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Preface

Clinical Statistics: Introducing Clinical Trials, Survival Analysis, and Longitu-
dinal Data Analysis is written for students in introductory clinical statistics or
biostatistics courses. This text is an excellent reference for upper-level under-
graduate or graduate degree students who have completed courses in calculus-
based introduction to probability theory and mathematical statistics, and who
are also familiar with the basics of regression analysis. In particular, students
should be comfortable with the concepts of normal, Poisson, and gamma dis-
tributions; the Central Limit Theorem; type I and II errors; the maximum
likelihood estimation; the likelihood ratio test; the acceptance region; z-tests;
and the chi-squared test for independence. In addition, a working knowledge of
the multivariate linear and logistic regression models is required.

This book details the underpinnings of clinical trials from the perspective
of a clinical statistician. It provides a step-by-step explanation of the role of
the statistician, from protocol writing to data monitoring, group randomization,
and ultimately writing a final report to the U.S. Food and Drug Administration
or its European equivalent. All of the necessary fundamentals of statistical
analysis—i.e., the survival and longitudinal data analyses—are included.

The topics covered provide a solid mathematical background for the stu-
dent and are supplemented by illustrative examples with applications in SAS
statistical software. Students learn not only the relevant SAS procedures, but
also the theory behind those procedures. This knowledge will allow students to
pursue a career as a clinical statistician at biotechnology, pharmaceutical, and
biomedical companies.

Clinical Statistics is organized into four chapters. Chapter 1 introduces
fundamental concepts of clinical trials and explains in detail the role of trial
participants. The statistical aspects of clinical trials are presented in Chapter 2,
while Chapter 3 contains the essentials of survival analysis. Chapter 4 provides
simple approaches to analyzing longitudinal data from clinical trials. Although
it is necessary to read Chapter 1 first, the remaining chapters can be read in
any order. The complete solutions manual to the exercises in the text can be
found at http://www.jbpub.com/catalog/9780763758509. '

vii
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Chapter 1
Conducting Clinical Trials

This chapter introduces fundamental terminology of clinical trials and explains
the duties of their key participants.

1.1 Basic Concepts

Clinical trials are investigations of risk and benefit properties of new therapies
proposed for use in humans. For example, a pharmaceutical or a biotechnology
company may conduct a clinical trial to determine the effectiveness of a new
drug or an innovative biological device.

Physicians at primary care facilities may recommend individuals as enrollees
in an appropriate clinical trial. Before joining a trial, qualified candidates go
through the informed consent process, which is designed to inform them of their
rights and of the risks and benefits of the investigated therapy. After achieving
an understanding of the facts, the candidate signs an informed consent form,
a document confirming the patient’s consent to take part in the trial. Patients
participating in a clinical trial are termed subjects.

At enrollment, all subjects receive an initial treatment. This treatment
may consist of a surgical procedure to implant a bio-device or a doctor’s
visit to get an initial supply of certain pills, for example. After that, subjects
are expected to come to scheduled follow-up visits, during which their health
condition is checked and necessary measurements are taken and recorded.
For a particular clinical trial, the times between the follow-up visits are prede-
termined and are the same for all subjects. For example, after an initial sur-
gery, the subjects are expected to appear for 1-, 3-, 6-, and 12-month
follow-up visits.

After the last scheduled follow-up visit, each subject has a choice of con-
tinuing in the study or dropping out. A subject who wishes to remain in the

1



2 Chapter 1 © Conducting Clinical Trials

study fills out an addendum to informed consent form, a document supporting
the subject’s willingness to continue in the trial.

Depending on the length of their participation in the trial, subjects maybe
be divided into four categories:

e Subjects for whom adverse events occur, where an adverse event is defined
as contracting a certain disease, developing a certain health condition, or
dying, depending on the specialization of the trial.

e Subjects who drop out of the clinical trial prior to the last follow-up visit.
They are termed drop-outs (or lost to follow-up subjects). For example,
a subject may move out of a state and can no longer be reached by
investigators to schedule a follow-up visit.

e Subjects who voluntarily discontinue participation in the trial after the
final follow-up visit.

. @ Subjects who are still enrolled in the trial at the moment of its completion.

Typically, a clinical trial is stopped when a predetermined number of sub-
jects have been accrued. For example, a study may terminate after 250 subjects
have been followed for at least 1 year. Section 2.1 covers this topic in more de-
tail.

Occasionally, a trial is terminated earlier—for example, when collected data
strongly support the efficacy of the tested therapy or, conversely, show that the
therapy is harmful. More details are presented in Section 2.2.

Clinical trials have certain essential characteristics:

e They are prospective—that is, the participants are followed from well-
defined points in time called time zero or baseline. Baselines will not be
the same for all subjects because subjects enter the study at different

‘times.

e Ordinarily, clinical trials are either randomized or nonrandomized. A
randomized trial is used to compare efficacy of two or more tested ther-
apies. Such a trial includes several treatment groups, with one treatment
assigned to each group. To validate a statistical analysis when compar-
ing results, it should be equally likely for a subject to be assigned to
any group. A detailed description of group randomization is given in
Section 2.3.

e A special case of a randomized trial is a randomized controlled trial that
contains a control group and a treatment group. The treatment group gets
the innovative intervention, whereas the control group receives either a
standard treatment (the treatment that is currently on the market) or
a placebo. A placebo is a treatment that is administered in the form of
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1.2 Phases of Clinical Trials 3

a medication (a pill, a liquid, or a powder) but has no active medicinal
ingredients. For example, when testing a new drug that supposedly pre-
vents colds, a placebo might be a sugar pill. However, sick patients in the
control group (for example, cancer patients in a clinical trial of a new
drug that is expected to cure the cancer) do not receive a placebo if a
known beneficial drug is available. There is no such thing as a placebo for
the control group in the trials of new biological devices, either. Instead,
devices that are widely in use are implanted. For this type of trial, a
nonrandomized clinical trial may be a better option.

e In a nonrandomized trial, all subjects receive the experimental treatment
and, therefore, there is no randomization across groups. In the statistical
analysis, the tested group is compared to the historical control group—
that is, the subjects treated in the past with an available treatment.

e Randomized clinical trials may be double-blinded, meaning that neither a
subject nor an investigator knows in which group the subject is placed.
This restriction is intended to eliminate the possibility that the investi-
gator might be inadvertently biased when assessing the subject’s health
condition during follow-up visits, if it is known which treatment the sub-
ject receives. Likewise, the subject might be biased in self-assessing health
condition.

o Clinical trials may involve one clinical center (a single-center trial) or
multiple centers (a multicenter trial). In a multicenter clinical trial, there
is a coordinating center and multiple participating sites. The coordinating
center functions as a research center where the trial is designed, statisti-
cal analysis of collected data is performed, and findings are interpreted.
A participating investigative site is a medical center where subjects are
recruited, initially treated, and admitted for follow-up visits. Multicenter
trials are more challenging to coordinate, but they recruit subjects faster
and the results can be generalized to a larger population because of the
broader pool of subjects.

1.2 Phases of Clinical Trials

After testing under laboratory conditions and in animals, a new product (a
new drug or treatment) is tested on humans. Trials involving humans—the
so-called clinical trials—are divided into four phases:

e In Phase I (or pilot phase) trials, the new product is tested on a small
group of subjects (normally, 30 or fewer people). Usually the tests are done
with a group of healthy volunteers or, depending on the specification of
the trial, with volunteers in an advanced stage of a disease. For example,
a new drug that supposedly prevents the flu would be tested in healthy
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subjects, whereas a new cancer treatment would be administered to newly
diagnosed patients with advanced cancer.

This phase is not blinded. The volunteer participants are aware of the
nature and purpose of the product they test. During this pilot phase, the
safety of the product is evaluated, an optimal dosage is determined, and
dangerous side effects are identified.

e In Phase II trials, the initial clinical investigation begins. The product is
tested in a larger group of subjects (100-300 people) to determine whether
it is effective and to evaluate the rate of adverse events. This phase, like
Phase I, is open to volunteers and is not blinded.

e In Phase III trials, an extensive scientific clinical investigation of the
product takes place. The test is carried out on a very large group of
subjects (500-3,000 people) to compare the new product with a placebo
or a standard treatment, and to confirm its efficacy and monitor side
effects. After this phase is completed, results are reported to the U.S. Food
and Drug Administration (FDA) or, if trials are conducted in Europe, to
the European Commission (EC) and the European Medicines Agency
(EMEA).

e After the product is approved for marketing, clinical trials enter Phase IV
—the last phase in which post-marketing surveillance takes place. In
Phase IV, a test is carried out in the general population after the product
is marketed to collect additional information on the product’s safety and
efficacy over an extended period of time.

This book focuses on Phase III clinical trials, which entail a full-scale eval-
uation that requires the expertise of a clinical statistician.

1.3 Clinical Trials Management

1.3.1 Key Participants

A sponsor of a clinical trial is an individual, organization, or company that initi-
ates and finances the clinical trial. The sponsor is involved in selecting qualified
investigators and participating sites, ensuring compliance with all regulations,
and monitoring data for safety and efficacy of the tested product. '

The clinical research associate is an on-site monitor on behalf of the spon-
sor. This person oversees the trial and ensures that the investigative site meets
all regulatory requirements, the personnel are qualified and properly trained,
and the constant supply of materials required to conduct the trial is
available.

nAMAMAAAAARARAAEAARAAAAMN A A AR M ™MmA



1.3 Clinical Trials Management 5

Several external committees, consisting of physicians, statisticians, res-
earchers, and other professionals, monitor the progress and safety of a clini-
cal trial:

e The institutional review board (IRB) [in Europe, the independent ethics
committee (IEC)] is designated to protect the rights and ensure the safety
and well-being of human subjects enrolled in the clinical trial.

o Data safety monitoring boards (DSMBs) [in Europe, data monitoring
committees (DMC's)] are set up specifically to monitor data continuously
to determine that subjects are not exposed to undue risks—for example,
highly toxic therapies or highly dangerous medical procedures. This com-
mittee is entitled to recommend termination of the trial if there is a safety
concern, such as if a very high mortality rate is observed.

e The U.S. Food and Drug Administration (FDA) [for European sites,
European Commission (EC)/European Medicines Agency (EMEA)]
ensures that the reported data are accurate and that the subjects’ rights
and confidentiality are protected. It inspects investigation sites, the spon-
sor, and the IRB, and gives the final approval for marketing of the new
product.

The IRB and DSMBs are usually established at the level of research
universities and large hospitals, whereas FDA, EC, and EMEA are gov-
ernmental bodies.

The key research personnel in clinical trials include the principal investig-
ator, the clinical research coordinator(s), the clinical statistician, and the data
manager. These people work as a team, staying in constant communication and
collaboration with one another. Their qualifications and professional duties are

as follows:

e As a rule, the principal investigator (PI) is a physician qualified by train-
ing and experience. The PI is directly involved in recruitment, evaluation,
and treatment of subjects at all investigative sites. He or she supervises
the clinical procedures and reviews all clinical and laboratory data. The
PI is also responsible for assessing causality of all adverse events and
making a decision to close a center if too many adverse events occur.
Although this investigator is supposed to be present at all sites at the
same time, in practice the PI officially transfers some of the duties to
trusted qualified on-site staff.

e The clinical research coordinator is the person at the participating clin-
ical center who is responsible for on-site day-to-day operations of the
trial. Some of the coordinator’s responsibilities include enrolling subjects,
scheduling follow-up visits, completing the required data collection forms,
and submitting data entries to the coordinating center.
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e The clinical statistician determines the statistical methodology for the
trial; evaluates the trial length (see Section 2.1); for randomized trials,
randomizes group allocations for subjects (see Section 2.3); monitors the
data (see Section 2.2); analyzes the data; and provides the interim data re-
ports for DSMBs and the final FDA (EC/EMEA) report (see Section 2.4).

e The data manager trains the clinical research coordinator at each clini-
cal center on how to fill out and submit data forms. The data manager
maintains the database and helps the statistician in data monitoring and
analysis. If contradictory data entries or identical entries from a site are
submitted to the database, it is the data manager’s responsibility to gen-
erate a query, a request for a correction to the clinical research coordinator
at the site. Both parties then make sure the query is resolved.

1.3.2 Employee Documentation

A company conducting clinical trials protects its confidential information
about the tested product through a nondisclosure agreement (NDA) with its
employees—that is, a legal document outlining confidential materials that
should be restricted from public use at least for the duration of the trials.
This document is known in Europe as a confidentiality agreement or confiden-
tial disclosure agreement (CDA).

Employees also sign a. statement of economic interest, a legal form on which
a person discloses the amount of his or her assets in the company: ownership of
stock, gifts received from the company, outstanding loans from the company,
and so on. Usually, this form is filed with the IRB, which is charged with
the responsibility of monitoring possible conflict of interest cases where the
individual’s personal financial interest in the success of the trial conflicts with
the company’s interest in a fair and objective trial.

1.4 Preparation of Protocols

A clinical trial protocol is a document that describes every aspect of the prop-
osed trial. It is written by a team of prospective investigators, including a
statistician. The protocol is finalized and approved by the IRB prior to the
beginning of the trial.

A typical protocol consists of the following parts:

e The title page, containing the title of the trial, the name and complete
address of the PI, and the date

e Review of the literature that is related to the clinical problem and justi-
fication of the need for the trial
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e Preclinical data analysis—that is, the results from Phase I and II clinical
trials

e Research questions and statistical hypotheses

e Study design: randomized or nonrandomized trial, double-blinded,
controlled

e Subjects enrollment procedure: recruitment, screening, and selection (the
inclusion—ezxclusion criteria, which are the standards used to determine
whether a person may or may not be allowed to participate in a clinical

trial)

e Materials and methodology: description of the product, treatment regi-
men, product preparation, receiving, storage, dispensing, and return

e Data forms: baseline and follow-up data collection forms
e Database management: data collection and clean-up

e Statistical plan: trial length determination (see Sections 2.1 and 2.2),
randomization procedure (see Section 2.3), and statistical methods (see

Section 2.4)

e Subject safety monitoring plan: reporting of serious adverse events,
maintenance of subject privacy and confidentiality.

