17 or more events are recorded, then H0 is

accepted, otherwise, H1 is accepted.
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(e) α ′ = P
(
reject H0

∣∣ H0 is true
)

= P
(
Xt ≤ Kt

)
, where Xt ∼ Poisson(0.024t).

For the first test α ′ = P(X ≤ 8), where X ∼ Poisson(12). Thus,

α ′ = 0.1550. For the second test α ′ = P(X ≤ 16), where X ∼ Poisson(24).

Hence, α ′ = 0.0563.

Subsection 2.2.2

Exercise 2.11 The mode solves the maximization problem

x a− 1 e−x/b → max
x

.

Setting the derivative equal to zero, obtain

(a− 1) x a− 2 − x a− 1

b
= 0,

hence, x = (a − 1) b .

Exercise 2.12 By Bayes’ formula, the posterior distribution of R equals

fR(x |n, t) = C f(n | x, t) π(x)

= C1 (x t)n e−x t x a− 1 e−x/b = C2 xn + a− 1 e−x ( t +1/b) ,

where C,C1 and C2 are the normalizing constants. Therefore, the posterior

distribution of R is Gamma
(
n + a, 1/(t + 1/b)

)
.

Exercise 2.13 The posterior probability of H1 is computed according to

(2.17), where a and b satisfy (2.14) and (2.16) with P( R < 0.024 ) = 0.7.

17



The stopping rules for t = 400 and t = 600 patient-years are given in the

table below.

t n P(H1|n, t) t n P(H1|n, t)

400 5 0.9582 400 15 0.0678

6 0.9109 16 0.0388

600 8 0.9726 600 21 0.0627

9 0.9463 22 0.0391

To stop the trial at 400 patient-years, 5 (or fewer) or 16 (or more) en-

docarditis cases should be observed. If between 6 and 15 cases occur, then

the trial continues until 600 patient-years are accumulated. At this time, if

between 6 and 8, or 22 or more events have been recorded, then the trial is

terminated.

To compare these rules with the ones given in Table 2.1, notice that H1 is

accepted even with a larger number of observed complications. However, at

400 patient-years, the alternative may be rejected with only 16 cases. There

is no difference in the rules for rejecting H1 at 600 patient-years.

Exercise 2.14 (a) The prior distribution of µ is N (0, σ2). Therefore,

P( H1 ) = P(µ > 0) = P(Z > 0) = 0.5 .

(b) The posterior density of µ, given x̄, is

fµ(y | x̄) = C exp

{
− (x̄ − y)2

4σ2/n
− y2

2σ2

}

18



= C exp

{
− 1

4σ2/n

[
(x̄ − y)2 +

2

n
y 2

] }

= C1 exp

{
− 1

4σ2/n

(
1 + 2/n

) (
y − x̄

1 + 2/n

)2
}

,

where C and C1 are the normalizing constants. This is the normal density

with mean x̄/(1 + 2/n) and variance (2σ2/n)/(1 + 2/n).

(c) The alternative is accepted if P( H1 ) = P
(
µ > 0 | x̄ ) ≥ 0.95. Hence,

0.95 ≤ P

(
Z >

− x̄/(1 + 2/n)√
(2σ2/n)/(1 + 2/n)

)
= P

(
Z > − x̄

σ
√

2/n(1 + 2/n)

)
.

From here, x̄ ≥ 1.645 σ
√

2/n(1 + 2/n) = 5.0327. The alternative is re-

jected if P( H1 ) = P
(
µ > 0 | x̄ ) ≤ 0.05. Hence,

P

(
Z > − x̄

σ
√

2/n(1 + 2/n)

)
≤ 0.05 ,

and, therefore, x̄ ≤ − 1.645 σ
√

2/n(1 + 2/n) = − 5.0327. Thus, the stop-

ping rule for the interim Bayesian analysis at n = 50 is to stop and reject

H1 if x̄ ≤ −5.0327, to stop and accept H1 if x̄ ≥ 5.0327, or to continue the

trial if − 5.0327 < x̄ < 5.0327.

Section 2.3

Exercise 2.15 Define the function

v(n) =
1

n
+

1

N − n
.

Then Var(x̄1 − x̄2) = σ2 v(n). To minimize v(n) with respect to n, set the
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first derivative equal to zero,

v ′(n) = − 1

n2
+

1

(N − n)2
= 0 .

Thus n2 = (N − n)2, or n = N − n . Hence n = N/2 .

Exercise 2.16 In the first method, a subject is allocated to group 1 if digit

1 is seen in the table of random digits, given that only 1, 2, or 3 are accepted.

Therefore,

P
(
allocation to group 1

)
= P

(
see 1

∣∣ see 1, 2, or 3
)

=
1/10

3/10
=

1

3
.

In the second method, a subject is allocated to group 1 if digits 1,2, or 3 are

seen, provided that zero is not accepted. Hence,

P
(
allocation to group 1

)
= P

(
see 1, 2, or 3

∣∣ do not see 0
)

=
3/10

9/10
=

1

3
.

Section 2.4

Exercise 2.17 By the CLT,

λ̂i =
Ê(Xi)

Ti

=
ni

Ti

approx.∼ N (
λi ,

λi

Ti

)
, i = 1 or 2.

Under the null hypothesis, λ1 = λ2 = λ , say. The pooled estimator of λ is

λ̂pooled = n1 + n2

T1 + T2
, and therefore, the test statistic is

z =
λ̂1 − λ̂2√

λ̂pooled

(
1
T1

+ 1
T2

) =
n1

T1
− n2

T2√
n1+n2

T1+T2

(
1
T1

+ 1
T2

) .
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Exercise 2.18 The derivation of (2.19) is identical to the proof in the pre-

vious exercise, with T1 and T2 replaced by N1 and N2, respectively.
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Chapter 3

Section 3.1

Exercise 3.1 (a) Since f(t) = F ′(t) and F (t) = 1 − S(t) by (3.1), obtain

f(t) =
(
1 − S(t)

)′
= −S ′(t) ,

and, therefore, (3.2) can be written as

h(t) =
f(t)

S(t)
=
−S ′(t)
S(t)

.

(b) Substituting x for t in the above expression, get the differential equation

h(x) = −S ′(x)

S(x)
.

Integrating both sides of this equation from 0 to t and applying (3.3) produces

H(t) =

∫ t

0

h(x) dx = −
∫ t

0

S ′(x)

S(x)
dx = − ln S(t) .

(c) Expressing S(t) in the above formula yields

S(t) = exp
{−H(t)

}
= exp

{
−

∫ t

0

h(x)dx
}

.

(d) From (3.2) and part (c), f(t) = h(t)S(t) = h(t) exp
{−H(t)

}
.

Exercise 3.2 The cdf is F (t) =
∫ t

0
f(x) dx = 1 − exp

{ − λ tα
}

, t ≥ 0 ,

thus, by definition, S(t) = 1 − F (t) = exp
{ − λ tα

}
, h(t) = f(t)/S(t) =

α λ tα−1 , and H(t) =
∫ t

0
h(x) dx = λ tα .