Once the IRB approves the protocol, it is distributed to all key participants
at all investigative sites. The protocol is to be followed precisely. It allows the
study to be performed in exactly the same way at all the locations. Investigators
use the protocol as a reference for every step of the trial. If a deviation occurs,
it is reported to the IRB for a review.
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Chapter 2

Implementation of
Statistics in Clinical Trials

This chapter explains at which steps the expertise of a clinical statistician is
required and how that expertise is implemented.

2.1 Determination of Trial Length

The sample size of a clinical trial is the total number of subjects involved
in the trial. The sample size should be large enough to deliver statistically
meaningful information about the tested product. For most trials, the length
of the study is determined entirely by the minimum sample size required to
detect the efficacy of the new product. The trial is stopped after the prespecified
number of subjects has been enrolled and treated at least for the period of the
follow-up visits. For example, a trial may be discontinued after 200 subjects
have been followed for at least 12 months.

In the other cases, instead of the sample size, it is more convenient to
predetermine the minimum required number of patient-years, which is the
cumulative time for all subjects in the trial. For example, a trial may be termi-
nated when 800 patient-years has been accrued. The actual number of subjects
who should participate in the trial depends on the frequency of patient enroll-
ment, which might not be easily computable.

The minimum required sample size (or the number of patient-years, if
applicable) should be estimated before the trial begins and documented in
the protocol. This section presents a detailed explanation and examples of this

procedure.
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The following steps should be completed prior to computing the minimum
required sample size (or the number of patient-years) of a trial:

1. The endpoint of the clinical trial—a measure of the target outcome—
should be defined. There are typically three types of endpoints:

e A prespecified percentage change from the baseline value in some
medical measurement. For example, a trial may continue until an
average of a 20% reduction in bad cholesterol level is observed.

e A prespecified actual change from the baseline value in some medi-
cal characteristic. For example, a trial may be terminated when an
average of a 1.8-point increase in red blood cell count for anemia
patients is observed.

e A prespecified rate of a certain adverse event (called an event rate or
complication rate), defined as the ratio between the total number of
events and the total time in the trial for all subjects. For example, a
trial may be discontinued when a 3.2% death rate is observed—that
is, when, say, 8 deaths in 250 accrued months are recorded.

Usually researchers are discouraged from using an actual change end-
point, because subjects have different measurements at the baseline.
A percentage change endpoint is used instead.

Some trials may have multiple endpoints, in which case one of them
should be chosen as the primary endpoint for computation of the sample
size. This endpoint would be the one that in the researchers’ estimation
requires the largest sample size.

2. A certain family of probability distributions for the endpoint (such as
normal, Poisson, or others) should be specified, and its parameters should
be estimated based on preclinical or historical data.

Generally, the mean percentage changes or actual changes are modeled
as normally distributed random variables by the Central Limit Theorem
(see Example 2.1 later in this chapter). In the case of the event rate
endpoint, event occurrences are random and may be modeled by a Poisson
distribution (see Example 2.2).

3. The null and the alternative statistical hypotheses for the endpoint should
be identified. The nature of the tested product dictates what these
hypotheses should be; statistics has no say in this matter. Three situ-
ations are typically distinguished:

e The new product cannot do any worse than the standard one or
a placebo, only better. Then researchers should test a one-sided
alternative hypothesis that states the superiority of the new product
(see Example 2.1).

PAMAAAAAARRAARAARAAAAAMANEAARAARARM ™™™




2.1 Determination of Trial Length 11

e The new product is not expected to do better than the marketed one,
but has some other desired properties—for example, it is cheaper.
Then researchers should test a one-sided alternative stating that
the new product does not do much worse than the existing one
(see Example 2.2).

e The new product might be more efficient than the standard one, but
serious side effects are a possibility. Then a two-sided alternative is
in order (see Exercise 2.2).

4. The probability of type I error should be determined. The probability
of type I error (also known as the significance level of the test) is the
maximum probability of rejecting the null hypothesis, provided that the
null is true. Traditionally, this value is taken as 0.01 or 0.05 (1% or 5%).

5. The probability of type II error and the minimum detectable differ-
ence should be decided upon. The probability of type II error is the
probability of accepting the null hypothesis, given that the null is false
and a specific alternative hypothesis holds. In randomized trials, the
certain value of the endpoint satisfying this alternative hypothesis is
called the minimum detectable difference (or the effect size) in the end-
points for the treatment and the control groups. For nonrandomized
trials with a historical control, this value is usually the value of the
historical endpoint. The probability of type II error is usually set at
0.2 or 0.25 (20% or 25%). Occasionally, it is chosen to be 0.1 or 0.15
(10% or 15%). _

Conventionally, in clinical trials the power of a test is considered, which
is defined as one minus the probability of type II error. That is, the power
is the probability of rejecting the null hypothesis, given that a specific
alternative is valid.

Whether the length of a trial is determined by a fixed sample size or a
number of patient-years depends on the type of the endpoint. For percentage
change or actual change, the sample size is to be computed. For the complication
rate, the number of patient-years must be calculated.

The rest of this section consists of two concrete examples of trial length
determination for the percentage change and the complication rate endpoints.

Example 2.1 A clinical trial is conducted for a new drug to test its efficacy
in lowering blood pressure in patients suffering from hypertension. The control
subjects receive a marketed drug. The investigators specify the endpoint as
the percentage reduction in diastolic blood pressure (the pressure in the blood
vessels while the heart is relaxing).

Denote by pi and p. the true mean percentage reduction in blood
pressure for the treatment group and the control group, respectively. The
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researchers agree that the following quantities are to be used for the sample size
computation:

e The hypotheses of interest are Hy : gy = pe and Hy @ pgr > pe. The
one-sided alternative is taken because researchers are confident that the
tested drug cannot do worse than the marketed one.

e The probability of type I error @ = max P(reject Hy | Hp is true) is set

at 0.05.
e The minimum detectable difference § = ps — pc is considered to be 5%;
that is, § = 5.

e The probability of type II error 8 = P(accept Ho|H1 : ptr — tie = 0 holds)
is fixed at 0.25.

e The data obtained at the Phase II trial suggest that the underlying dis-
tribution is approximately normal with a standard deviation of ¢ = 15.

e The two-sample z-test is used with an equal number n of subjects in each
group.

The objective in this example is to find the value of n, the required group

size in the clinical trial. Denote by Z;, and Z. the unknown mean values of the

endpoint that will be observed in the Phase III trial in the treatment group and

the control group, respectively. The two groups are assumed to be independent.
Under H), the test statistic

St =8 o N0, T)

o\/2/n

The acceptance region—the region in which Hy is accepted—is of the form

{Z<k}={f"—_:€c<k}={:ﬁtr—:ﬁc<ka\/2—/ﬁ}

7 =

o/2/n
for some positive real constant k. If a specific alternative Hy : pir — phe = 0
holds, then

Ter — T ~ N (0,202 /1)
The probabilities of type I and II errors define two equations for n and k:
1—a=P(Z <k|Z~N(0,1)) =®(k) (2.1)
and

B =P(Zy — I < ko/2/n|Zsr — T ~ N (§,20% /1))

0
I -
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2.1 Determination of Trial Length 13

where @ denotes the cumulative distribution function of a A(0,1) random

variable.
It can be shown (see Exercise 2.1) that from Equations 2.1 and 2.2,

n=2(c/6)*@(1-a) - 271(f))? (2.3)

In reality, n is taken as the smallest integer exceeding this value, which
results in probability of type II error being slightly smaller than the specified
value. In this example, plugging into Equation 2.3 the values o = 0.05, 5 = 0.25,
o = 15, and § = 5, results in a sample size of n > 96.83; that is, n = 97 per
group is needed. The actual probability of type II error corresponding to this
sample size is 0.249. O

Example 2.2 A nonrandomized clinical trial is conducted to test the perfor-
mance of a new heart valve implant. Investigators would like to monitor rates
of several valve-related complications. However, only one of those rates should
be chosen as the primary endpoint for estimation of the trial’s length. It is
explained here how the choice is made.

In the statistical analysis:

e A complication rate R for the new heart valve is compared to a historical
value Ry,.

e The null hypothesis Hy : R>2R, is tested against the alternative
H; : R<2Ry. Note that the null hypothesis indicates that the new valve
performs much worse than the historical one; if the null is accepted, the
valve should not be marketed.

e The probability of type I error « is 0.05.
e The probability of type II error 4, assuming R = Ry, is 0.2.

e The number of complications X is modeled as a Poisson random variable
with mean A\ = RT over a fixed time period T

e The historical mean of the number of complications is A\, = RpT. The null
and the alternative hypotheses of interest can be written as Hg : A > 2\,
and Hy : A < 2)\,. The specific value of the alternative for which (3 is
computed is A = Ap. The value of A\, may be computed from the equations

for a and .

e The historical rate Ry = 0.012 or 1.2% for endocarditis (inflammation of
the heart lining and valves) is the smallest among all considered historical
complication rates. Therefore, the corresponding number of patient-years
T = Ap/Rp is the largest. Because the clinical trial should continue at
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least that long, the rate of endocarditis should be chosen as the primary
endpoint for the trial. The required number of patient-years T is com-
puted next.

Denote by z the observed number of endocarditis complications. From
hypotheses testing theory, the acceptance region is of the form {z > zo}, where
the critical value xy is a positive integer (see Exercise 2.3). For a fixed o,
a = maxy > 2, P(X < ) corresponds to the case A = 2 A, (see Exercise 2.3).
Therefore, the equations for o and 3 are

l—a=PX >z|A=2),) and B=P(X >zo|A= M)

where X ~ Poisson(A).
These equations define a system of two nonlinear equations in two

unknowns, zg and Ap:

© k
l-a= Y. (—2%‘—)—5% (2.4)
k=zo+1 )
(e’e] /\k _
B = e A (2.5)
k=zo+1 :

This system cannot be solved exactly under the restriction that zp is an

integer. However, an integral version of a Poisson distribution can be utilized. .

For any Y ~ Poisson()g), and for any positive real y, the following formula
holds (see Exercise 2.4):

Ao u¥

where T'(y + 1) = [;° vYe Vdv is the gamma function. Hence, Equations 2.4
and 2.5 can be written as follows:

2Ah um‘o
l—-a= /O‘ me—“du (27)
/\h umo

The numerical solution of these equations is zg = 11.296 and Ap, = 9.287. For
Ry, = 0.012, the required length of the trial is T' = A\, /Ry = 9.287/0.012 = 774
patient-years.

The approximate solution to Equations 2.4 and 2.5 is zp = 12 and
A = 9.72, with the left-hand sides equal to 0.050 and 0.183, respectively. This
solution results in T' = 9.72/0.012 = 810 patient-years.

PANAAAAAAABRBERAL,ANAANREAAARAAAAAAAD MMM |
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The quantities 774 and 810 patient-years gave rise to the FDA requirement
that a nonrandomized clinical trial of a new heart valve is to be continued for a
minimum of 800 patient-years (FDA Draft Replacement Heart Valve Guidance,

1994). O

2.2 Interim Data Monitoring

Data monitoring in clinical trials may take the form of an interim analysis,
a data analysis done while the trial is still in progress to determine whether
the trial should be discontinued. A clinical trial may be terminated earlier if it
can be shown that the tested product is superior to the standard one, or if the
tested product is found to be risky and dangerous.

Clinical investigators should decide a priori whether to conduct a full-length
study and make a decision about the product efficacy at the end or to perform
interim testings. If researchers have confidence in the tested product, interim
data monitoring is a reasonable procedure because it is likely to result in an
early termination of the trial.

The number of interim data reports should be prespecified. In addition,
the interim sample sizes (the number of subjects involved in interim analysis)
should be statistically estimated before the trial begins and documented in the
protocol.

There are two major statistical methods for calculation of interim sam-
ple sizes: classical group sequential testing and the Bayesian sequential
procedure.

2.2.1 Classical Group Sequential Testing

In a randomized trial with two treatment groups (possibly, a randomized con-
trolled trial), classical group sequential testing is employed in the following
manner. When data for n subjects in each group are available, an interim anal-
ysis is conducted on the 2n subjects. The groups are statistically compared
and, if the alternative hypothesis is accepted, the trial is stopped. Otherwise,
the trial continues until data for another set of 2n subjects, n in each group,
become available. Then the statistical test is conducted on the 4n subjects.
If the alternative is accepted, the trial is discontinued. Otherwise, it continues
with periodic evaluations until IV sets of 2n subjects are available. At this point,
the last statistical test is conducted, and the trial terminates.

The same procedure works in a nonrandomized trial. The interim testings
are conducted on groups of size n, 2n, Nn, or, if applicable, at equal intervals
of t, 2t, Nt patient-years (see Exercise 2.9).

The probability of type I error for the IV interim statistical tests is a con-
stant o’. For a fixed N, the values of o’ and n can be found if oo and B—the
overall probabilities of type I and type II errors, respectively—are specified.
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The overall probability of type I error is defined as the probability of at least
one interim significant difference given that the null hypothesis is true. The
overall probability of type II error is the probability of all interim differences
being insignificant under a specific alternative hypothesis.

Example 2.3 illustrates how classical group sequential testing can be
applied to monitor data in the clinical trial of Example 2.1.

Example 2.3 In Example 2.1, the hypotheses of interest are Hy : g = L
and Hi : pgr > e, @ = 0.05, 8 = 0.25, 6 = 5, 0 = 15. To conduct this test, a
sample size of 97 per group is needed. This is the case of nonsequential testing
(or the group sequential test with N = 1).

Consider now the case N = 2. Let :Eg,) and z£” be the respective group
sample means in the ith set of 2n subjects, i =1 or 2. Denote by Z;, = (Egi) +
a‘;g) )/2 and Z. = (:E((:l) + :z.(f)) /2 the respective group sample means in the
combined set of 4n subjects.

The first statistical test of Hy : sy = pe against Hy @ pgr > e at sig-
nificance level o' is performed on the initial set of 2n subjects. Under Hy,
:fﬁi) —z N (0,202 /n). The acceptance region is

=(1) _ (1)
{_ at <k} — (a2 — 2 < koy/Zm)

o+/2/n

The relation between the significance level o and the critical value of the
acceptance region k is given by the formula k = ®~1(1 — o) or, equivalently,
@' =1 — ®(k). Under a specific Hy : pg — pie =9, :z«ﬁ,l) —z ~ N(8,20?%/n).