22



Section 3.2

Exercise 3.3

Time At risk Died Number Survival Rate Estimator

ti ni di Censored
(
1− di

ni

)
Ŝ(t), ti ≤ t < ti+1

0 10 0 0 1− 0 = 1.00 1.00

2.1 10 1 0 1− 1
10

= 0.90 (1.00)(0.90)=0.90

2.9 9 1 0 1− 1
9

= 0.89 (0.90)(0.89)=0.80

3.0 8 0 1 1− 0 = 1.00 (0.80)(1.00)=0.80

3.6 7 1 1 1− 1
7

= 0.86 (0.80)(0.86)=0.69

4.5 5 1 0 1− 1
5

= 0.80 (0.69)(0.80)=0.55

5.6 4 1 0 1− 1
4

= 0.75 (0.55)(0.75)=0.41

6.9 3 1 1 1− 1
3

= 0.67 (0.41)(0.67)=0.27

9.1 1 0 1 1− 0 = 1.00 (0.27)(1.00)=0.27

The SAS code for this exercise is

data exercise3 3;

input duration status @@;

datalines;

2.1 1 2.9 1 3.6 1 4.5 1

5.6 1 6.9 1 3.0 0 3.6 0

6.9 0 9.1 0

;

proc lifetest;
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time duration * status(0);

run;

The SAS output for this example includes the following columns.

duration Survival

0.0000 1.0000

2.1000 0.9000

2.9000 0.8000

3.0000* .

3.6000 0.6857

3.6000* .

4.5000 0.5486

5.6000 0.4114

6.9000 0.2743

6.9000* .

9.1000* .

Section 3.3

Exercise 3.4 The KM survival curve is given in the figure below.

-

6

2.1 2.9

ª
3.0

3.6 4.5 5.6 6.9 9.10

Ŝ(t)

t

1

0.9

0.8

0.69

0.55

0.41

0.27

×
×

× ×
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Adding the statement plots=(survival) to the lifetest procedure in the

SAS code for Exercise 3.3 produces the KM survival curve below.

Section 3.4

Exercise 3.5 (a) To see whether the new treatment is effective, use the

log-rank test to compare the survival functions for the treatment and con-

trol groups. The times until deaths in the two groups combined are 1.2 1.6,

2.3, 3.1, 3.2, and 3.6. The 2×2 tables corresponding to each of these times are
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t1 = 1.2

Status of Subject

Group Died Survived Total

Treatment 0 5 5

Control 1 3 4

Total 1 8 9

d11 = 0, E(d11) =
(5)(1)

9
=

5

9
, Var(d11) =

(5)(4)(8)(1)

(9)2(8)
=

20

81
.

t2 = 1.6

Status of Subject

Group Died Survived Total

Treatment 0 5 5

Control 1 2 3

Total 1 7 8

d12 = 0, E(d12) =
(5)(1)

8
=

5

8
, Var(d12) =

(5)(3)(7)(1)

(8)2(7)
=

15

64
.

t3 = 2.3

Status of Subject

Group Died Survived Total

Treatment 1 4 5

Control 1 1 2

Total 2 5 7

d13 = 1, E(d13) =
(5)(2)

7
=

10

7
, Var(d13) =

(5)(2)(5)(2)

(7)2(6)
=

50

147
.
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t4 = 3.1

Status of Subject

Group Died Survived Total

Treatment 1 3 4

Control 1 0 1

Total 2 3 5

d14 = 1, E(d14) =
(4)(2)

5
=

8

5
, Var(d14) =

(4)(1)(3)(2)

(5)2(4)
=

6

25
.

t5 = 3.2

Status of Subject

Group Died Survived Total

Treatment 1 2 3

Control 0 0 0

Total 1 2 3

d15 = 1, E(d15) =
(3)(1)

3
= 1 , Var(d15) =

(3)(0)(2)(1)

(3)2(2)
= 0 .

t6 = 3.6

Status of Subject

Group Died Survived Total

Treatment 2 0 2

Control 0 0 0

Total 2 0 2

d16 = 2, E(d16) =
(2)(2)

2
= 2 , Var(d16) =

(2)(0)(0)(2)

(2)2(1)
= 0 .

27



Consequently,

U =
(
0− 5

9

)
+

(
0− 5

8

)
+

(
1− 10

7

)
+

(
1− 8

5

)
+(1−1)+(2−2) = − 2.2091 ,

and

Var(U) =
20

81
+

15

64
+

50

147
+

6

25
+ 0 + 0 = 1.0614 .

The log-rank test statistic is z = −2.2091/
√

1.0614 = −2.1443 . The

approximate P-value for the two-sided test is 2P(Z > 2.1443) = 0.032 <

0.05 . Hence, the null hypothesis of equal survival functions is rejected at 5%

significance level, and the conclusion is that the new treatment is effective.

(b) The calculations summarized in the tables below produce the Kaplan-

Meier estimator of the survival curves for the two groups.

Treatment group:

Time At risk Died Number Survival Rate Estimator

ti ni di Censored
(
1− di

ni

)
Ŝ(t), ti ≤ t < ti+1

0 5 0 0 1− 0 = 1.00 1.00

2.3 5 1 0 1− 1
5

= 0.80 (1.00)(0.80)=0.80

3.1 4 1 0 1− 1
4

= 0.75 (0.80)(0.75)=0.60

3.2 3 1 0 1− 1
3

= 0.67 (0.60)(0.67)=0.40

3.6 2 2 0 1− 2
2

= 0.00 (0.40)(0.00)=0.00
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Control group:

Time At risk Died Number Survival Rate Estimator

ti ni di Censored
(
1− di

ni

)
Ŝ(t), ti ≤ t < ti+1

0 4 0 0 1-0=1.00 1.00

1.2 4 1 0 1− 1
4

= 0.75 (1.00)(0.75)=0.75

1.6 3 1 0 1− 1
3

= 0.67 (0.75)(0.67)=0.50

2.3 2 1 0 1− 1
2

= 0.50 (0.50)(0.50)=0.25

3.1 1 1 0 1− 1
1

= 0.00 (0.25)(0.00)=0.00

The figure below displays the two survival curves. The control group

curve (depicted by the dashed line) lies clearly underneath the one for the

treatment group (the solid-lined curve), thus, supporting the statement that

the treatment is effective.

-

6

1.2 1.6 2.3 3.1 3.2 3.60

Ŝ(t)

t

1

0.8

0.75

0.6

0.5

0.4

0.25

(c) The SAS code for this exercise is

data exercise3 5;

input duration status group @@;
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datalines;

2.3 1 1 3.1 1 1 3.2 1 1

3.6 1 1 3.6 1 1 1.2 1 2

1.6 1 2 2.3 1 2 3.1 1 2

;

title’Treatment and Control Survival Curves’;

proc lifetest plots = (survival);

time duration * status(0);

strata group;

symbol1 value = none color = black line = 1; /*solid line*/

symbol2 value = none color = black line = 2; /*dashed line*/

run;

The log-rank statistic and the P-value are

Pr >

Test Chi-Square DF Chi-Square

Log-Rank 4.5978 1 0.0320

The P-value is the same as the one computed by hand. The graph of the

respective survival curves plotted by SAS is presented below.
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Section 3.5

Exercise 3.6 The calculations of the actuarial estimator of the survival

function are summarized in the following table.

Interval Survival

Interval Died Censored At Risk Survival Rate Function

[ti, ti+1) di ci ñi 1− di/ñi Ŝ(ti)

[0, 20) 10 0 45.0 1− 10
45

= 0.78 1.00

[20, 30) 5 0 35.0 1− 5
35

= 0.86 (1.00)(0.78)=0.78

[30, 40) 3 0 30.0 1− 3
30

= 0.90 (0.78)(0.86)=0.67

[40, 50) 6 0 27.0 1− 6
27

= 0.78 (0.67)(0.90)=0.60

[50, 100) 6 1 20.5 1− 6
20.5

= 0.71 (0.60)(0.78)=0.47

[100, 150) 2 8 10.0 1− 2
10

= 0.80 (0.47)(0.71)=0.33

[150, 200) 2 1 3.5 1− 2
3.5

= 0.43 (0.33)(0.80)=0.26

[200, 300) 0 1 0.5 1− 0
0.5

= 1.00 (0.26)(0.43)=0.11
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The actuarial curve is given in the following figure.