If in the first test the null hypothesis is accepted, the second test of Hy :
Uir = He against Hy : ugr > pe at significance level o is performed on the set
of 4n subjects. The difference '

B g 0 g

2 2

Tir — X =

is the sum of two independent random variables that under Hy have distribu-
tion N (0,0%/(2n)), and under a specific Hy : s — pe = 6 have distribution
N(6,02/(2n)). Thus, under Hp, the distribution of Z;. — Z. is N (0,02%/n).
Therefore, the acceptance region for the second test is

{ i ’“} — (@2 —500) + (& — a?) < 2ho T}

o/1/n

Under a specific Hy : p¢ — pe = 0, the distribution of ;. — z, is N'(8, 02/n).

PRAMRECAAAAAARAARAARAAAARRAARAAALM AN AMA I
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The definitions of o and 3 provide two equations for k£ and n (see Exer-
cise 2.5). The first equation is

x(l) Bz s
l—a=p( 2 —%c <k, —= <k
2/n o\/1/n

where 22 — 7! ~ A(0, 202 /n) and Zr — T ~ N(0,02%/n)

=1P(Z, <k, Z1 + Zy < V/2k) (2.9)
where 1 - @ _ @
Zl = ___mt'r e and Zz ___—xtr — Ze
2/n 2/n

are independent A(0, 1) random variables. The second equation is

() _ () .
ﬂ — ]P) ZL‘t,r mc < k xtr xC < k
2/n " o0y/1/n

where 21 — 2 ~ N(6,202/n) and Zy — Fe ~ N (6, a?/n)
<k, Z3+Z4+2———

a\/—‘

are independent A/ (0,1) random

)
=P(Z;+ — < V2 (2.10)
ov/2/n
. FD_z(1) _5 72 _z(2) _ 5
WhereZg-—t';yfin— and 7, = % o2m
variables. To simplify notation, let n* = (1/2)(6/0)?n. In terms of k and n*,
Equations 2.9 and 2.10 are

l—a=P(Z) <k, Zy+ Zy <2k)

2.11
B=P(Zy +Vn* < k,Zy + Zo + 2v/n* < V2k) (211)

where Z; and Z; are independent N (0,1) random variables.

The numeric solution of Equation 2.11 for & = 0.05 and 8 = 0.25 is k =
1.875 (o’ = 0.030) and n* = 3.029 (see Exercise 2.5). Hence, the interim group
size is the smallest integer larger than 2(c/8)?n* = 54.522; that is, n = 55. The
probability of type II error corresponding to this group size is 0.246.

Thus, instead of accruing 97 subjects in each group and testing the
hypotheses once at the 5% significance level, the group sequential method with
N =2 suggests that investigators test at the 3% significance level with 55 sub-
jects in each group and, if the null is accepted, test a second time at the 3%
significance level with a group size of 110 subjects. Researchers who have a very
strong belief in the success of the tested product might want to go with the
sequential testing plan because there is a good chance of stopping the trial after
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1+ Test Statistic

Reject Hy

k ______________
Accept Hy

0 1 2 3 ' ‘ N Test Number
Accept Hy

Figure 2.1 The acceptance region for the mth test, m = 1,..., N, in the
classical group sequential method in Example 2.3.

data have been collected and analyzed for only 55 subjects per group. However,
if the product is not doing as well as expected, the trial must continue until
110 subjects are accrued for each group, which is longer than the trial without
the interim monitoring (97 subjects per group).

For a general N, the quantities k¥ and n* can be expressed as follows (see
Exercise 2.6):

l—azlP’(ﬁ {Z1+---+Zm<\/ﬁk}>

m=1

- (2.12)
ﬁz]P(ﬂ {Zl+---+zm+m«/7?< ﬂk})
m=1

where Z1,...,Zy are independent N(0,1) random variables. A schematic plot
of the acceptance region for the mth test, m = 1,..., V, is given in Figure 2.1.
Note that the boundary of this region is a horizontal line. This corresponds to
a constant o/, the probability of type I error for the interim tests. 0

Other group sequential testing procedures are widely used in practice. In
these methods, the boundary of the acceptance region is not horizontal, and
o' is not the same for all interim tests. One example of a nonclassical group
sequential testing can be found in Exercise 2.10.

2.2.2 Bayesian Sequential Procedure

In the Bayesian sequential procedure, the clinical endpoint is modeled as a
random variable ©. The prior density of ©, () = fo(f), can be chosen in

many different ways.

RAMAAAAAAARARARANAARAARAAAARAAAAAA DA MM/
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Researchers who have a strong belief in the efficacy of the tested product
would choose an enthusiastic prior (also called an optimistic prior), which
assumes that the alternative hypothesis H; : © € ; is more likely to hold
than the null hypothesis Hp : © € Qg, where Qy and ©; are some prespecified
sets of possible values of ©. An alternative choice for the prior distribution is a
skeptical prior (also called a pessimistic prior). It is used by researchers who are
cautious about the tested product and assume that the alternative hypothesis
has a smaller probability than the null hypothesis or that the probabilities are
equal.

Bayesian hypotheses testing is based on fgo (6 |data), the posterior density
of ©, given the data from trial. The posterior density is computed according to
Bayes’ formula

fo(6| data) = f(data|© = 0)7(0)
[ f(data|© = 0)7(6)df

where f(data|© = 6) denotes the likelihood density—that is, the density of the
observations given a specific value of the endpoint. Generally, computation of
the posterior density is a difficult task that might involve numerical integration.
For this reason, it is convenient to choose a conjugate prior, defined as a prior
density of a certain algebraic form chosen in such a way that the posterior
density would be of the same algebraic form.

The decision of accepting or rejecting the null hypothesis is based on the
following rule. If the posterior probability of the null hypothesis

P(Hy | data) = fo(0|data)dd
Qo

is small (usually 0.05 or less), then the null is rejected. If the posterior probability
of Hy is large (usually 0.95 or more), the null is accepted. Otherwise, the trial
continues.

If a trial is not stopped earlier and reaches its predetermined sample size,
the trial should be stopped, and a non-Bayesian statistical test should be per-
formed on the data.

Example 2.4 shows how data monitoring can be performed using the
Bayesian approach.

Example 2.4 In Example 2.2, the null hypothesis Hy : R > 0.024 is tested
against the alternative H; : R < 0.024. The number of events during a time
period T has a Poisson distribution with mean RT. From the Bayesian per-
spective, R is also a random variable.

The following steps are essential in conducting the Bayesian analysis:

1. The prior density of R should be specified. A computationally convenient
choice would be a conjugate prior. The distribution of the data is Poisson.
It can be proven that the gamma distribution is conjugate to the Poisson
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()

o
OAOE - — —
B0 = — —

Bp—ao

Figure 2.2 The mode, median, and mean of the gamma distribution in
Example 2.4.

distribution (Show it!). Thus the prior of R may be taken as Gamma(a, b)
with the density
o le—z /b

7T($)= W, :c,a,b>0

2. The parameters a and b of this density should be determined. The gamma
distribution is unimodal and right-skewed; hence, mode < median < mean.
Figure 2.2 illustrates these inequalities. Recall that the mode of a contin-
uous distribution is the value that maximizes the density, and the median
is the value that divides the area under the density curve into halves.

Consequently,
P(R < mode) < 0.5 < P(R < mean) (2.13)

For a Gamma(a,b) distribution, the mode equals (a — 1)b (see Exercise
2.11) and the mean is ab.

If researchers are inclined toward using an enthusiastic prior, then they
should take the mean to be equal to 0.024. This gives the opportunity
to specify any desired prior probability of the true H; larger than 0.5.
Indeed, by Equation 2.13,

0.5 < P(R < mean) = P(R < 0.024) =P(H;)

For a skeptical prior, the mode should be chosen equal to 0.024. Then,
according to Equation 2.13,

P(H;) = P(R < 0.024) = P(R < mode) < 0.5

and, therefore, the prior probability of H; can be fixed at any value less
than 0.5. Thus the parameters a and b can be computed numerically

PAMAOAAARAARARARARARAANAAANENAARARERAANANAARR O MM |
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from the equations

ab = 0.024 (for an enthusiastic prior) (2.14)
(a —1)b = 0.024 (for a skeptical prior) (2.15)
0.024 _a—1,—z/b
z% e
P = —_ !
(Hy) /0 ot (2.16)

3. The posterior density of R should be computed. Suppose that ¢ patient-
years has been accumulated during which n endocarditis cases were
observed. It is not difficult to show (see Exercise 2.12) that the poste-
rior distribution of R is Gamma(n +a,1/(1/b+t)). Under this posterior,
the probability that the alternative is correct is

P(H; | data) = P(R < 0.024 | n,t)

/0.024 gotn=1(1 /b + t)a+n o T(/b+8) g,
i I'(a+n)

e *dz (2.17)

0.024(1/b+) patn-1
/0 I'(a+n)

For certain values of n and ¢, this probability becomes smaller than 0.05
(then the null is accepted) or larger than 0.95 (then the alternative is
accepted).

To illustrate these steps with a numerical example, assume that research-
ers would like to use a skeptical prior with the probability of the true alternative
equal to P(H;) = 0.4. The posterior probability of the alternative is computed
according to Equation 2.17, where a and b satisfy Equations 2.15 and 2.16.

As shown in Example 2.2, the minimum required length of the trial without
an interim monitoring is 800 patient-years. Suppose that researchers decide a
priori to conduct interim Bayesian analyses at ¢ = 400 and ¢ = 600 patient-
years. Table 2.1 summarizes the stopping rules.

According to the values in Table 2.1, researchers should terminate the trial
at 400 patient-years if 2 (or fewer) or 17 (or more) endocarditis events are
observed. In the former case, the sample complication rate is small, and H;
is accepted. In the latter case, the observed complication rate is high, and
Hy is accepted. If between 3 and 16 events have occured, then the trial should
continue until 600 patient-years is accrued. At this point, if 3 to 6 complications
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Table 2.1 Trial-Stopping Rules for 400 and 600 Patient-Years in Example 2.4

t n P(H: |n,t) t n P(H; | n,t)
400 2 0.9688 400 16 0.0505
3 0.9421 17 0.0317
600 6 0.9643 600 21 0.0668
7 0.9399 22 0.0450

or 22 or more complications are recorded, the trial is stopped. Otherwise, it
continues for the prescribed length of 800 patient-years. (]

2.3 Randomization of Group Assignments
2.3.1 Principle of Similar-Sized Groups

In a randomized clinical trial, each subject is randomly (equally likely) assigned
to any of the groups. The randomization procedure should adhere to the princi-
ple that it should generate similarly sized or, even better, equally sized groups.
This principle is based on the following proposition.

Proposition 2.1 For normal populations with equal variances, the likelihood
ratio test is most powerful if the sizes of the compared groups are equal. The
most powerful test is the test that has the largest power among all tests with
fixed probability of type I error.

Proof: Consider two normal populations with means p; and ps and equal
variances o2. The test hypotheses are Hy : 1 < pg and Hy : py > pg. Suppose
two independent random samples of sizes n and N — n are drawn from these
populations, where NV is a fixed number.

The variance of the difference of the sample means Var(z; —Z3) = %2 + N"_Zn
is minimized if n = N/2 (see Exercise 2.15).

Consider two tests, one with n = N/2 and the other with n # N/2. Denote
the corresponding variances of the difference in sample means by vy /2 = 402 /N
and v = 0%/n + o%/(N — n), respectively. Let By/2 and 3 be the respective
probabilities of type II error under the alternative hypothesis Hy : 3 —p2 =48
for some 6 > 0. It will be shown that 8 > [ny/2.

PARAAAAMAARARARAARAAANEAABBAANANAMNS ™M
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The equations for a, fy/2, and g follow (compare them to Equations 2.1
and 2.2, respectively):

1—a=d(knys) = B(k)

)
=& |k -
B2 ( N/2 W)

o)

where ky/, and k denote the critical values for the acceptance regions in the
two tests, respectively. These equations imply the following relations:

knpe=2'l-a)=k
)

knso — =@ !
N2 T e (Bny2)
g =
k= =27(8)
From here,
=1 9 -1
7 (1-a) - ——— =07 (Bn/2)

v/ UN/2

I (1—0) - 5= = 571(6)

Subtracting the equations and recalling that un/2 < v yields

)
0> 2 -

Vv /N2

=& 1 (Bn/2) — 271(B)

Hence,

®1(B) >0 (Bn2) or B> By

2.3.2 Randomization Methods

Several randomization methods are used. The most common ones are the sim-
ple, block, and stratified procedures.

In the simple randomization procedure, each subject has equal probabilities
of being assigned to any of the groups. For example, if there are two treatment
groups and a control group, a new subject can be assigned to any of the three
groups with probabilities %
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This type of randomization is carried out by means of a table of random dig-
its, in which any digit 0, ..., 9 appears in any position with probability Tlﬁ' These
tables are often published in statistics books. Random-number-generating soft-
ware such as Excel or Minitab is used in practice.

In our example, the randomization can be carried out by accepting, say,
numbers 1, 2, and 3, and ignoring the other digits: 1 means the subject is
allocated to the first treatment group; 2, to the second treatment group; and
3, to the control group. A more time-efficient way is to accept, say, 1, 2, or 3
for the first treatment group; 4, 5, or 6 for the second treatment group; 7, 8, or
9 for the control group; and to ignore 0. Either way, a subject has probability
—:1; of being allocated to any of the three groups (see Exercise 2.16).

This simple method has one obvious disadvantage. For a small-sized clinical
trial, the simple randomization may easily result in seriously unequal group
sizes.

In the block randomization procedure, subjects are allocated by blocks,
with the numbers assigned to each group being equal within each block. For
example, subjects are randomized to two treatment groups A and B by blocks
of size 4. Four subjects, enrolled sequentially, may be assigned to one of the
blocks AABB, ABAB, ABBA, BABA, BBAA, or BAAB, where each block
has the probability of é. The order of the blocks can be determined by the
table of random digits, accepting 1,...,6 and ignoring the other numbers. The
main advantage of this method is that it achieves the balance in group sizes at
the end of the trial, as well as the periodic balance at the end of each block.

In the stratified randomization procedure, subjects are allocated to groups
in a way that achieves balance between groups in regard to certain character-
istics, such as gender or age. These characteristics are called prognostic fac-
tors because they are used for prognosis (that is, prediction) of the chance of
responding to the new treatment. In this method, several subgroups (called
strata) are created for each combination of levels of prognostic factors, and
block randomization is carried out within each stratum.

For example, suppose two variables, Gender and Age, are believed to have
prognostic importance. The variable Gender has two levels (Male and Female),
and the variable Age also has two levels (“Under 65” and “65 and Over”). Then
there are four strata:

Prognostic Factors Sample
Stratum Gender Age Allocation Assignment
1 Male Under 65 AABB ABAB etc.
2 Male 65 and Over BABA ABBA etc.
3 Female Under 65 BBAA BBAA etc.
4 Female 65 and Over BABA BAAB etc.

PAMMAAANARNREREEEANRANR AN N ERAABARARAAMANN ™M
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2.3.3 Concealment of Group Assignments

An actual group assignment should be kept secret from the subject as well as
from the physician responsible for administering therapy, if the trial is double-
blinded.

It is recommended that the randomization schedules be made for all future
subjects before the trial begins, in an independent central location by a statis-
tician (i.e., a person not involved with the treatment of subjects). After the
randomization procedure is completed, the statistician should prepare sequen-
tially numbered, nontransparent, sealed envelopes with the group assignments.

In a single-blinded trial, when a new subject enters the trial, the physician
should call the central location where the next envelope in the sequence is
opened to reveal the group assignment for the subject. It may be arranged for
the physician to keep the box with the envelopes in the office; however, in such
a case the assignments are less well protected from tampering.

In a double-blinded trial, the physician should receive a sequentially num-
bered container with the assigned treatment to be administered to the subject.
The containers should be prepared by an independent clinician in some central
location to avoid the possibility of fraud.

2.4 Data Reporting

Interim data reports may include the following comparisons and tests. For each
type of adverse event, Kaplan-Meier curves (see Sections 3.2 and 3.3) may
be constructed for each treatment group. The curves for each group may be
compared using the log-rank test (see Section 3.4). Also, using the overall data,
point estimators for each endpoint and confidence limits for the estimators
may be computed. Alternatively, the results of the group sequential testing
(see Subsection 2.2.1) may be presented. In addition, the overall data may be
subdivided into several groups according to levels of certain prognostic factors,
and the same analysis may be conducted within each group.

Statistical comparison of subjects for each site in a trial with a small num-
ber of centers may be done based on a number of demographic and pretrial
health-related variables to establish poolability of the data. Sometimes, in a
multicenter trial with a large number of centers, this comparison may be done
between larger populations—for example, between U.S. and European sites.

Example 2.5 Suppose a new technique for repair of a torn meniscus is be-
ing tested in a nonrandomized, 24-month study. Investigators are interested in
the complication rate (the total number of complications over the number of
patient-years) of meniscus retear, joint pain/tenderness, and knee effusion.
Suppose that the gender of a patient is one of prognostic factors in the trial.
Assume that the interim report at 6 months contains estimators of the compli-
cation rates for males, females, and total. It gives P-values for the two-sided
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Table 2.2 Analysis of Complication Rates in Example 2.5.

Number of Number of = Complication
Gender Patient-Years Complications Rate P-Value 95% UCL
Meniscus Retear
Male 23.43 5 0.2134 0.3595 0.3704
Female 19.82 2 0.1009 0.2183
Total 43.25 7 0.1618 0.2625
Joint Pain/Tenderness
Male 23.43 12 0.5122 0.4319 0.7554
Female 19.82 7 0.3532 ; 0.5728
Total 43.25 19 0.4393 0.6051
Knee Effusion
Male 23.43 8 0.3414 0.0366* 0.5400
Female 19.82 1 0.0505 0.1335
Total 43.25 9 0.2081 0.3222

*Significantly different complication rates at the 5% significance level.

z-test for equality of complication rates for males and females, and it presents
95% upper confidence limits (UCL) for the estimators. The findings are sum-
marized in Table 2.2.

The theory behind the confidence limits and the test statistic is as follows.
Denote by A\ = X/T the true rate, where X is the number of complications
in a population and T is the number of patient-years. It is assumed that 7' is
a large constant and X is a Poisson random variable, the mean of which can
be estimated using the maximum likelihood method by the observed number
of complications n. Thg(ﬁ)re, the maximlm\likelihood estimators of the mean
and variance of X are E(\) = n/T and Var(\) = n/T?, respectively. Because
T is large, the normal approximation is valid and an approximate 100(1 — )%
upper confidence limit for A is

n/T + z4/n/T where 2z, = ®71(1 — a)

To test Hy : A1 = Ao against H; : A1 % A9, where A\; and )\, are the true
complication rates in the two populations, compute the z-statistic:

z= & (2.18)
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Table 2.3 Analysis of Proportions of Complications in Example 2.5.

Number of Number of Proportion of
Gender  Subjects  Complications Complications P-Value 95% UCL

Meniscus Retear

Male 74 ) 0.0676 0.4127 0.1173
Female o8 2 0.0345 0.0746
Total 132 7 0.0530 0.0860
Joint Pain/Tenderness
Male 74 12 0.1622 0.5331 0.2392
Female 58 7 0.1207 0.1957
Total 132 19 0.1439 0.1983
Knee Effusion
Male 74 8 0.1081 0.0472* 0.1710
Female 58 1 0.0172 0.0456
Total 132 9 0.0682 0.1056

*Significantly different proportions of complications at the 5% significance level.

where n;, ny are the observed number of complications, and T3, T, are the num-
ber of patient-years in the two groups, respectively (for derivation of this test
statistic refer to Exercise 2.17). Under Hy, the test statistic has an approxi-
mately N(0, 1) distribution.

Alternatively, or in addition to the complication rate, it is advisable to re-
port the proportion of complications, defined as the ratio between the observed
number of complications and the total number of subjects.

Table 2.3 gives the estimated proportions of complications for males,
females, and total subjects; P-values for the z-test; and 95% upper confidence
limits (UCL) for the estimators.

The following reasoning is used for the confidence limits and the test statis-
tic. Let N be the number of subjects, and let n be the observed number of
complications. It is customary to assume that N is a constant, much larger
than n. Denote by X the population number of complications. It is assumed
that X has a Poisson distribution, for which the maximum likelihood estima-
tor of the mean equals n. Let p = X/N be the population complication rate.

—

Then E(p) = n/N and m) = n/N?. Because N is very large, the normal
approximation is valid, and an approximate 100(1 —«)% upper confidence limit

for p is
n/N + zo/n/N where z, = ®7 (1 — @)
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To test Hy : p; = po against Hy : p; # p2, where p; and p, are the true
complication rates in two populations compute the z-statistic:

— n2
M (2.19)
\/m +no 1 )
N1+Nz N2

where ni, ny are the observed number of complications, and N;, Ny are the
number of subjects in the two groups, respectively (for derivation of this test
statistic, refer to Exercise 2.18). Under Hy, the test statistic has an approxi-
mately A (0, 1) distribution. O

Exercises for Chapter 2
Section 2.1

Exercise 2.1 Derive Equation 2.3 from Equations 2.1 and 2.2. (]

Exercise 2.2 Researchers would like to test a new therapy. They are planning
to conduct a randomized clinical trial in which group A receives the tested
therapy and group B receives a therapy that is currently in use. Investigators
are unsure about the efficacy of the therapy. They propose, therefore, to test
Hy : pa = up against a two-sided alternative Hy : p4 # pup, where p4 and pp
are the mean responses for group A and group B, respectively. The probability
of type I error is specified as 0.05, and the power of the test is fixed at 0.85,
provided 4 — pp = 7 units. An estimated population standard deviation is
o = 16 units. Calculate the required group size for this clinical trial and the
actual probability of type II error that corresponds to this group size. 0

Exercise 2.3 In Example 2.2, show that (a) the acceptance region for the
likelihood ratio test is of the form {z > z¢} for some integer constant o,
and (b) for a fixed zg, @ = maxy>2x, P(X < z¢) corresponds to the case
A = 2)p. Hint: Show that if X ~ Poisson()), and Hp : A > Ag is tested against
H; : X\ < )X, then (a) the likelihood ratio is

max \%e™* /z!

A2Ao 1a if z Z )\0
Az) = il =
max A7e=>/zl | (g /z)7e~M0=2), if 7 < A
(b) a = maxy>x, P(X < zg) corresponds to A = Ao. =

Exercise 2.4 Derive Equation 2.6 probabilistically. Hint: Use the following
argument. Suppose N; is a random number of events in the interval [0, ¢]. Then
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Ny ~ Poisson(At). Let T;, be the waiting time for the nth event. Show that
T, ~ Gamma(n, 1/)) with the density

)\nnl

= e M
an (y) I‘(n) ) A > 07 Yy > 0

where I'(n fo le=%dx is the gamma function. Thus P(Ny >n) =P(N; >
t /\n+1 n

n+1)= IP’(TnH < t) = Jy darie My = [y mSgye“du. Now finish the
argument by noticing that the value of n in the integral can be any real number,
not necessarily an integer.

You can also verify that P(N; = n) = P(N;>n — 1) — P(N;>n) =
£ fo)‘(nu“_l —uM)e Udu = Lre YR = AL, O

Section 2.2
Subsection 2.2.1

Exercise 2.5 Check that the solution of Equation 2.11 is & = 1.875 and
n* = 3.029. Use Matlab or similar software. O

Exercise 2.6 Show that, for a general N, the quantities k£ and n* solve
Equation 2.12. 0O

Exercise 2.7 Show that, in Equation 2.12 with N = 3, the quantities o/ =
0.023 and n = 39. Compute the actual probability of type II error that cor-
responds to this group size. Explain step-by-step how this sequential testing
is carried out. Compare the maximum required group sizes for N = 1,2,
and 3. O

Exercise 2.8 Consider Exercise 2.2. Suppose researchers would like to conduct
interim analyses for this trial. For a general N, derive a system of equations
similar to Equation 2.12, and draw schematlcally the acceptance region for the
mth test, m = 1,..., N. Solve the system numerically for N = 2 and N = 3.
Compute the probabllities of type II error that correspond to the interim group
sizes. Compare the maximum required group sizes for N = 1, 2, and 3. O

Exercise 2.9 The classical group sequential method is applicable to the clinical
trial of Example 2.2. Suppose N interim tests are conducted at times mt,
m =1,..., N. The acceptance region for the mth test is

X, — 0.024mt
s B b o= {Xm > 0.024mt + k+/0.024mt
{ /0.024m¢t } ¢ }
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(a) Show that the equation for a, the overall probability of type I error, is

N
Xmt — 0.024mt .
a=P <k ,  Xmt ~ Poisson(0.024mt

<m01 { V0.024mt = }) i ( )

N
:P(m {Z1+"‘+ng\/mk}>

m=1
where Zy,...,Zy are independent N (0, 1) random variables.

(b) Show that the equation for 3, the overall probability of type II error, is

N
Xt — 0.024mt .
1-f=P <k, X ~ Poisson(0.012mt

? <m01{ V0.024mz J ) ¢ ~ Poisson(0.012mi)

N
=]P’< N {Zl+---+stx/%k+m\/0.012t}>
m=1 .

where Z1,...,Zy are independent N (0,1) random variables.

(c) Compute numerically the values of k and ¢t for N = 2, a = 0.05, and
B = 0.2. Describe step-by-step how the test is carried out.

(d) Show that o, the interim probability of type I error, is a constant for
a fixed N and is computed by o’ = ®(k). Calculate the value of o' for
N =2. |

(e) Draw the acceptance region for the mth test, m =1,..., N. [

Exercise 2.10 The objective of this exercise is to show how a nonclassical
sequential method may be used for interim data analyses in Example 2.2.
Consider only the case N = 2. Suppose the first test is conducted at ¢ patient-
years, and the second at 2¢ patient-years. In both tests, the null hypothesis
is accepted if the observed complication rate is larger than a fixed critical
value K.

(a) Show that t and K can be computed from the equations for the overall
probabilities of type I and II errors, a = 0.05 and 8 = 0.2,

a=P(X; < Kt, X;+Y; <2Kt)
where X; and Y; are independent Poisson(0.024t) random variables
Kt 2Kt—i
— (0.024¢)° o—0-024 0. 024) +J —0.048¢
- [ 00 o] 3% 5 oo
;=0 i=0 j=Kt+1

and
1-8=P(X; < Kt, X: +Y; <2Kt)
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where X; and Y; are independent Poisson(0.012¢) random variables

2 Kt 2Kt—i
(0. 012t) 0012t (O 012 —0.024t
S o -
=0 1=0j=Kt+1

(b) Draw the acceptance regions for these two tests.

(c) Check that an approximate numerical solution of these equations is t =
500 and K = 0.016, which corresponds to the overall probabilities of type
I and II errors oo = 0.0401 and 8 = 0.1917.

(d) Using the results of part (c), describe step-by-step how this testing is
carried out.

(e) Show that o/, the interim probability of type I error, relates to K by the
formula o/ = P(X; < Kt), where X; ~ Poisson(0.024t). Compute o’ for
the first and the second tests. O

Subsection 2.2.2
Exercise 2.11 Show that the mode of a Gamma(a,b) distribution is

(a —1)b. O

Exercise 2.12 The number of events has a Poisson(Rt) distribution, and the
prior distribution of the random variable R is Gamma(a,b) with the

density

po—1 e—m/b
= b>0
7 (z) O z,a,b>
Suppose that n events are observed during a time period t. Show that the
posterior distribution of R is Gamma(n + a,1/(t + 1/b)). d

Exercise 2.13 In Example 2.4, assume that researchers are optimistic about
the tested valve, and assign a 0.7 prior probability to the alternative hypothesis.
Redo the calculations to determine stopping rules similar to the ones given in
Table 2.1. Compare the results. O

Exercise 2.14 Suppose researchers want to conduct an interim Bayesian anal-
ysis for the trial in Example 2.1. Let p= ps- — pie- The alternative hypothesis
of interest is Hy : p>0. The distribution of Z = Z4, — Z. is M (u, 202 /n), where
L is modeled as a random variable. A natural choice of a conjugate prior for u
is a normal distribution (Prove it!). A skeptical prior is used with zero mean
and a large variance, which for computational convenience is chosen to be o2.
At group size n = 50, the interim Bayesian test is carried out. H; is accepted if
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its posterior probability is at least 0.95; it is rejected if its probability does not
exceed 0.05. Otherwise, the trial continues until the minimum required group
size of 97 subjects is accrued.