-

6
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The SAS code for this exercise is as follows.

data exercise3 6;

input duration status @@;

datalines;

15 1 11 1 22 1 121 0 38 1

45 1 76 1 18 1 139 0 105 0

51 1 44 1 10 1 111 0 137 0

11 1 132 1 43 1 10 1 271 0

77 0 56 1 44 1 28 1 27 1

36 1 11 1 76 1 115 0 148 0

43 1 56 1 179 0 182 1 123 1

27 1 174 1 16 1 24 1 18 1

95 1 128 0 40 1 36 1 13 1

;

title‘Actuarial Survival Curve’;
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proc lifetest method = act plots = (survival)

intervals = 0, 20, 30, 40, 50, 100, 150, 200;

time duration * status(0);

run;

The relevant SAS output is presented below.

Effective

Interval Number Number Sample

[Lower, Upper) Failed Censored Size Survival

0 20 10 0 45.0 1.0000

20 30 5 0 35.0 0.7778

30 40 3 0 30.0 0.6667

40 50 6 0 27.0 0.6000

50 100 6 1 20.5 0.4667

100 150 2 8 10.0 0.3301

150 200 2 1 3.5 0.2641

200 . 0 1 0.5 0.1132
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Section 3.6

Exercise 3.7 The KM survival curve is constructed using SAS software.

The graph is given below.

As seen on the picture, the estimator of the survival function decays
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exponentially starting right at the baseline. This implies the appropriateness

of the exponential distribution model. Using (3.10) with δi = 1 for all i =

1, . . . , 12, obtain the maximum likelihood estimator of the parameter λ

λ̂ =

∑n
i = 1 δi∑n
i =1 ti

=
12

0.1 + . . . + 5.8
=

12

20.5
= 0.5854 .

Thus, according to (3.11), the maximum likelihood estimator of the survival

function is

Ŝ(t) = exp
{− 0.5854 t

}
, t ≥ 0 .

Exercise 3.8 The Kaplan-Meier survival curve plotted in SAS is given in

the figure below.

The graph shows the one hundred percent survival for roughly the first

month after entering the trial, and then the percentage of surviving subjects

decreases exponentially. This indicates that the Weibull distribution model
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may be appropriate.

From (3.12), the parameter estimators α̂ and λ̂ solve the system of normal

equations





12/α̂ + 8.0507 − λ̂
[
(1.1) α̂ ln(1.1) + . . . + (4.1) α̂ ln(4.1)

]
= 0

12/λ̂ − [
(1.1) α̂ + . . . + (4.1) α̂

]
= 0 .

The numerical solution is α̂ = 2.3812 and λ̂ = 0.1198 . Thus, according

to (3.13), the maximum likelihood estimator of the survival function is

Ŝ(t) = exp
{− 0.1198 t 2.3812

}
, t ≥ 0 .

Section 3.7

Exercise 3.9 It is given that ln T = β0 + . . . + βm xm + ε, and fε(x) =

exp
{

x − exp{x}}
. Denote the regression term by R = β0 + . . . + βm xm .

Hence,

FT (t) = P(T ≤ t) = P
(

ln T ≤ ln t
)

= P
(
ε ≤ ln t−R

)
= Fε

(
ln t−R

)
,

and, therefore,

fT (t) = F ′
T (t) = F ′

ε

(
ln t − R

)

=
1

t
fε

(
ln t − R

)
=

1

t
exp

{
ln t − R − exp

{
ln t − R

}}

=
1

t
t exp

{− R
}

exp
{
− t exp

{ − R
}}

= λ exp{−λ t} ,
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where

λ = exp
{− R

}
= exp

{− (β0 + . . . + βm xm)
}

.

Exercise 3.10 Write the parametric regression in the form ln T = R + σ ε ,

where R = β0 + . . . + +βm xm is the regression part. It is given that the

error term ε has density fε(x) = exp
{
x − exp{x}} . The cdf of T can be

written as

FT (t) = P(T ≤ t) = P
(

ln T ≤ ln t
)

= P
(
ε ≤ 1

σ

(
ln t − R

))
= Fε

( 1

σ

(
ln t − R

))
,

yielding the expression for the density

fT (t) = F ′
T (t) = F ′

ε

( 1

σ

(
ln t − R

))
=

1

σ t
fε

( 1

σ

(
ln t − R

))

=
1

σ t
exp

{ 1

σ

(
ln t − R

) − exp
{ 1

σ

(
ln t − R

)}}

=
1

σ
t 1/σ−1 exp

{− R/σ
}

exp
{
− t1/σ exp

{− R/σ
}}

= α λ tα−1 exp{−λ tα} , where α = 1/σ ,

and λ = exp
{− R/σ

}
= exp

{− (β0 + . . . + βm xm)/σ
}

.

Note that, as expected, the proof in Exercise 3.9 is a special case of this one

with σ = 1 .

Exercise 3.11 The relevant SAS code is

data fromExercise3 7;

input duration status @@;
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datalines;

0.1 1 0.1 1 0.3 1 0.9 1

1.0 1 1.1 1 1.2 1 1.3 1

2.1 1 3.0 1 3.6 1 5.8 1

;

proc lifereg;

model duration * status(0) = / dist = exponential;

proc lifereg;

model duration * status(0) = / dist = weibull;

run;

From the SAS output, the values of the log-likelihood functions are ln L(λ) =

−18.9214 and ln L(α, λ) = −18.9208 . Therefore, the goodness-of-fit test

statistic equals to −2
(
ln L(λ) − ln L(α , λ)

)
= 0.0012 , with the approxi-

mate P-value = P
(
χ2(1) > 0.0012

)
= 0.9724 > 0.05 . The conclusion is

that the exponential model is more adequate for these data (the same con-

clusion as in Exercise 3.7).

SAS gives the estimator of the Intercept β̂0 = 0.5355 . Hence, the esti-

mator of the parameter λ of the exponential distribution is λ̂ = exp{−β0} =

0.5854 , as was obtained by hand in Exercise 3.7.

Exercise 3.12 The SAS code for obtaining the goodness-of-fit test statistic

and the estimates of the model parameters is
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data fromExercise3 8;

input duration status @@;

datalines;

1.1 1 1.2 1 1.3 1 1.3 1

1.5 1 2.0 1 2.1 1 2.1 1

2.2 1 3.1 1 3.8 1 4.1 1

;

proc lifereg;

model duration * status(0) = / dist = exponential;

proc lifereg;

model duration * status(0) = / dist = weibull;

run;

The SAS output contains the values of the log-likelihood functions under

the exponential model, ln L(λ) = −13.1349, and under the Weibull model,

ln L(α, λ) = −7.8864 . The test statistic is computed as −2
(
ln L(λ) −

ln L(α, λ)
)

= 10.4970 . The approximate P-value is P
(
χ2(1) > 10.4970

)
=

0.0012 < 0.05 , which confirms that the Weibull distribution is more appro-

priate to model the data (the same conclusion as in Exercise 3.8).

The estimates of the model parameters α and λ can be calculated from

the values of the Intercept β̂0 = 0.8913 , and the Scale σ̂ = 0.4200 . The

estimates are α̂ = 1/σ̂ = 1/0.4200 = 2.3810 and λ̂ = exp
{ − β̂0/σ̂

}
=
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exp
{ − 0.8913/0.4200

}
= 0.1198 . Note that the discrepancy between this

estimate of α and the one computed in Exercise 3.8 is due to the round-off

error.