(a) Show that the prior probability of a true alternative is 0.5.
(b) Show that the posterior distribution of u given Z is

z 202 /n
N (1 +2/n’ 1 +2/n)

(c) Find the values of the sample mean Z for which the interim test accepts
or rejects H;. Describe the stopping rule. (I

Section 2.3

Exercise 2.15 Show that in the proof of Proposition 2.1, the variance
2 2
Var(Z, — Z2) = £ + 7~ is minimized for n = N/2. O

Exercise 2.16 Show that for both randomization methods described under the
simple randomization procedure in Section 2.3, the subject is allocated to any
group with probability 2. O

Section 2.4

Exercise 2.17 Derive the test statistic given in Equation 2.18, and verify the
entries in Table 2.2. O

Exercise 2.18 Derive the test statistic given in Equation 2.19, and verify the
entries in Table 2.3. (]
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Chapter 3

Introduction to Survival
Analysis

One of the variables of interest to clinical researchers is the length of time
a subject stays in the trial. This chapter focuses on the fundamentals of the
statistical analysis of these observed times.

3.1 Basic Definitions

Survival analysis consists of studies of the survival time of a subject (usually
measured in days, weeks, months, or years), which is the time that elapses
between the baseline and the moment an adverse event occurs, or the subject
drops out of the trial. Sometimes the survival time is called a lifetime or an
event time.

The survival times for subjects who dropped out of the trial (called drop-
outs or lost to follow-up subjects) are right-censored (or, more simply, censored).
The survival times of the subjects who remain in the trial until it ends are
censored as well. This term applies to situations when it is known that the
subject survived a certain length of time and was healthy, but the later health
condition for this subject is not recorded.

Censored survival times represent very important information and should
be kept in the database. Retained censored survival times increase the overall
survival rate of the subjects—that is, the percentage of people who are alive
for a given period of time. For example, if a subject drops out after being in a
study for 5 months, the subject is still included in calculation of the survival
rate up to 5 months. Naturally, a higher survival rate implies a better treatment

efficacy.

33
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In what follows, each uncensored observation is termed “death,” regard-
less of whether a death or a different adverse event has occurred. Denote by
T the random variable representing the survival time of a subject. Let f(¢),
t > 0, denote the probability density function (pdf) of T', and let F(t) =
P(T <t)= f(f f(z)dz, t > 0, be the cumulative distribution function (cdf) of
T. The distribution of T is called the survival time distribution (or the lifetime
distribution ).

The objective of survival analysis is to estimate and model the following
functions:

e The survival function, S(t), defined as the probability that a subject sur-
vives up to time t:

S(t)z]P’(T>t)=/Oof(x)dw:1—F(t), t>0  (3.1)

e The hazard function, h(t), defined as the following ratio:
e
h(t) = —= t> .2
)= 5. 20 (32)

It is interpreted as an instantaneous death rate, since the probability that
a subject dies within an infinitesimally small time interval [t, t+dt), given
that the subject survived up to time ¢, ¢ > 0, is equal to

P(t<T<t+dt) f(t)dt

(T<t+dt|T>t) BT > 1) 500 h(t) dt
e The cumulative hazard function, H(t), defined by
t
H{) = / hz)ds, >0 (3.3)
0

Example 3.1 Lifetime distributions are commonly modeled by the exponen-
tial distribution with the density

f@)=Xexp{-At}, t>0,A>0

The cdf of this distribution is F(t) = 1 — exp {—At}, ¢ > 0. Therefore, the
survival function is given by S(t) = 1— F(t) = exp {—-)\ t}, t > 0. By definition,
the hazard function is h(t) = f(¢)/S(t) = A, t > 0, and the cumulative hazard
function is H(t):fg h(z)dz =Xt, t>0. O

The questions that are addressed in subsequent sections of this chapter
include nonparametric and parametric estimations of the survival function as
well as the regression modeling of the survival and hazard functions.

The techniques of survival analysis are illustrated by means of SAS, a
statistical software package that is widely implemented by clinical researchers
and is highly praised for its notable capability in analyzing medical data.
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3.2 Estimation of Survival Function by
the Kaplan—Meier Method

3.2.1 Definition of the Kaplan—Meier Estimator

A widely used method for estimation of the survival function is the Kaplan—
Meier method. This method produces the Kaplan—Meir estimator, a nonpara-
metric estimator, which does not assume any known algebraic form of the
estimated survival function. The Kaplan—Meier estimator is also referred to as
the KM estimator or the product-limit estimator.

Suppose k distinct survival times are observed. Arranged in increasing
order, they are ¢; < t2 < -+ < tg. At time ¢;, there are n; subjects who
are said to be at risk—that is, they survived up to this time (not including it)
and were not censored. Denote by d; the number of subjects who die at time ¢;.
To simplify notation, let o = 0 and dy = 0. Then the Kaplan—Meier estimator
of the survival function S(t) is

Sy = ][ <1—@), >0 (3.4)

. n;
2:t;<t

Example 3.2 A biotech company conducted a 2-year clinical trial testing the
efficacy of a new heart valve. The survival times (in months) of 10 patients
with the heart valve implants were recorded. The plus sign “+” next to the
observation signifies that the observation is censored. The data are

24+, 16+, 8, 19, 10, 8+, 5, 17, 20, 10
There are eight distinct survival times, given here in increasing order:
5 8 10, 16, 17, 19, 20, 24

Table 3.1 aids in the estimation of the survival function.
In SAS, lifetest procedure is used to estimate the survival function by
the KM method. In fact, the KM method is the default for this procedure.
The variable status used in the definition of the data set in this example
is an indicator of a death (or an event) occurring; that is, status = 1 for un-
censored observations, and 0 for censored ones. The SAS code for this example

follows:
data valves;

input duration status QQ;

datalines;
24 0 16 0 8 1 19 1 10 1

8 0 5 1 17 1 20 1 10

’
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proc lifetest data = valves method = km;
time duration * status(0);
/* status(0) means status = 0 on censored observations */

run;

The SAS output for this example includes the survival times, with censored
observations marked by a star, and the KM estimator. A “missing” value in
the second column indicates that the estimator of the survival function retains

its previous value at this point.

Product-Limit Survival Estimates
duration Survival

0.0000 1.0000
5.0000 0.9000
8.0000 0.8000
8.0000*

10.0000 .
10.0000 0.5714
16.0000* :
17.0000 0.4286
19.0000 0.2857
20.0000 0.1429
24.0000%*

O

Table 3.1 Estimation of S(¢) by the Kaplan-Meier Method in Example 3.2

Time At Risk  Died Censored Survival Rate Estimator
t; ng d;  at Timet; (1 - %) S(t), t; <t <ty
0 10 0 0 1-0=1.00 1.00
5 10 1 0 1-- =090 (1.00)(0.90)=0.90
8 9 1 1 1-35=089  (0.90)(0.89)=0.80
10 7 2 0 1-2=071  (0.80)(0.71)=0.57
16 5 0 1 1-0=1.00 (0.57)(1.00)=0.57
17 4 1 0 1-2=075  (0.57)(0.75)=0.43
19 3 1 0 1—-3=067 (0.43)(0.67)=0.29
20 2 1 0 1-1=050 (0.29)(0.50)=0.15
24 1 0 1 1-0=1.00 (0.15)(1.00) =0.15
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3.2.2 Derivation of the Kaplan—Meier Estimator

The idea behind the Kaplan—-Meier estimator of the survival function, given in
Equation 3.4, is the following. Consider the recursive equation

S(tl) =P(T> ti) =]P(T> tilT> ti_l)]P(T> ti—l)
=P(T>ti|T>ti_1)S(ti_1),’I:=1,...,k‘ (35)

where tp = 0 and Sy = 1.

By nature, T is a continuous random variable. Thus, theoretically speak-
ing, identical observations (commonly termed tied observations) are not pos-
sible. In reality, however, survival times are measured on a certain scale (e.g.,
days, months, years), hence allowing tied observations; for instance, the data in
Example 3.2 have two pairs of tied observations, at 8 and 10 months, respec-
tively. Therefore, it is convenient to model the survival time T as a discrete
random variable taking on values t; < t3 < --- < tx. Denote by m; the condi-
tional probability that a subject survives time ¢;, given that the subject survived

timeti_lz
Wi:P(T>t¢IT>ti_1), N P

Then, in view of Equation 3.5,
5t) =11 m (36)
j=1

The maximum-likelihood method is used to estimate the values of ;.
At time t;, there are d; subjects, each of whom dies with probability 1 — ;
independently of the others, and there are n; — d; subjects, each of whom sur-
vives with probability m;, independently of the others. Therefore, the likelihood

function is
k

L(my, ..., m) =H(1—7ri)di i (3.7)

i=1

Equivalently, the log-likelihood function equals

k
In L(my, ..., %) :Z [di In(1—m)+ (n; —d;)Inm; |

=1

Equating to zero the derivatives of the log-likelihood function with respect to
m; gives the normal equations
er‘ n; — dl

= 5 Z:]_,k'
1—71'1' 5 ’
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These equations are solved to produce the maximum-likelihood estimators

d;
m=1——, i=1,...,k
U2

Plugging these estimators into Equation 3.6 yields

-4

j=1

Now, fix a time ¢, and suppose t; < t < t;41 for some i = 1,..., k.
Because there are no deaths occurring between the survival times ¢; and ¢;11,
the survival function at time ¢, S(t), is estimated by S(¢) = S(¢;). This gives
Equation 3.4.

3.3 The Kaplan—Meier Survival Curve

The Kaplan—-Meier survival curve is the plot of the Kaplan—Meier estimator
of the survival function 5(t) against time ¢. This curve is a step-function that
decreases at the times of deaths. The censored times are usually marked by a
cross (x). If a death and a censoring occur at the same time, a cross for the
censored observation is put at the bottom of the step.

Example 3.3 In Example 3.2, the Kaplan—Meier survival curve is a plot of
S(t) given in the last column of Table 3.1 against time ¢ (see Figure 3.1).
For instance, from this plot, the estimated probability of 15-month survival
is 0.57.

A g(t)

0.91
0.81
0.57t+— = — = = — —
0.43+

<

0.29+
0.151

0 5 8 10 15 16 17 19 20 24 t

Figure 3.1 The Kaplan—Meier survival curve in Example 3.2
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Legend: — Product-Limit Estimate Curve o000 Censored Observations

Figure 3.2 The Kaplan—-Meier survival curve in Example 3.2 plotted using
SAS software

To request the Kaplan—Meier survival curve in SAS, use the following code:

proc lifetest data = valves method = km plots = (survival);
time duration * status(0);
run;

The resulting graph is given in Figure 3.2. Note that SAS uses a circle (o)
as a default symbol for marking censored observations. O

3.4 Comparison of Two Survival
Functions: Log-Rank Test

To compare the efficacy of two treatments, subjects who enter a clinical trial
are randomly placed into two treatment groups. The survival data are then
recorded for each group. The question of interest is whether the two treatments
are equally effective. This translates into testing whether the survival functions
for these groups differ significantly. A two-sided test of statistical hypotheses is
appropriate. The hypotheses are

Ho : Sl(t) = Sz(t) for all ¢
Hy : Si(t) # Sa(t) for some ¢

The most commonly used test for data with censored observations is the
log-rank test, which derives its name from the fact that it is related to a test
that uses logarithms of ranks of observations.
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To compute the log-rank statistic, proceed as follows. Denote by #; <
ta < --+ < ti the ordered uncensored observations (times of deaths) in both
samples combined. At each time t;, the data can be summarized by a 2 x 2
table:

Status of Subject

Group | Died Survived | Total
1 di;  ny—dy | Ny
2 dg;  moi—dy | ng

Total d; n; — d; 1;

Here dy; and dp; are the numbers of subjects who died at time ¢; in groups 1
and 2, respectively; d; = d1; + d2; ; n1; and ng; are the numbers of subjects at
risk at time ¢; in groups 1 and 2, respectively; and n; = ny; + no;.

The null hypothesis is equivalent to independence of the “group” and “sta-
tus of subject” variables in all 2 x 2 tables. Under Hy, dy; is a hypergeometric
random variable with parameters n; (the population size), ny; (the size of the
group of interest), and d; (the sample size). The expected value of dy; is

ny; d;
E(dy;) = —

n;
The variance is

n1; e (N — d;) d;

Varld) = =2, )

Summing over all 4, 1 = 1,...,k, yields a statistic
k
U= Z (d1i — E(d1s))

=1

where

n1; n2; (n; — d;) d;

k
E(U)=0 and Var(U)= Z 72 (m; —1)

=1

Standardizing leads to the log-rank test statistic
U

v Var(U)

which has an approximately N (0,1) distribution. Alternatively (in particular,
in SAS), the log-rank statistic is z?, which has an approximately chi-squared
distribution with one degree of freedom.
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Example 3.4 A clinical trial is conducted to evaluate a new nicotine patch.
Subjects are randomly assigned to either the treatment group or the control
group. The treatment group receives the nicotine patch under study, while the
control group receives the best nicotine patch currently available on the market.
The measurement is the length of time (in months) that a subject goes without
a cigarette. The data for the two groups are as follows:

Treatment | 3.4 3.6+ 41 4.9+ 58+
Control | 20 3.7+ 4.3 4.9+

The researchers would like to know whether the two nicotine patches differ
significantly, so a log-rank test is performed. The test hypotheses are

HO . Streatment (t) = Scontrol(t) for all ¢
Hl . Streatment (t) ?é Scontrol(t) for some t

The times of events in both groups combined are 2.0, 3.4, 4.1, and 4.3. The
2 x 2 tables corresponding to each of these times follow:

t1 =20

Status of Subject
Group Died Survived | Total

Treatment 0 5 5
Control 1 3 4
Total 1 8 9

(6)4)(8)(1) _ 20

iy =0, Bld) = B = 2, Vara) - 92(8) 81

9

o =34

Status of Subject
Group Died Survived | Total

Treatment 1 4 5

Control 0 3 3

Total 1 7 8
_ _ (@) 5 _(3)@3)(M(1) _ 15
d12 = 1, ]E(dlz) = —8 S 3 5 Vm“(dlz) — (8)2(7) = 64
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t3 =4.1

Status of Subject

Group Died Survived | Total
Treatment 1 2 3
Control 0 2 2
Total 1 4 5
_ 3@ 3 _(3)@2@a) s
d13 = 1, ]E(dlg) = 5 = 5 5 Va,’l‘(dlg) = (5)2(4) = o5
th =43
Status of Subject
Group Died Survived | Total
Treatment 0 2 2
Control 1 1 2
Total 1 3 4
(2)(1) 2@E)@) 1

dig =0, E(d14) = 1

Consequently,

o=(0-9)+(-2) 41

= —0.2806
20 15 6 1

The log-rank test statistic is z = —0.2806/+/0.9713 = —0.2847. The approxi-
mate P-value for the two-sided test is 2 P(Z B 0.2847) = (0.7759. Alternatively,
the test statistic is 2°> = 0.081 and the approximate P-value is P(x?(1) >
0.081) = 0.7759. Thus the null hypothesis of equal survival functions is not
rejected at the 0.05 level of significance, and the conclusion is that the two

nicotine patches do not differ significantly.
The SAS code for this example is as follows:

data patches;

input duration status group QO;

datalines;

_ -;- Vi {dus) =

(423 4

)+ (0-3)
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Figure 3.3 The two survival curves in Example 3.4 plotted by SAS

3.4 1 1 3.6 0 1 4.1 1 1
4.9 0 1 5.8 0 1 2.0 1 2
3.7 0 2 4.3 1 2 4.9 0 2

)
proc lifetest data = patches method = km plots = (survival);
time duration * status(0);
strata group;
symboll value = none color = black line = 1; /*solid linex*/
symbol2 value = none color = black line = 2; /*dashed line*/

run;

As part of the SAS output, the log-rank statistic z2 and the corresponding
P-value are computed. The result is shown here: ;

Pr >
Test Chi-Square DF Chi-Square
Log-Rank 0.0810 1 0.7759

For graphical comparison, SAS plots the survival curves for the two groups
in the same coordinate plane. The resulting graph is shown in Figure 3.3. Notice
that the survival curves lie very close to each other, visually emphasizing the
earlier conclusion that the survival rates for the two groups are not significantly
different. O

3.5 Estimation of the Survival Function
by the Actuarial Method

When the number of observations in a clinical trial is large and survival times
are measured precisely, the data collected include many distinct values. As a
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result, the Kaplan—-Meier approach to estimation of the survival function pro-
duces a long bulky table, and the survival curve is extremely saw-toothed.

In this case, the actuarial method is recommended as an alternative to the
Kaplan-Meier estimation method. The corresponding estimator of the survival
function is called the actuarial estimator (or life-table estimator). This section
describes the steps for obtaining this estimator.

At the discretion of the researcher, the observed survival times are grouped
into intervals, often of equal lengths. Then, for each time interval [¢;, ¢;+1), the
following quantities are computed: '

e d;, the number of subjects who died within the interval.
e c;, the number of subjects who were censored within the interval.
e n;, the number of subjects living at the beginning of the interval.

e 7i; = n; —c;/2, the number of subjects at risk during the interval (in SAS,
this number is called the effective sample size). Here an assumption is
made that the censored observations are at risk for half of the interval.

e 1—d;/n,, the interval survival rate.

The estimator of the survival function at the beginning of an interval is
calculated as the product of interval survival rates for all intervals up to and
including the last one. That is, for the interval [¢;, t;11),

The actuarial survival curve is a plot of the estimates S’(tz) against t;,
with the dots connected by straight lines. This plot depicts the “best guess”
regarding the probability of survival as a function of time.

Example 3.5 A new drug is tested on patients with leukemia. The variable
recorded is the duration of remission until a relapse occurs (in weeks). The
censored observations are for the patients who were still in remission at the
time the study terminated. The following data are collected:

1, 1, 2, 2 3 4, 6, 8, 8, 9, 9+,
10, 10, 11, 11, 114, 12, 13+, 14, 14+, 15, 15,
154+, 16, 17, 17, 19, 20+, 23, 25+, 26, 27+, 29

Suppose it is reasonable to group the observations into six time intervals
[0, 5), [5, 10), [10, 15), [15, 20), [20, 25), and [25,30). Then the computa-
tions can be summarized by Table 3.2.

The actuarial survival curve is shown in Figure 3.4.
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Table 3.2 Estimation of S(¢) by the Actuarial Method in Example 3.5

Interval Survival
Interval Died Censored At Risk  Survival Rate Function
[ti, tiv1)  d; c M 1—d;/n; S(t;)
[0, 5) 6 0 33.0 1-2=0.82 1.00
[5, 10) 4 1 26.5 1 % =0.85 (1.00)(0.82) =0.82
[10, 15) 6 3 20.5 1-— %33 =0.71 (0.82)(0.85) =0.70
[15, 20) 6 1 12.5 1— 135 =0.52 (0.70)(0.71) = 0.50
[20, 25) 1 1 5.5 1—- =082 (0.50)(0.52) = 0.26
[25, 30) 2 2 3.0 1-— % =0.33 (0.26)(0.82) =0.21
\ S'(t)
1.000 ¢
0.82
0.70
0.50 +
0.26 +
0.21 1
0 5 1{0 1:5 2{0 2:5 f

Figure 3.4 The actuarial survival curve in Example 3.5

The SAS code for this example is as follows:

data leukemia;

input duration status @Q;

datalines;
1 1
4 1
9 0
11 0
15 1
17 1
26 1
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Figure 3.5 The actuarial survival curve in Example 3.5 plotted by SAS

proc lifetest data = leukemia method = act /*actuarial method*/
plots =(survival) intervals = 0, 5, 10, 15, 20, 25; '
time duration * status(0);

run;

The SAS output for this example includes the following columns:

Effective
Interval Number  Number Sample
[Lower, Upper) Failed Censored Size Survival

0 5 6 0 33.0 1.0000
5 10 4 1 26.5 0.8182
10 15 6 3 20.5 0.6947
15 20 6 1 12.5 0.4914
20 25 1 1 5.5 0.2555
25 ; 2 2 3.0 0.2091

The actuarial curve plotted by SAS is given in Figure 3.5.

3.6 Parametric Estimation of the
Survival Function

3.6.1 Definition and Setup

f

1

The survival function is estimated by the parametric method if a certain
algebraic form of this function is assumed and the associated parameters are

APAARAAAAAAAABEREAARAARAAN D AARAAMAAMAMNANM




3.6 Parametric Estimation of the Survival Function 47

estimated. The exponential and Weibull distributions are commonly used to
model the distribution of the survival time.

e The exponential distribution has density f(t) = A\ exp{—At}, and the
survival function S(¢) = exp {—At}, wheret > 0, A > 0 (see Example 3.1).

e The density of the Weibull distribution is f(t) = aAt®~! exp {— A t“},
where £ > 0, a, A > 0. The survival function for this distribution equals
to S(t) =exp{—At*}, t > 0 (see Exercise 3.2). Note that when o = 1,
the Weibull distribution reduces to the exponential one.

The survival functions for these distributions are depicted schematically in
Figure 3.6. The two graphs in this figure exhibit substantially different behavior.
The survival probability in the exponential model drops quickly right from the
baseline, and then levels off toward the end. In the Weibull model, the survival
probability decays slowly for some period of time, then decreases rapidly, and
possibly levels off at the end.

The Kaplan—-Meier survival curve may give a hint about which model is
more appropriate for a particular data set. If the empirical survival curve
behaves similarly to either the exponential or Weibull distribution, then this
model may have a good fit to the data.

As a rule, the estimation of parameters in these models is done by the
maximume-likelihood method. However, specifying the likelihood function is not
a straightforward task because the survival data are censored.

‘Weibull

Exponential ~—_

0 t

Figure 3.6 Survival functions for the exponential and Weibull distributions
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3.6.2 Random Censoring Model

A usual approach is to consider a random censoring model. Suppose n pairs
(t:, ;) are observed, one for each subject in the trial, where ¢; is the survival
time, and §; is an indicator of a death occurring—that is, §; = 1 if the observa-
tion is uncensored and J; = 0 otherwise. Note that in the SAS code presented
throughout this chapter, the variable §; is called status.

Consider two random variables T;, the survival time of the jth subject,
and C;, the censoring time of the ith subject. Assume that T; has the pdf fi(t)
and cdf Fi(t), t > 0, and that C; has the pdf g;(¢) and cdf G;(¢),¢ > 0. In
addition, assume that 7; and C; are independent. The observed survival time
is min(T;, C;).

The contribution to the likelihood function of the ith subject with the
observed survival time #; and §; = 1 is

2Iﬁlm EE]P’(mm T;, C;) € (ti, t; +dt), 6; =1)

s dliigl % P(T; € (i, ts+dt), C; >t) = fi(t) (1 - Gi(t))

The contribution of the ith subject with the observed survival time ¢; and
61' =0 is

1 :
d}tl—n}OZ P(min(T;, C;) € (t;, t; +dt), 6; = 0)

= lim Zz% P(ﬂ- >ti, C; € (ti, t; + dt)) = (1 — Fi(t))g:(2)

dt—0

Thus the likelihood function for the survival time distribution with random
censoring is

1-4;

[Fi(t) (1 = Galta))] ™ [(1 = Fult))ga(t:)]

Il
:$

L

™.
l
ik

Il
—s

(1 - Gi(t:)) % (galta) % H (felt:)) % (1~ Fita) %

1

i

Notice that the first product does not involve parameters of the survival
time distribution and, therefore, can be considered constant. Consequently, the
likelihood function is proportional to

LmIﬂﬁt) (1— Fi(t:)) "% (38)
Equivalently, the log-likelihood function is proportional to

1nLocZ§lnfz +Z(1— ) In(1 — Fy(;)) (3.9)
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Finding the maximum-likelihood estimator of parameters of the lifetime
distribution is carried out by equating to zero the derivatives of the log-likelihood
function with respect to the parameters. This produces the normal equations,
which are then solved to obtain the estimators. Next, the survival function is
estimated by S(t) = 1 — F'(t), t > 0, with the maximum-likelihood estimators

of the parameters plugged in.

3.6.3 Exponential Distribution Model

Suppose that the survival time distribution is modeled by the exponential
distribution with pdf f(t) = X exp{—At} and cdf F(t) = 1 — exp{—At},
t > 0, \ > 0. By Equation 3.9, the log-likelihood function is proportional
to

ll’lL(/\) x In A Zn: 5, - A i (5@'ti— /\i(l—dz)tzzlﬂ)\ i 5i~/\zn:ti
i=1 i=1 i=1 . i=1 : i=1

Equating to zero the derivative with respect to A produces the equation for the
maximum-likelihood estimator A:

dinL() YR, 86 S 40

- ~

dA X

i=1
The solution is

i=1

Zle t;  number of patient-years

5= > 16 _ number of deaths (3.10)

where the number of patient—yeérs is the sum of the survival times for all
subjects in the trial. Hence, the estimator for A can be interpreted as the
number of deaths per patient-year. The estimator of the survival function is

S’(t)=exp{—5\t},t20 (3.11)

Example 3.6 Assume that in a model with random censoring the ordered
observations are
/1 1 2 3 3 5 8 10 16 18
11110111 1 0 1

The Kaplan—Meier survival curve for these data is shown in Figure 3.7. It
resembles the survival function for the exponential distribution, so it is reason-
able to fit the exponential model.

By Equation 3.10, the maximum-likelihood estimator of A is

}z——8—=—8%=0.1194

1+e=+18 6
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Figure 3.7 Kaplan—-Meier survival curve in Example 3.6

Thus, from Equation 3.11, the estimator of the survival function is

A

S(t) = exp {—0.1194¢}, t>0

The SAS code for this example is given in the next section, where a more
general model is discussed (see Example 3.9). O

3.6.4 Weibull Distribution Model

Suppose the survival time has the Weibull distribution with the density
f(t) =ait* ! exp {~At*}, and cdf F(t) = exp {~At®}, where t > 0, a;, A >
0. From Equation 3.9, the log-likelihood function is proportional to

InL(a,X) ocIn(@A) Y "6+ (@ —1) Y GInt; — XD 6t — XY (1 - 6;)t2
i=1 i=1 i=1 i=1

X (Ina+1nA) i 0 + i 0; Int; — A i ¢
i=1 i=1 i=1

Taking the derivatives with respect to « and )\ and setting them equal to zero
yields the following system of normal equations:

” o B n . n . N
0 InL(a, A) _ Die1 O 4 Z d;Int; — A Z t¥ Int; =0
i=1 i=1

Oa &
) (3.12)
OIL(G N ST, 86 s
S };; Ll
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This system has to be solved numerically. The estimator of the survival

function is ) o
S(t)=exp {—At*}, t>0 (3.13)

Example 3.7 Consider the data in Example 3.2:

ti |24 16 8 19 10 8 5 17 20 10
/0 o 1 1 1 01 1 1 1

The Kaplan—Meier survival curve is presented in Figures 3.1 and 3.2. The
shape of this curve fits the description of the survival function of the Weibull
distribution, implying that the Weibull model in this example may be prefer-
able to the exponential one. To find the maximum-likelihood estimators of the
parameters a and A of the Weibull distribution, refer to Equation 3.12. The
estimators & and A solve the system of normal equations

7/& +17.0674 — A[24% In24 + --- + 10% In10] = 0
T/A—[24%+---+10%] =0

The numerical solution to these equations is & = 2.2451 and \ = 0.0015.
Thus, according to Equation 3.13, the maximum-likelihood estimator of the

survival function is
S(t) = exp {~0.0015¢2241) ¢ >0

This example will be revisited in the next section (see Example 3.10), where
the SAS code and relevant output will be presented and discussed. (]

3.7 Regression Model for Survival Time
Distribution

Let T be the survival time, and let z1,...,z,, denote some variables (for ex-
ample, age, gender, exposure to hazard materials at workplace). A parametric
regression model for survival time distribution establishes the relationship be-
tween the response variable T and the predictor variables zi, ...,z , which
are termed the covariates. A parametric regression model is of the form

InT=p/o+piz1+ -+ BmnTm+oe (3.14)

where [y, ..., B are the regression coefficients, o is a real constant, and ¢ is

the random error.
Two widely used parametric regression models, exponential and Weibull,

are discussed here.
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3.7.1 Exponential Regression Model
Definition

A parametric regression model for the survival time distribution given in
Equation 3.14 is called the ezponential model, if ¢ = 1 and ¢ has the
extreme-value distribution with the following density:

fo(x) =e® ¢, —oco<z< (3.15)

Equivalently, T has the exponential distribution with the following density (see
Exercise 3.9):

f(t) =Xexp{-At}, t>0 (3.16)

where A = exp { —Bo+Brizi+ -+ Bm xm)} . The survival function for this
distribution is S(t) = exp{—At}, t > 0.