Exercise 3.13 To accommodate the four levels of the categorical variable

number of infections, introduce a new variable infections:

infections number of infections

1 1

2 2

3 3

4 4, 5, or 6

The SAS code for this exercise is

data ear infections;

input age infections duration censored @@;

datalines;

2.0 1 10.1 0 2.1 1 10.9 0 3.0 4 1.6 0

3.1 1 10.1 1 3.8 4 0.3 0 4.2 3 7.3 1

5.1 3 8.2 0 5.4 2 8.0 0 6.0 1 5.7 0

7.0 1 4.9 0 7.6 3 2.5 0 7.7 3 1.0 0

7.8 3 2.8 0 8.1 4 1.4 1 8.2 2 6.3 0

8.5 2 4.0 0 9.4 4 1.8 0 11.0 2 1.9 1

12.5 2 2.5 1 13.1 3 1.9 1

;
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proc lifereg;

class infections;

model duration*censored(1) = age infections/dist = exponential;

run;

proc lifereg;

class infections;

model duration*censored(1) = age infections/dist = weibull;

run;

(a) From the SAS output, the values of the log-likelihood functions are

ln L(λ) = −20.9059 (for the exponential model) , and ln L(α, λ) = −15.3939

(for the Weibull model) . The test statistic is −2
(
ln L(λ) − ln L(α, λ)

)
=

11.0240 , which approximate P-value equals to P
(
χ2(1) > 11.0240

)
=

0.0009 < 0.05 . Therefore, the Weibull model should be used in this problem.

(b) For the Weibull model, SAS gives the following estimates of the regres-

sion coefficients and their P-values:

Parameter Estimate Pr > ChiSq

Intercept 1.1060 0.0279

age -0.0815 0.1281

infections 1 1.4156 0.0006

infections 2 1.3611 < 0.0001

infections 3 1.1295 0.0008
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The P-value for the covariate age is larger than 0.05, therefore, it may be

reasonable to remove it from the model, and re-run SAS to obtain parameter

estimates for the reduced model. The new parameter estimates and P-values

are:

Parameter Estimate Pr > ChiSq

Intercept 0.4800 0.0697

infections 1 1.7936 < 0.0001

infections 2 1.3988 0.0002

infections 3 1.3060 0.0002

Scale 0.4583

From here, the estimators of the Weibull regression model parameters are

α̂ = 1/0.4583 = 2.1820 , and

λ̂ = exp
{
− (

0.4800 + 1.7936 x1 + 1.3988 x2 + 1.3060 x3

)
/0.4583

}

= exp
{
− 1.0473 − 3.9136 x1 − 3.0521 x2 − 2.8497 x3

}
,

where x1 = 1 if the number of previous infections = 1, and 0 otherwise;

x2 = 1 if the number of previous infections = 2, and 0 otherwise; and x3 = 1

if the number of previous infections = 3, and 0 otherwise.

Section 3.8

Exercise 3.14 When the partial likelihood estimates of β1, . . . , βm are
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plugged in, the log-likelihood function (3.35) takes the form

ln L
(
π1, . . . , πn, β̂1, . . . , β̂m

)
=

n∑
i = 1


 ∑

j ∈D( ti)

ln
(
1 − π

r̂j

i

)
+

∑

j ∈R( ti)\D( ti)

r̂j ln πi


 ,

where r̂j = exp
{

β̂1 xj1 + . . . + β̂m xj m

}
. Equating to zero the partial

derivatives of ln L with respect to πi , i = 1, . . . n , obtain the system of

normal equations

∂

∂πi

ln L
(
π̂1, . . . , π̂n, β̂1, . . . , β̂m

)
=

∑

j ∈D( ti)

− r̂j π̂
r̂j − 1
i

1 − π̂
r̂j

i

+
∑

j ∈R( ti)\D( ti)

r̂j

π̂i

= 0 .

The algebraic manipulations presented below simplify these equations to the

form given in (3.36),

∑

j ∈D( ti)

[
− r̂j π̂

r̂j − 1
i

1 − π̂
r̂j

i

− r̂j

π̂i

]
+

∑

j ∈R( ti)

r̂j

π̂i

= 0 ,

∑

j ∈D( ti)

− r̂j π̂
r̂j

i − r̂j (1 − π̂
r̂j

i )

(1 − π̂
r̂j

i ) π̂i

+
∑

j ∈R( ti)

r̂j

π̂i

= 0 ,

∑

j ∈D( ti)

r̂j

1 − π̂
r̂j

i

=
∑

j ∈R( ti)

r̂j .

Exercise 3.15 Let x1, x2 and x3 denote the indicators of 1, 2, and 3 pre-

vious ear infections, as defined in the solution of Exercise 3.13. To estimate

the parameters in the Cox proportional hazards model, use the SAS code

below:

data fromExercise3 13;
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input x1 x2 x3 duration censored @@;

datalines;

1 0 0 10.1 0 1 0 0 10.9 0

0 0 0 1.6 0 1 0 0 10.1 1

0 0 0 0.3 0 0 0 1 7.3 1

0 0 1 8.2 0 0 1 0 8.0 0

1 0 0 5.7 0 1 0 0 4.9 0

0 0 1 2.5 0 0 0 1 1.0 0

0 0 1 2.8 0 0 0 0 1.4 1

0 1 0 6.3 0 0 1 0 4.0 0

0 0 0 1.8 0 0 1 0 1.9 1

0 1 0 2.5 1 0 0 1 1.9 1

;

proc phreg outest = betas;

model duration * censored(1) = x1 x2 x3;

baseline out = outdata survival = s;

run;

proc print data = betas;

run;

proc print data = outdata;

run;
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The estimates of β ’s are:

Parameter

Variable Estimate Pr > ChiSq

x1 -4.14885 0.0028

x2 -2.92502 0.0209

x3 -2.75137 0.0257

Note that these estimators are similar to the ones obtained in Exercise

3.13, but are not very close.

To estimate nonparametrically the baseline survival function S0(t), study the

following output:
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x1 x2 x3 duration s

0.25 0.25 0.3 0.0 1.00000

0.25 0.25 0.3 0.3 0.98241

0.25 0.25 0.3 1.0 0.96276

0.25 0.25 0.3 1.6 0.92952

0.25 0.25 0.3 1.8 0.86799

0.25 0.25 0.3 2.5 0.75104

0.25 0.25 0.3 2.8 0.62266

0.25 0.25 0.3 4.0 0.49982

0.25 0.25 0.3 4.9 0.39150

0.25 0.25 0.3 5.7 0.30261

0.25 0.25 0.3 6.3 0.22564

0.25 0.25 0.3 8.0 0.13039

0.25 0.25 0.3 8.2 0.04800

0.25 0.25 0.3 10.1 0.00704

0.25 0.25 0.3 10.9 0.00000

The estimate s given in the last column is

Sest(t) =
[
Ŝ0(t)

]exp
{
− (4.14885) (0.25)− (2.92502) (0.25)− (2.75137) (0.3)

}

=
[
Ŝ0(t)

]exp{− 2.59388}
, and therefore Ŝ0(t) =

[
Sest(t)

]exp{2.59388}
.

The estimator of the baseline survival function for the Weibull model is

Ŝwei
0 (t) = exp

{ − exp{−1.0473} t 2.1820
}

.
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To see how similar these functions are, in SAS type

data new;

set outdata;

s null = s**exp(2.59388);

s wei = exp(-exp(-1.0473) * duration**2.1820);

run;

proc print data = new;

run;

The values that the two functions assume at the times of death are
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duration s null s wei

0.0 1.00000 1.00000

0.3 0.78860 0.97495

1.0 0.60176 0.70407

1.6 0.37608 0.37588

1.8 0.15040 0.28218

2.5 0.02169 0.07494

2.8 0.00177 0.03623

4.0 0.00009 0.00073

4.9 0.00000 0.00001

5.7 0.00000 0.00000

6.3 0.00000 0.00000

8.0 0.00000 0.00000

8.2 0.00000 0.00000

10.1 0.00000 0.00000

10.9 0.00000 0.00000

The step-function s null decreases a bit faster than the other function, how-

ever, there is no huge difference in their behavior.