Note that if the covariates are absent in this model, it reduces to the ex-
ponential distribution model explored in Subsection 3.6.3.

Estimation of Regression Coefficients

The usual approach to estimation of regression coefficients fBg,..., By is
the method of maximum likelihood in the random censoring model defined
in Subsection 3.6.2. Suppose that the observations are (¢;, &;, Zs1,-- -, Tim),
¢t =1,...,n, where ¢; has the exponential distribution with the density given
by Equation 3.16. Then, in view of Equation 3.9, the log-likelihood function is
proportional to

In L(Bo, - . -, Bm) OC-Z@' (ﬁo-f-ﬁlﬂ?il-l-'---i-ﬁmxim)

i=1

—Z t; GXP{_ (Bo + b1 $i1+-"+ﬂmﬂ3z‘m)} (3.17)
i=1

To simplify the notation, let ;0 = 1. Then the normal equations for finding

Bo,---yPm are

n n
Z5i$ij—zwz‘jti eXP{—(Boxz‘o+"'+Bmxim)} =0,75=0,...,m
i =i

(3.18)

The solution of this system can be found numerically. The maximum-
likelihood estimator of X is A = exp { — (Bo + f1 21 + - + Bm Tm) }, and the
corresponding estimator of the survival function is S(t) = exp{—At} for t > 0.
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Interpretation of Regression Coefficients

In the exponential model, the regression coefficients By, ... ,Bm have a
straightforward meaningful interpretation. According to Equation 3.16, the
mean survival time is equal to E(T) = 1/\ = exp { Bo+Bix1+ -+ B zm }
Hence, the exponential model yields the following interpretation of the regres-
sion coefficients:

e For a numerical covariate z;, the quantity exp{f;} is the relative change
[or 100 (exp{8;} —1) % is the percentage change] in the mean survival time
for each unit increase in the covariate, provided the other covariates are
fixed. Indeed, assume that all covariates except z; are held constant, and
index the survival time T by z;, indicating the dependence of 7" on this

covariate. Then
E(Twﬂrl)_eXP{ﬁo+'--+ﬁi(mi+1)+...}- |
E(Tmz) - eXP{ﬁo+'--+ﬂimz-+---} —exp{ﬁz} (3.19)

e For a categorical covariate z with [ levels, the regression model contains
! — 1 dummy variables defined as y; = 1, if £ = 4, and 0 otherwise,
t=1,...,1— 1. Thus the mean survival time is of the form

E(T) = exp { Bo+Piyi+ -+ Bi_1y1—1 + other terms}

Then the ratio of the mean survival times of two subjects, one with z at
level i and the other with z at level j (i, j =1, ...,1—1), provided the
values of all other covariates for these subjects are the same, equals

E(T,,) exp { Bo + B; + constant } B -
E(T,)  exp { Bo + B; + constant } = exp {6 - f; } (3.20)

Consequently, 100 exp{f; — 3;} % is the ratio (expressed as a percentage)
of the mean survival times for subjects with the covariate z at level i
and at level j, controlling for the other covariates. The ratio of the mean
survival times for subjects with z at level [, denoted by E(Tp), and at
level i (i =1,...,1—1) is found as follows:

E(Tp)  exp{ o+ constant } B s
E(Ty,) exp{fo+ B; +constant } exp{~fi} (321)

Hence, 100 exp{—/4;} % is the ratio of the corresponding mean survival
times, expressed as a percentage.

3.7.2 Weibull Regression Model
Definition

A parametric model given by Equation 3.14 is termed the Weibull TEQTESSION
model if o is a constant that has to be estimated from the data, and ¢ has the
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extreme-value distribution defined in Equation 3.15. Equivalently, T' has the
Weibull distribution with the following density (see Exercise 3.10):

f#)=art® lexp {—At*}, t>0 (3.22)

where o = 1/0 and A = exp {— Bo+Bizi+-+ Bmzm)/o } The survival
function for this distribution is S(t) = exp {— At®}, t > 0 (see Exercise 3.2).

A special case of this model when o = 1 is the exponential regression
model introduced in the previous subsection. Also, the version of Equation 3.22
without the covariates is the Weibull distribution model discussed in
Subsection 3.6.4.

Estimation of Regression Coefficients

Assume that (t;, 6;,%i1,-.-,Tim), ¢ = 1,...,n, are the observations in the
random censoring model, where ¢; has the Weibull distribution with density
given in Equation 3.22. From Equation 3.9, the log-likelihood function is
proportional to

n 1 n
InL(Bos - - -, Bm,0) o< —Inc Y 6; — ;Zéi(ﬂo + B1i1 + - -+ + BmTim)
i=1 i=1

+ <§ == 1> g&,lntl
-—;exp{gl:(lnti — (Bo + P11 +"'+ﬁm5€z’m))}

Note that when o = 1, this expression takes a simpler form (Equation 3.17),
as it should.

Setting to zero the partial derivatives of the log-likelihood function
with respect to the parameters produces a set of normal equations, which
should be solved numerically. The maximum-likelihood estimator of \ is A =
exp { — (Bo+ Brzi+ -+ B Tm)/6}, and the survival function is estimated
as S(t) = exp {— At/%}, ¢t > 0.

Contrary to the coefficients in the exponential model, the parameters of
the Weibull model do not lend themselves to an easy interpretation without re-
quiring additional background. Therefore, the question of the parameter inter-
pretation in the Weibull regression model will be addressed in the next section
(see Subsection 3.8.3).

3.7.3 Model Fit Evaluation

A formal likelihood ratio goodness-of-fit test may be conducted with the expo-
nential model as the null hypothesis, and the Weibull model as the alternative
hypothesis. Denote by In L(fo, ..., 3,) and In L(By, ..., Bm,c) the respective

{

1

mmmmamma&aggaanmﬂmmm@gaggamﬁﬁﬁmm;




3.7 Regression Model for Survival Time Distribution 55

log-likelihood functions for the exponential and Weibull models. Then the test
statistic equals

—2(InL(Bo, - .-, Bm) —InL(Bo, - .., Bm,0)) (3.23)

Under the null hypothesis, this expression has approximately the chi-squared
distribution with one degree of freedom.

Unlike what is done in the parametric modeling of survival function (see
Section 3.6), plotting the Kaplan-Meier survival curve as a graphical diagnostic
tool is not appropriate for the parametric regression model, because the Kaplan—
Meier estimator of the survival function ignores the presence of covariates.

3.7.4 Data Examples

Example 3.8 In a 5-year study on subjects who undergo a heart valve re-
placement surgery, the covariates are z1, age (in years) of a subject at the time
of surgery, and x5, the preoperational New York Heart Association (NYHA)
functional class.* The response variable T' measures the time (in years) between
the surgery and an event. The event in this case is defined as a death caused
by a heart failure or a complication not resulting in expiration—for example,
a stroke, thromboembolism (a blood clot in the circulation system), or endo-
carditis (inflammation of the heart lining and valves). Censoring occurs when
a subject drops out of the study or when a subject dies of non-heart-related
causes (for example, in an automobile accident). At the end of the study, the
surviving subjects are censored as well. The observations taken on 20 subjects
appear in Table 3.3.

The covariate zo is a categorical variable with four levels; hence three
dummy variables must be introduced into the regression model. For conve-
nience, put y; = z1, and let

1, if I = 1
Y2 =

0, otherwise

1, ifze=11
Y3 =

0, otherwise

1, ifxe=1III
Ya =

0, otherwise

*There are four NYHA functional classes (I, II, III, and IV), with the least deteriorated heart
being categorized as class I, and the most deteriorated as class IV. This classification is used
for prescription of physical activity for cardiac patients.

e Class I: Patients have no limitation of activities.
e Class II: Patients are recommended only mild exertion.
e Class III: Patients are recommended rest.

e Class IV: Patients are recommended complete bed rest.
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Table 3.3 Data for Example 3.8

Subject Age, x1y NYHA Class, zo Survival Time, ' Death Indicator, §

1 o6 II 2.7 0
2 28 II1 2.8 1
3 68 I 0.7 0
4 54 II1 2.9 1
3 65 v 0.2 1
6 68 III 0.9 0
7 99 II 3.0 0
8 67 II1 0.6 1
9 38 I 3.5 0
10 52 I 2.0 1
11 67 II1 0.8 1
12 62 II 0.1 1
13 92 II 4.0 1
14 72 II 0.3 0
15 59 I 1.3 0
16 o4 III 4.7 0
17 46 II 1.8 1
18 62 v 0.2 1
19 73 II 0.3 0
20 47 I 4.6 0

Then the model is
InT =0+ pBry1 +Bey2+P3ys +Pava+oe

where ¢ has the extreme-value distribution defined in Equation 3.15.

To see whether the exponential or Weibull distribution model fits the data
better, and to find the parameter estimates, resort to procedure lifereg in
SAS. The code for this example is as follows:

data valve_replacement;
input age nyha $ duration status @@;

datalines;
56 IT 2.7 0 28 III 2.8 1 68 I 0.7 O
54 IIT 2.9 1 65 Iv. 0.2 1 68 III 0.9 O
59 IT 3.0 O 67 IITI 0.6 1 38 I 3.5 0
52 I 2.0 1 67 III 0.8 1 62 IT 0.1 1
52 IT 4.0 1 72 IT 0.3 O 59 I 1.3 0
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54 III 4.7 O 46 II 1.8 1 62 IV 0.2 1
73 IT 0.3 © 47 I 4.6 O
proc lifereg data = valve_replacement;
class nyha; /* list of categorical variables */

model duration * status(0) = age nyha / dist = exponential;
run;
proc lifereg data = valve_replacement;

class nyha;

model duration * status(0) = age nyha / dist = weibull;

run;

From SAS computations, the respective values of the log-likelihood func-

tion for the two models are In L(fo, .. ., Bm) = —19.4946 and In L(By, - - - , Bm, 0)
= —18.6317. Therefore, the goodness-of-fit test statistic, as defined in

Equation 3.23, equals
—2(InL(Bo,- -, Bm) — In LB, . ..

which has an approximate P-value of P(x2(1) > 1.7258) = 0.1889 > 0.05.
Hence, the exponential model is more appropriate for the given data.

The estimates of the regression coefficients [y, ..., B in the exponential
model (o = 1), along with P-values for testing their equality to zero, are part
of SAS output.

s B, 0) ) = 1.7258

Parameter Estimate Pr>ChiSq
fo — Intercept -0.5846  0.8082
B — age -0.0161 0.6562
B — nyha I 3.8570 0.0039
B3 — nyha II 2.8764 0.0027
B4 — nyha III 2.5788 0.0063

The P-value for testing Ho : ;1 = 0 is larger than 0.05, so including the
variable age in the model is not statistically justified. In fact, it may be wise to
rerun the model without this covariate. Replacing the existing line in the SAS
code with

model duration * status(0) = nyha / dist = exponential;

produces the following estimates and the corresponding P-values (all less than
0.05):

Parameter Estimate Pr>ChiSq
Bo — Intercept -1.6094  0.0228
B, — nyha I 4.1026  0.0008




58 Chapter 3 & Introduction to Survival Analysis

B3 — nyha II  3.0123 0.0010
By — nyha III 2.7647 0.0014

Thus, by Equation 3.16, the final model for the survival time distribution is
the exponential one with density

f(t) =X exp{=At}, t>0 (3.24)

where A = exp { 1.6094 — 4.1026 y, — 3.0123y3 — 2.7647ys }. The estimated
survival function in this model is S(t) = exp {- /A\t} s T2 0.

From Equation 3.20 and 3.21, the estimated relative percentage in the mean
survival times for subjects in different NYHA classes is computed as follows:

e NYHA class II to class I: 100 exp{ 3.0123 — 4.1026 } % = 33.61 %. That
is, the average survival time for subjects in NYHA class II is only 33.61%
of that for the subjects in NYHA class I.

e NYHA class III to class I: 100 expq{ 2.7647 — 4.1026 } % = 26.24 % .
e NYHA class IV to class I: 100 exp{—4.1026} % = 1.65%.

e NYHA class III to class II: 100 exp{ 2.7647 — 3.0123 } % = 76.07 % .
e NYHA class IV to class II: 100 exp{—3.0123} % = 4.92%.

e NYHA class IV to class III: 100 exp{—2.7647 } % = 6.30 %. =

Example 3.9 Consider the data in Example 3.6. The Kaplan—Meier survival
curve suggested that the exponential distribution model would have a better
fit to the data. To confirm this choice, the goodness-of-fit likelihood ratio test
statistic (Equation 3.23) may be computed. The lifereg procedure in SAS
produces the test statistic as well as the fitted model parameter estimates.
Following is the SAS code for this example. Note that because no regression
modeling is involved, the list of covariates is empty.

data fromExample3_6;
input duration status @Q;
datalines;
1 1 1 1 2 1 3 0 3 1

5 1 8 1 10 1 16 O 18 1

.
s

proc lifereg;

model duration * status(0) = / dist = exponential;
run;
proc lifereg;

model duration * status(0) = / dist = weibull;

run;
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SAS outputs the values of the log-likelihood functions for the exponential
model, In L(A) = —14.3284, and for the Weibull model, In L(a, \) = —14.3175.
Consequently, the test statistic is —2( In L(A) — In L(a, A)) = 0.0218, with the
approximate P-value= ]P’(xz(l) > 0.0218) = 0.8826 > 0.05. Thus, for these
data, the exponential model is preferred to the Weibull one.