The estimate of the survival function in this model is

Ŝ(t) =
[
Sest(t)

]exp
{

2.59388− 4.14885 x1− 2.92502 x2− 2.75137 x3

}
.

The fitted regression coefficients provide the estimate of the ratio of hazard

functions for subjects with one, two, three, and four or more previous ear
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infections. The results are:

• The ratio of the hazard functions for subjects with one and two ear in-

fections is 100 exp{− 4.14885 + 2.92502}% = 29.41 % (implying that the

hazard of getting a recurrence for the subjects with one previous ear infec-

tion is only 29.41 percent of the hazard function for subjects with two ear

infections).

• The ratio of the hazard functions for subjects with one and three ear in-

fections is 100 exp{− 4.14885 + 2.75137}% = 24.72 % .

• The ratio of the hazard functions for subjects with one and four or more

ear infections is 100 exp{− 4.14885}% = 1.58 % .

• The ratio of the hazard functions for subjects with two and three ear in-

fections is 100 exp{− 2.92502 + 2.75137}% = 84.06 % .

• The ratio of the hazard functions for subjects with two and four or more

ear infections is 100 exp{− 2.92502}% = 5.37 % .

• The ratio of the hazard functions for subjects with three and four or more

ear infections is 100 exp{− 2.75137}% = 6.38 % .

Exercise 3.16 To fit the Cox model to these data, write in SAS

data cirrhosis;

input age alcohol duration censored @@;

datalines;
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42 1 0.2 0 45 0 1.7 0 47 0 1.6 0

49 1 1.4 0 51 0 2.4 0 53 0 3.5 0

54 1 2.8 0 55 1 2.2 1 57 0 4.5 0

57 0 3.6 0 58 0 5.1 0 61 1 3.4 0

62 0 2.4 0 67 1 5.3 0 68 1 2.6 1

68 1 3.8 0 69 1 5.8 0

;

proc phreg outest = betas;

model duration * censored(1) = age alcohol;

baseline out = outdata survival = s;

run;

proc print data = betas;

run;

proc print data=outdata;

run;

The SAS output is

Parameter

Variable Estimate Pr > ChiSq

age -0.33933 0.0005

alcohol 1.81807 0.0395
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age alcohol duration s

56.6471 0.52941 0.0 1.00000

56.6471 0.52941 0.2 0.99504

56.6471 0.52941 1.4 0.97855

56.6471 0.52941 1.6 0.95453

56.6471 0.52941 1.7 0.91576

56.6471 0.52941 2.4 0.74933

56.6471 0.52941 2.8 0.62053

56.6471 0.52941 3.4 0.42553

56.6471 0.52941 3.5 0.23179

56.6471 0.52941 3.6 0.07579

56.6471 0.52941 3.8 0.01855

56.6471 0.52941 4.5 0.00248

56.6471 0.52941 5.1 0.00002

56.6471 0.52941 5.3 0.00000

56.6471 0.52941 5.8 0.00000

From the output, the estimator of the baseline survival function is

Ŝ0(t) =
[
Sest(t)

]exp
{

(0.33933)(56.6471)− (1.81807)(0.52941)
}

=
[
Sest(t)

]exp{18.25956}
,

where Sest(t) is a step-function, which values at the remission times are given

in column s in the above table.

The estimator of the survival function in the Cox model is

Ŝ(t) =
[
Sest(t)

]exp
{

18.25956− 0.33933 age+1.81807 alcohol
}

.
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The regression coefficients are interpreted as follows:

• With one-year age increase, the subject’s hazard function changes by

100
(

exp{− 0.33933} − 1
)
% = − 28.78 % that is, the “hazard” of going

into remission decreases by 28.78 percent with one-year increase in age.

• The ratio of the hazard functions for two same-age subjects, one of whom

does not abuse alcohol and the other one does, is 100 exp{− 1.81807}% =

16.23 % which means that the “hazard” of going into remission for subjects

who do not abuse alcohol is only 16.23 percent of that for alcohol-abusive

subjects. So, yes, the subjects who abuse alcohol have a larger “hazard” of

going into remission.
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Chapter 4

Section 4.2

Exercise 4.1 Below are the individual response profiles, the mean response

profiles, and the boxplots for the treatment and the control groups.
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The solid lines correspond to the treatment group, and the dashed ones,

to the control group. Also, of the two boxplots at each visit, the treatment

group boxplots are on the left, and the control group ones, on the right.

As seen on these graphs, the individual response profiles for the subjects

in the treatment group tend to lie below those for the control group subjects.

The mean response profile for the control group is above that for the treat-

ment group at every point. Finally, the boxplots for the treatment group

tend to be lower than their counterparts for the control group. These obser-

vations support the conclusion that the mental distress for the subjects in

the treatment group is lower than that for the subjects in the control group,

and therefore, the new drug is effective as a reducer of mental distress.

The SAS code for this exercise is
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data mental distress;

input individual group visit0 visit1 visit2 visit4 @@;

datalines;

1 1 25 23 16 8 2 1 34 22 4 7

3 1 31 24 14 7 4 1 34 27 12 6

5 1 33 25 11 8 6 1 30 23 13 11

7 1 28 22 10 8 8 1 29 21 9 8

9 1 28 21 9 7 10 2 33 25 18 13

11 2 30 27 19 11 12 2 29 22 20 15

13 2 35 27 20 18 14 2 25 23 22 15

15 2 36 25 20 16 16 2 34 25 19 18

17 2 33 28 20 17 18 2 28 24 20 19

;

data new;

set metal distress;

array x{4} visit0 visit1 visit2 visit4;

do visits = 1 to 4;

score = x{visits};
if group = 1 then boxposition = visits;

else boxposition = visits + 0.1;

output;

end;

keep individual group visits score boxposition;

run;
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axis1 label = none

value = (t=1 ‘Week 0’ t=2 ‘Week 1’ t=3 ‘Week 2’ t=4 ‘Week 4’ t=5 ‘’);

title’Individual Response Profiles in Exercise 4.1’;

proc gplot data = new;

plot score * visits = individual / nolegend haxis = axis1;

symbol1 interpol = join value = none color = black

line = 1 repeat = 9;

symbol2 interpol = join value = none color = black

line = 2 repeat = 9;

run;

goptions reset = symbol;

title’Mean Response Profiles in Exercise 4.1’;

proc gplot data = new;

plot score * visits = group / nolegend haxis = axis1;

symbol1 interpol = stdm1j color = black line = 1;

symbol2 interpol = stdm1j color = black line = 2;

run;

goptions reset = symbol;

title’Boxplots in Exercise 4.1’;

proc gplot data = new;
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plot score * boxposition = group / nolegend haxis = axis1;

symbol1 interpol = box00 value = star color = black;

symbol2 interpol = box00 value = x color = black;

run;

Section 4.3

Exercise 4.2 Let a = σ 2
u , and b = σ 2. To find the determinant of the

matrix 


a + b a a . . . a

a a + b a . . . a

. . .

a a a . . . a + b




,

first replace each row by the difference between this row and the next one,

except for the last row. The determinant does not change under this elemen-

tary row operation. The resulting matrix is




b − b 0 . . . 0

0 b − b . . . 0

. . .

a a a . . . a + b




.

Denote by Dk the determinant of a k × k matrix of the above form. Then

expanding the determinant along the first column, and noting that the deter-
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minant of the (k − 1) × (k − 1) lower triangular matrix




−b 0 . . . 0

b −b . . . 0

. . .

0 0 . . . −b




is equal to (−b)k−1, produces the recursive formula

Dk = bDk− 1 + (−1)k+1 a (−b)k−1 = bDk− 1 + a bk−1

= b
(
bDk−2 + a bk−2

)
+ a bk−1 = b2 Dk− 2 + 2 a bk−1

= . . . = bk−1 D1 + (k − 1) a bk−1

= bk−1 (a + b) + (k − 1) a bk−1 = bk + k a bk−1 .

This shows (4.3). To verify (4.4), it suffices to show that V0 V−1
0 = Ik . In

terms of a and b,

V0 V−1
0 =

1

b 2 + abk

(
b Ik + aJk

) (
(b + ak) Ik − aJk

)

=
1

b 2 + abk

(
b 2 Ik + abJk + abk Ik + a 2 k Jk − a bJk − a 2 k Jk

)
= Ik .

Exercise 4.3 By the properties of the matrix A and the definition of the

matrix B ,

(
AA ′ )BB ′ − (

AA ′ )BA ′ (AA ′ )−1
AB ′

= In k− p− 2 BB ′ − In k− p− 2 BA ′(In k− p− 2

)−1
AB ′
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= BB ′ − BA ′AB ′ = BB ′ − B
(
Ink − X

(
X ′X

)−1
X ′)B ′

= BX
(
X ′X

)−1
X ′B ′ =

(
X ′X

)−1
,

since BX =
(
X ′V−1 X

)−1
X ′V−1 X = I p + 2 .

Exercise 4.4 (a) Refer to the solution of Exercise 4.1. As seen on the in-

dividual response profiles graph, the variance of the responses in each group

is approximately constant. Also, it may be assumed that the covariance be-

tween the scores on the health questionnaire for any two visits is roughly the

same. Thus the data meet the assumptions of the random intercept model.

(b) Let the covariate group be xi = 1 , if the i-th subject is from group 1

(the treatment group), and xi = 2 , if the i-th subject belongs to group 2

(the control group). Denote by yij the general health questionnaire score for

the i-th subject at time tj , where t1 = 0 , t2 = 1 , t3 = 2 , and t4 = 4

weeks. Then the random intercept model is

yij = β0 + β1 xi + β2 tj + ui + εij , i = 1, . . . , 18, j = 1, . . . , 4 ,

where the random intercepts ui
i.i.d.∼ N (0, σ2

u) are independent of the random

errors εij
i.i.d.∼ N (0, σ2) .

The required SAS code for the dataset mental distress is
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data new;

set mental distress;

array x{4} visit0 visit1 visit2 visit4;

array t{4} t1-t4 (0 1 2 4);

do visits = 1 to 4;

score = x{visits};
time = t{visits};
output;

end;

keep individual group score time;

run;

proc mixed data = new method = ml;

model score = group time / solution;

random intercept / subject = individual;

run;

proc mixed data = new method = reml;

model score = group time / solution;

random intercept / subject = individual;

run;

This code produces the following estimators of the regression parameters
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Both ML and REML Methods

Effect Estimate Pr > |t|

β̂0 → Intercept 21.8417 <.0001

β̂1 → group 4.7500 <.0001

β̂2 → time -4.7508 <.0001

Covariance

Parameter Estimate

Intercept 0 ← σ̂2
u

ML Method Residual 12.5196 ← σ̂2

REML Method Residual 13.0640 ← σ̂2

Note that the random intercept term ui is not present in the fitted model

since its variance is equal to zero.

(c) The estimated values of the coefficients reveal that at every given week,

an average score in the treatment group is about 4.75 points lower than that

for the treatment group, and that the average score in either group decreases

by roughly 4.75 points every week.

Since the subjects in the treatment group have a lower level of mental

distress than those in the control group, the new drug is effective.

Section 4.4

Exercise 4.5 (a) The individual and mean response profiles, as well as the

boxplots are presented below. The solid lines correspond to group 1 (open

surgery), and the dashed ones, to group 2 (laparoscopic surgery). Also, the
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left-hand boxplots are for group 1, and the right-hand ones, for group 2.

As seen in the graphs, the subjects who undergo the laparoscopic surgery

tend to lose more weight than those with the open surgery procedure. In ad-

dition, the observed responses show increasing variation as time progresses,

hence the random slope and intercept model may be appropriate in this case.
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(b) Let yij be the percentage loss of excess weight for the i-th subject at

time tj , i = 1, . . . , 14 , j = 1, . . . , 4 , where t1 = 1, t2 = 3, t3 = 8,

and t4 = 12 months. Denote by x1 i the group number (1 or 2) of the i-th

subject. The random slope and intercept model has the form

yij = β0 + β1 x1 i + β2 tj + ui1 + ui2 tj + εij ,

where ui1 are the random intercepts, ui2 are the random slopes, and εij are

the random errors. The unknowns in this model are β0, β1, β2, Var(ui1) =

σ2
u1

, Var(ui2) = σ2
u2

, Var(εij) = σ2 , and Cov
(
ui1 , ui2

)
= σu1 u2 .

The SAS code that produces the graphs in part (a) and the parameter esti-

mators is

data gastric bypass;

input individual group visit1 visit3 visit8 visit12 @@;
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datalines;

1 1 5 12 16 20 2 1 7 7 9 9

3 1 3 6 12 15 4 1 10 15 20 25

5 1 8 10 13 16 6 1 5 10 19 22

7 1 6 6 12 15 8 2 8 12 20 27

9 2 10 15 22 32 10 2 12 17 20 30

11 2 8 16 23 28 12 2 7 11 22 32

13 2 10 16 24 28 14 2 13 15 25 20

;

data new;

set gastric bypass;

array x{4} visit1 visit3 visit8 visit12;

array t{4} t1-t4 (1 3 8 12);

do visits = 1 to 4;

time = t{visits};
weightloss = x{visits};
if group = 1 then boxposition = visits;

else boxposition = visits + 0.1;

output;

end;

keep individual group visits time boxposition weightloss;

run;

axis1 label = none

value =(t=1 ‘1Month’ t=2 ‘3Months’ t=3 ‘8Months’ t=4 ‘12Months’
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t=5 ‘’);

title’Individual Response Profiles in Exercise 4.5’;

proc gplot data = new;

plot weightloss * visits = individual / nolegend haxis = axis1;

symbol1 interpol = join value = none color = black

line = 1 repeat = 7;

symbol2 interpol = join value = none color = black

line = 2 repeat = 7;

run;

goptions reset = symbol;

title’Mean Response Profiles in Exercise 4.5’;

proc gplot data = new;

plot weightloss * visits = group / nolegend haxis = axis1;

symbol1 interpol = stdm1j color = black line = 1;

symbol2 interpol = stdm1j color = black line = 2;

run;

goptions reset = symbol;

title’Boxplots in Exercise 4.5’;

proc gplot data = new;

plot weightloss * boxposition = group / nolegend haxis = axis1;

symbol1 interpol = box value = star color = black;
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symbol2 interpol = box value = x color = black;

run;

proc mixed data = new method = ml;

model weightloss = group time / solution;

random intercept time / subject = individual type = un;

run;

proc mixed data = new method = reml;

model weightloss = group time / solution;

random intercept time / subject = individual type = un;

run;

The parameter estimators are

Effect Estimate Pr > |t|

β̂0 → Intercept -0.34440 0.8504 ML method

β̂0 → Intercept -0.34439 0.8610 REML method

β̂1 → group 5.1534 <.0001 ML method

β̂1 → group 5.1533 0.0001 REML method

β̂2 → time 1.3166 <.0001
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Covariance

Parameter Estimate Estimate

ML method REML method

UN(1,1) 4.7547 5.6920 ← σ̂2
u1

UN(2,1) -0.6481 -0.7201 ← σ̂u1 u2

UN(2,2) 0.2231 0.2439 ← σ̂2
u2

Residual 3.5492 3.5493 ← σ̂2

(c) The P-value for the intercept for both estimation methods is larger than

0.05, meaning that the intercept is indistinguishable from zero. The co-

variates group and time have a significant effect on weight loss, since the

respective P-values are smaller than 0.05. As the estimated regression coef-

ficients indicate, at every fixed visit time, subjects in group 2 (laparoscopic

surgery) lose about 5.15 percent more excessive weight than the group 1

subjects (open surgery). This implies that the laparoscopic surgery is more

effective than the open surgery. Also, the average monthly excessive weight

loss is about 1.32 percent.

Section 4.5

Exercise 4.6 It is assumed that wi has constant mean and variance. From

(4.14),

E
(
wi(tj)

)
= ρ E

(
wi(tj− 1)

)
+

:0
E

(
zi(tj)

)
.

Hence, E
(
wi(tj)

)
= 0 . From (4.14) again, and by independence of wi(tj − 1)
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and zi(tj) ,

Var
(
wi(tj)

)
= ρ 2 Var

(
wi(tj − 1)

)
+ Var

(
zi(tj)

)

= ρ 2 Var(wi(tj − 1)
)

+
(
1 − ρ 2

)
σ2 ,

therefore, Var
(
wi(tj)

)
= σ2 .

Exercise 4.7 (a) The mixed-effects model with spatial power covariance

structure for the error terms is

yij = β0 + β1 x1i + β2 tj + ui1 + ui2 tj + wi(tj) ,

where yij denotes the percentage of excess weight loss for the i-th subject at

time tj , x1i is the group (1 or 2) of the i-th subject, t1 = 1, t2 = 3, t3 = 8,

and t4 = 12 months, i = 1 . . . , 14, and j = 1, . . . , 4 . The variables ui1

and ui2 are the random intercept and slope, respectively. The error terms

wi(tj) have mean zero and the 56 × 56 block-diagonal covariance matrix with

4 × 4 blocks of the form

σ2




1 ρ 2 ρ 7 ρ 11

ρ 2 1 ρ 5 ρ 9

ρ 7 ρ 5 1 ρ 4

ρ 11 ρ 9 ρ 4 1




.

The parameters of this model are β0, β1, β2, σ2
u1

, σ2
u2

, σu1 u2 , σ2, and ρ . The

SAS program that estimates these parameters using the ML and REML

methods is as follows. It utilizes the dataset new defined in Exercise 4.5.
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proc mixed data = new method = ml;

model weightloss = group time / solution;

random intercept time / subject = individual type = un;

repeated / subject = individual type = sp(pow)(time);

run;

proc mixed data = new method = reml;

model weightloss = group time / solution;

random intercept time / subject = individual type = un;

repeated/ subject = individual type = sp(pow)(time);

run;
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The results are

ML method

Effect Estimate Pr > |t|

β̂0 → Intercept -0.7006 0.6948

β̂1 → group 5.2282 <.0001

β̂2 → time 1.3342 <.0001

Covariance

Parameter Estimate

UN(1,1) 0 ← σ̂2
u1

UN(2,1) -0.4367 ← σ̂u1 u2

UN(2,2) 0.2034 ← σ̂2
u2

SP(POW) 0.8054 ← ρ̂

Residual 7.2830 ← σ̂2

REML method

Effect Estimate Pr > |t|

β̂0 → Intercept -0.6937 0.7163

β̂1 → group 5.2058 <.0001

β̂2 → time 1.3354 <.0001
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Covariance

Parameter Estimate

UN(1,1) 0 ← σ̂2
u1

UN(2,1) -0.4677 ← σ̂u1 u2

UN(2,2) 0.2202 ← σ̂2
u2

SP(POW) 0.8238 ← ρ̂

Residual 7.9828 ← σ̂2

(b) This model and the random slope and intercept model have very close

estimates of β1 and β2, and the coefficient β0 is insignificantly small. The

striking difference between these two models is that in the present model the

variance of the random intercept σ2
u1

is estimated as zero, and the variation

in the data that was explained by σ2
u1

and σ2 in the other model is now

explained by σ2 and ρ .

Section 4.6

Exercise 4.8 (a) The random intercept logistic regression model for these

data has the form

πij (ui) =
exp

{
β0 + β1 x1 i + β2 tj + ui

}

1 + exp
{
β0 + β1 x1 i + β2 tj + ui

} ,

where πij (ui) is the probability of the i-th subject having toenail fungus

present on the j-th visit, conditioned on the value of the random intercept

ui , i = 1, . . . , 11 , j = 1, . . . , 4 . The covariate x1 i is the group (1 or 2) of

the i-th subject, and t1 = 3, t2 = 6, t3 = 12, and t4 = 16 weeks.

The parameters of the model are β0 , β1 , β2 , and σ2
u . To compute the
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maximum likelihood estimators of the parameters, use the SAS code

data toenail fungus;

input individual group week3 week6 week12 week16 @@;

datalines;

1 1 1 1 0 1 2 1 1 1 1 0

3 1 1 1 0 0 4 1 1 0 0 0

. . .

21 2 1 0 0 0 22 2 1 1 1 1

;

data new;

set toenail fungus;

array x{4} week3 week6 week12 week16;

array t{4} (3 6 12 16);

do visits = 1 to 4;

fungus = x{visits};
time = t{visits};
output;

end;

keep individual group fungus time;

run;

proc glimmix data = new;

model fungus(event = "1") = group time / solution

dist = binary link = logit;
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random intercept / subject = individual type = un;

run;

The result is

Effect Estimate Pr > |t|

β̂0 → Intercept 4.3131 0.0103

β̂1 → group -1.3210 0.1260

β̂2 → time -0.2770 <.0001

Covariance

Parameter Estimate

UN(1,1) 2.2111 ← σ̂2
u

Note that since the P-value for β̂1 is larger than 0.05, the variable group

is an insignificant covariate, implying that the tested treatment is NOT ef-

fective.

(b) After removing the variable group, the estimate of the regression coef-

ficient for the variable time becomes −0.2649, indicating that the weekly

percentage change in odds of having fungus is 100
(
exp{−0.2649} − 1

)
% =

− 23.27 % , a decrease of 23.27% .

Section 4.7

Exercise 4.9 (a) The data code for this exercise is
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data recorded;

input individual group size3 size6 size12

size18 size24 score3 score6 score12 score18 score24 @@;

datalines;

1 1 3.0 2.7 2.3 2.1 1.8 90 85 70 67 63

2 1 2.9 2.4 1.8 1.7 0.2 87 90 90 90 90

3 1 2.4 2.3 . . . 78 67 . . .

. . .

22 2 2.4 2.1 2.1 1.7 1.7 85 75 41 37 33

23 2 3.4 2.3 1.4 0.9 0.0 74 70 64 63 42

24 2 2.4 2.0 1.0 0.3 0.0 96 67 78 74 55

;

data unbalanced;

set recorded;

array x{5} size3 size6 size12 size18 size24;

array z{5} score3 score6 score12 score18 score24;

array t{5} (3 6 12 18 24);

do visits = 1 to 5;

tumorsize = x{visits};
time = t{visits};
score = z{visits};
output;

end;

keep individual group tumorsize score time;

run;
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data complete;

set unbalanced;

if individual = 3 then delete;

if individual = 8 then delete;

if individual = 13 then delete;

if individual = 16 then delete;

if individual = 19 then delete;

run;

data imputed;

set unbalanced;

if individual = 3 then do;

if tumorsize = . then tumorsize = 2.3;

if score = . then score = 67;

end;

if individual = 8 then do;

if tumorsize = . then tumorsize = 2.575;

if score = . then score = 90.5;

end;

if individual = 13 then do;

if tumorsize = . then tumorsize = 2.0;

if score = . then score = 63;

end;

if individual = 16 then do;

if tumorsize = . then tumorsize = 3.1;
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if score = . then score = 85;

end;

if individual = 19 then do;

if time = 6 then do;

tumorsize = 2.59;

score = 75.59;

end;

if time = 12 then do;

tumorsize = 2.165;

score = 65.7;

end;

end;

run;

proc mixed data = unbalanced method = reml;

model score = group tumorsize time / solution;

random intercept time / subject = individual type = un;

run;

proc mixed data = complete method = reml;

model score = group tumorsize time / solution;

random intercept time / subject = individual type = un;

run;

proc mixed data = imputed method = reml;
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model score = group tumorsize time / solution;

random intercept time / subject = individual type = un;

run;

The estimated regression coefficients in the full model described in Example

4.4 are

unbalanced dataset

Effect Estimate Pr > |t|

β̂0 → Intercept 95.8035 <.0001

β̂1 → group -2.6659 0.2983

β̂2 → tumorsize -1.6992 0.2347

β̂3 → time -1.5779 <.0001

complete dataset

Effect Estimate Pr > |t|

β̂0 → Intercept 98.4185 <.0001

β̂1 → group -3.7938 0.1400

β̂2 → tumorsize -2.1314 0.1597

β̂3 → time -1.5967 <.0001

imputed dataset

Effect Estimate Pr > |t|

β̂0 → Intercept 91.8824 <.0001

β̂1 → group -3.4728 0.1984

β̂2 → tumorsize -0.3206 0.8176

β̂3 → time -1.2976 <.0001

(b) One striking difference between the above models and the full-data model
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in Example 4.4 is that in these three models the variable group is insignifi-

cant, whereas in the latter model it is a significant covariate.

(c) The parameter estimates in the reduced model with insignificant vari-

ables group and tumorsize removed are

unbalanced dataset

Effect Estimate Pr > |t|

β̂0 → Intercept 86.4128 <.0001

β̂3 → time -1.4451 <.0001

Covariance

Parameter Estimate

UN(1,1) 8.4446 ← σ̂2
u1

UN(2,1) 0.1419 ← σ̂u1 u2

UN(2,2) 0.6425 ← σ̂2
u2

Residual 43.8996 ← σ̂2

complete dataset

Effect Estimate Pr > |t|

β̂0 → Intercept 86.0504 <.0001

β̂3 → time -1.4267 <.0001
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Covariance

Parameter Estimate

UN(1,1) 3.9146 ← σ̂2
u1

UN(2,1) -0.3043 ← σ̂u1 u2

UN(2,2) 0.6667 ← σ̂2
u2

Residual 47.1345 ← σ̂2

imputed dataset

Effect Estimate Pr > |t|

β̂0 → Intercept 85.6606 <.0001

β̂3 → time -1.2748 <.0001

Covariance

Parameter Estimate

UN(1,1) 20.1029 ← σ̂2
u1

UN(2,1) -0.8331 ← σ̂u1 u2

UN(2,2) 0.7089 ← σ̂2
u2

Residual 39.7188 ← σ̂2

The estimators of the coefficients, σ̂2
u2

, and σ̂2 do not variate much in

these models, whereas the values of σ̂2
u1

and σ̂u1 u2 change drastically.

Exercise 4.10 (a) The SAS code for this exercise is
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data recorded;

input individual age calcium history mos3 mos9 mos12 mos18 @@;

datalines;

1 76 0 1 1 1 1 1 2 57 1 1 1 1 0 0

3 58 0 1 1 1 1 0 4 62 1 0 1 0 0 0

5 60 1 0 0 0 . . 6 58 0 1 1 0 1 1

7 52 1 0 0 1 0 0 8 74 0 1 1 0 1 0

9 51 0 0 0 1 . . 10 56 1 0 0 1 0 0

11 75 0 1 1 1 1 1 12 63 1 0 1 0 . 0

13 67 1 1 0 1 0 0 14 68 0 0 1 1 0 0

15 56 1 0 1 0 . . 16 62 1 0 1 0 1 1

17 60 1 1 0 0 0 0 18 61 1 1 1 . 0 0

19 54 1 0 1 0 0 0 20 53 0 0 1 1 0 0

;

data unbalanced;

set recorded;

array x{4} mos3 mos9 mos12 mos18;

array t{4} (3 9 12 18);

do visits=1 to 4;

disease=x{visits};
time=t{visits};
output;

end;

keep individual age calcium history disease time;

run;
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data complete;

set unbalanced;

if individual = 5 then delete;

if individual = 9 then delete;

if individual = 12 then delete;

if individual = 15 then delete;

if individual = 18 then delete;

run;

data imputed;

set unbalanced;

if individual = 5 then do;

if disease = . then disease = 0;

end;

if individual = 9 then do;

if disease = . then disease = 1;

end;

if individual = 12 then do;

if time = 12 then disease = 0;

end;

if individual = 15 then do;

if disease = . then disease = 0;

end;

if individual = 18 then do;

if time = 9 then disease = 1;

81



end;

run;

proc glimmix data = unbalanced;

model disease(event = "1") = calcium time / solution

dist = binary link = logit;

random intercept / subject = individual type = un;

run;

proc glimmix data = complete;

model disease(event = "1") = calcium time / solution

dist = binary link = logit;

random intercept / subject = individual type = un;

run;

proc glimmix data = imputed;

model disease(event = "1") = calcium time / solution

dist = binary link = logit;

random intercept / subject = individual type = un;

run;

The estimated regression coefficients in the full model described in Example

4.6 are
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unbalanced dataset

Effect Estimate Pr > |t|

β̂0 → Intercept -0.6031 0.8395

β̂1 → age 0.05124 0.2887

β̂2 → calcium -1.6821 0.0129

β̂3 → history 0.3494 0.5998

β̂4 → time -0.1859 0.0028

complete dataset

Effect Estimate Pr > |t|

β̂0 → Intercept -0.2605 0.9422

β̂1 → age 0.04888 0.3843

β̂2 → calcium -1.7259 0.0371

β̂3 → history 0.1492 0.8511

β̂4 → time -0.1823 0.0072

imputed dataset

Effect Estimate Pr > |t|

β̂0 → Intercept 1.2780 0.6569

β̂1 → age 0.02255 0.6227

β̂2 → calcium -1.9835 0.0024

β̂3 → history 0.4704 0.4630

β̂4 → time -0.1775 0.0024

(b) As in the full model of Example 4.6, the covariates age and history are

insignificant in all of the above models.
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(c) The parameter estimates in the reduced model for the three datasets are

unbalanced dataset

Effect Estimate Pr > |t|

β̂0 → Intercept 2.7712 0.0029

β̂2 → calcium -2.0010 0.0017

β̂4 → time -0.1728 0.0037

Covariance

Parameter Estimate

UN(1,1) 0.01407 ← σ̂2
u

complete dataset

Effect Estimate Pr > |t|

β̂0 → Intercept 2.9552 0.0069

β̂2 → calcium -2.0542 0.0048

β̂4 → time -0.1764 0.0077

Covariance

Parameter Estimate

UN(1,1) 0.1718 ← σ̂2
u

84



imputed dataset

Effect Estimate Pr > |t|

β̂0 → Intercept 2.9458 0.0019

β̂2 → calcium -2.1819 0.0004

β̂4 → time -0.1738 0.0025

Covariance

Parameter Estimate

UN(1,1) 0 ← σ̂2
u

The estimators of the coefficients and the variance of the random intercept

do not differ too much in these three models as well as in the reduced model

in Example 4.6. The only point worth mentioning is that σ̂2
u for the imputed

dataset happened to be zero.
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