For the exponential model, SAS estimates the Intercept Bo = 2.1253,
which, by Equation 3.16, leads to the estimator A\ = exp{—,@o } =0.1194. Note
that the same value was computed in Example 3.6. O

Example 3.10 In Example 3.7, the Weibull distribution model was selected
after studying the Kaplan—Meier survival curve. To confirm the correctness of
the model, the lifereg procedure may be run. The SAS code is similar to that
given in Example 3.9.

From SAS output, In L(A) = —10.7511 and In L(a, \) = —8.3090. Thus an
approximate P-value for the test statistic is ]P’(X2( 1) > 4.8842) = (0.0271 < 0.05,
implying that the Weibull model should be used for these data.

For the Weibull model, SAS gives the estimates of the Intercept Bo =
2.8817 and Scale & = 0.4454. Therefore, by Equation 3.22, the estimators of
the distribution parameters are & = 1/0.4454 = 2.2452 and ) = exp{—£o/6} =
0.0015. Note that the discrepancy between this estimate of o and the one
computed in Example 3.7 is due to the round-off error. O

3.8 Cox Proportional Hazards Model
3.8.1 Standard Definition

In a general regression model, the hazard function h depends on time ¢ and
time-dependent covariates z;(t), ...,z (t). In a simpler model, called the Coz
proportional hazards model (or Coz model, for short), where the covariates
T1,...,Zm do not depend on time, the hazard function has the following form:

h(ta Liy ey Tm, /81? ’ﬁm) :hO(t) eXp{ﬂlml"i_‘l'ﬂmzm} (325)

The function ho(t) is called the baseline hazard function. It is the hazard
function of a (usually hypothetical) subject whose covariate values are all zeros
(called a baseline subject). The quantity exp {Biz1+ -+ Bmzm } is termed
the relative risk of a subject with covariates 1, ..., Zn,.

The name of this model—the proportional hazards model—arises from the
fact that for any two subjects, the ratio of their hazard functions is a constant
not depending on time. Indeed, consider two subjects for which the values of
the covariates are z;1,. .., Zim and z;1,. .. , Tjm , respectively. The ratio of the
hazard functions is

h(t,$i1, v 7$im‘)ﬂ1, v aﬂm)

h(t’xﬂ"--amjmaﬁla---v,@m) = {51(331‘1 _zjl) + ”'+ﬁm($’im _xjm)}
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3.8.2 Estimation of Regression Coefficients

The baseline hazard function ho(t) and the regression coefficients i, ..., Om
are the unknowns of the Cox model. An alternative formula for the propor-
tional hazards model will be presented later (see Subsection 3.8.4). It avoids
the knowledge of the functional form of hg(t); thus the only question that should
be addressed here is the estimation of betas.

The most commonly used method for estimation of the regression coef-
ficients is the partial-likelihood estimation method. In this method, the time-
dependent factor of the likelihood function is discarded, and the maximization
is carried out on the remaining factor, called the partial-likelihood function, pro-
ducing the mazimum partial-likelihood estimators of the regression coeflicients

Biy vy B

Intuitive Derivation of Partial-Likelihood Function

To see on an intuitive level how this method works, consider a random censor-
ing model (introduced in Subsection 3.6.2) that does not allow tied uncensored
observations (times of deaths), but allows ties between an uncensored obser-
vation and one or more censored observations. Consider the ith subject with
the values of the covariates z;1, ..., Tim. The conditional probability that the
subject dies at time t;, given that t; is one of the ordered observed survival
times, is

IP’( ith subject dies at ¢; ) . ]P’( ith subject dies at ¢; )
PP(one death at t;) B die R(t:) P( jth subject dies at ¢; )

where R(t;) denotes the set of all subjects who are at risk at time ¢; . Replacing
the probability of death at time ¢; with the probability of death in the interval
[t;, t; + A) and passing to the limit as A — 0, yields the following expressions:

im P( ith subject dies in [t;, t; + A) )/ (A S(t:))
A—03:  p(sy P(jth subject dies in [t;, t; + A) )/(AS(t))
= h(ti, it ormms B P13 v 6m) [by Equation 3.2]
ZjER(ti) h(tia Ti1y ooes Timy P1y -+ -, ﬂm)
. ho(t:) exp { Bi zi1 + -+ + Bm Tim }
- EjER(ti) ho(t;) exp { B1Zj1 + =+ B i }
_ exp{Przi1+ - + Bm Tim } (3.26)
ZjeR(ti) eXp{ﬂ1$j1+"'+,3mxjm} )

[by Equation 3.25]

The partial-likelihood function Ly, ( B1, - .., Bm ) is then defined as the prod-
uct of the individual conditional probabilities (Equation 3.26), each raised to
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the power § that indicates whether the death occurred for this individual:

8

& exp{ﬂlxi1+"'+ﬂm$im} (327)

L s veey Pm ) =
p(ﬂl ﬂ) H ZjeR(ti)exP{Blmj1+"'+ﬂmwjm}

i=1

Rigorous Derivation of Partial-Likelihood Function

A rigorous derivation of the expression for the partial-likelihood function (Equa-
tion 3.27) is now presented. Consider a random censoring model (see Subsection
3.6.2) without tied uncensored observations, and let the lifetime distribution
for the ith subject have pdf f;(¢;), survival functlon S;(t;), and hazard function
hi(t;) = ho(t) exp { 81 zi1+ Bm :czm} i=1, ..., n.According to Equation 3.8,
and the definition of the survival function (Equation 3.1), the likelihood func-
tion in this model is proportional to

H(fz(t)) (1- Hm C(Si)

’[,:

(hi(t:) Si(ts )) i) 1% [ by Exercise 3.1, part (d) ]

;:1:

~.
Il
e

I
{j:

(h (t))‘sfsz—(ti)=f[[z‘ez(ff’h, k[ X mt)] s

(3 jER(t‘L

I T TR W } 1 {PIRIEIETE

i=1 | 2sen() @ T + o+ B jm} i=1 "jER(t:)

Discarding the second product, which depends on time, once again leads
to the partial-likelihood function in Equation 3.27.

Partial-Likelihood Score Equations

To find the maximum partial-likelihood estimators of 3’s, it is convenient to
maximize the log-partial-likelihood function, defined as

6Ly ( By o co0 Fin) :Z5i(51$z'1+"'+ﬁm$im)
=

_Zézln( Z eXp{,Blil?jl‘i‘""f‘ﬁmmjm})
=1

J€ R(t:)
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The estimators Bl, ..., By are found as the numerical solution to the normal
equations, called the partial-likelihood score equations:

Blan(ﬁl,...,ﬂm dem

OBk
id jer(s) Tik P {Braj+ -+ P zjm }
_ ! 1 !
i=1 > e R(t:) exp { frxj1 + -+ + PBm Tjm }
=0, k=1,...,m. (3.28)

Breslow Approximation

Due to the inability to monitor continuously the survival times of subjects, tied
event times are observed quite often. Several methods have been proposed for
the handling of ties. The Breslow approximation, which is used as the default
method in SAS, is described here.

Suppose there are k distinct death times ¢t < tp < - -+ < tr. Let D(¢;) be
the set of subjects whose death times are ¢;. Suppose there are d; subjects in
the set D(¢;). The partial-likelihood function for the Breslow approximation is
then

k Hlep(t)eXP{ﬁlmll +"'+,6mwlm}

Ly (B s Bm) =]

i=1 (deR(t)eXP{leJl‘*‘ +ﬁmwam})

Example 3.11 Suppose five subjects have ordered survival times 1, t1, to+, t3,
and t4+, respectively. Notice that there are two distinct death times ¢; and t3.
Denote by 7; = exp { B @ A v BB } j=1,...,5, the relative risk of
the jth subject. Then the partlal hkehhood functlon for the Breslow approxi-
mation is

T17T2 T4
L y e =
p(ﬂl ﬂm) (7«1+r2+r3+r4+7-5)2 (7'4+T5)
O
The estimates of the regression coeficients 1, ..., Bm solve the system of
partial-likelihood score equations
OlnL ﬁ e, ﬁ
kel 5 5
i=11eD(t;)
k "
=, Z d- .7€R(t1 :EJQ exp {:Blmyl + -+ ,Bma;]m}
=1 ZgER(t ) exp {/legl E b o ,Bmﬂfjm}
:07 q=1,..., (329)
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3.8.3 Interpretation of Regression Coefficients

The Cox proportional hazards model yields the following interpretation of the
regression coefficients 3’s that correspond to numerical covariates. The quantity
exp{ 3 } is the change [equivalently, 100( exp{3 }—1) % is the percentage change]
in the hazard function for each unit increase in the covariate, provided the other
covariates stay fixed. To see this, write

h(t, z1, e i+ 1, o, T, By, Br)
Bl By By wn0n By » 10 By By xr9 B )
_ ho(t) exp{ﬂlml+---+ﬂ¢(xi+1)+--~+ﬂmxm}
~ ho@) exp{Brzit-+Bizi+t -+ P Tm )
=exp{f; } (3.30)

An interpretation of regression coefficients introduced into the model by
a categorical variable is as follows. Suppose the variable has [ levels, and
let B1, ..., Bi—1 denote the regression coefficients in front of the appropri-
ate dummy variables. If no other covariates are present in the model, a sub-
ject at the Ith level of the covariate is the baseline subject. The quantity
100 exp{B; —B;} % signifies the ratio (expressed as a percentage) of hazard func-
tions for subjects at level ¢ and at level j of the covariate (i, j = 1,...,1 — 1),
provided the other covariates have equal values. The quantity 100 exp{ 3;} % is
the relative percentage in hazard functions for subjects with the covariate at
level i (i =1,...,1—1), and at level .

Example 3.12 The Weibull regression model introduced in Subsection 3.7.2
is an example of the Cox proportional hazards model. The hazard function
is equal to h(t) = aAt* !, where @« = 1/0, and )\ = exp{— (6o + 61
T1+ -+ Bnzm)/o } This function can be rewritten in the standard form
given in Equation 3.25:

h(t) =h(t, 1, ..., Zm , B1, - -+, Bm) = ho(t) exp{,ﬁi“a:l—k---—l—ﬁ:na:m}

with ho(t) = 1/0 exp{—ﬁo/a}tl/“”l, and B = —f;/o,i=1, ..., m. Con-
sequently, the regression coefficients in the Weibull model may be interpreted
as described previously.

A special case of the Weibull model when ¢ = 1—that is, the exponential
regression model defined in Subsection 3.7.1—is also a Cox proportional hazards
model. As shown in Example 3.1, the hazard function is equal to A, which is the
reciprocal of the mean for this distribution. Thus the quantity exp { - B } may
be interpreted as the relative change in the hazard function or, equivalently,
exp {8 } may be interpreted as the relative change in the mean survival time,
which has been done in Equation 3.19. O
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3.8.4 Alternative Form of the Cox Model

Definition and Notation

An alternative form of the Cox proportional hazards model is derived as follows.
By part (c) of Exercise 3.1, and by the standard definition of the proportional
hazards model (Equations 3.25), the survival function can be written as

S(t):exp{—/oth(u, Ti, ..., Tm, B, ...,ﬁm)du}

=exp{—/0 ho(u) exp{61m1+--- +Bmwm}du}
= [So()]" (3.31)

where r = exp{ﬁl 14+ Bmxm} is the relative risk, and Sp(t) =
exp { — fot ho(u)du } is the baseline survival function, which is the survival
function for the baseline subject.

Example 3.13 Refer to Example 3.12. The survival function for the Weibull
regression model is

Sit)=exp{—At*}, t>0
where @ = 1/0 and A = exp {— (Bo +Przi+- 4+ Bmzm)/o } . Therefore, the
alternative form of the Cox model (Equation 3.31) in this situation is

S(t) _ [So(t)]exp{,@f T1++06;, mm} (332)

with So(t) = exp{ — exp {— fo/c}t/°} and Bf = —Bi/o,i=1,...,m. In
particular, when o = 1, the survival function for the exponential regression
model may be written as follows:

S(t) = [So(] ™ LAt ext A an) (3.3)

with So(t)=exp{—exp{—ﬂo}t} and B = —-B;,i=1,..., m. O

Note that for the Weibull regression model (and its special case, the exp-
onential model), an explicit algebraic form of the baseline survival function
So(t) is known. This is not the case for a general proportional hazards model,
where So(t) has to be estimated nonparametrically based on the observations.

Estimation of Baseline Survival Function

As a default, SAS uses the maximum likelihood approach to estimate the
baseline survival function Sy(t). Denote by m; = ]P’(T > 6| T > ti— ), the
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conditional survival probability at time t; for a baseline subject. The con-
ditional survival probability of a subject with covariates xﬂ, v iy GAIL be
obtained by raising 7; to the power r; = exp { Brixjg+---+ ﬂm Tt } Then
the contrlbutlon to the likelihood function from the sub Jects who died at time
t;is 1 —m/7, j € D(t;); from those who were at risk but did not die, it is
7rz-rj ,J E R(ti) \ D(t;). Thus the likelihood function is

L(’/Tl,...,ﬂ'n, ,61,...,,6m>=H H (1*7’!}”) H 7TiTj

i=1 j € D(t;) JER(t:)\ D(t:)
(3.34)

Equivalently, the log-likelihood function is equal to

InL(my,..., 70, B1,- - s Bm) _Z[ Y In(1—mp +erln7rz] (3.35)

i=1 L jeD(t;) JER(t:)\D(t:)

This function is maximized with respect to m; after the partial-likelihood
estimators of s, satisfying Equation 3.28 (or Equation 3.29 if there are ties),
are plugged in. It is not difficult to show (see Exercise 3.14) that the normal

equations are

A

> Tj;fj: >, i=1,...,n (3.36)

ieD(t) L =T’ jER(t)

where 7; = exp { Brzp+-+ Bm Tjm }-
In the case of no tied values among the observed death times, the size of
D(t;) is 1, and there exists an explicit solution to Equation 3.36:

“ 1/ %0 5
=1 =T4O . —_—_—
ZjER(ti)’rj

where 7 ;/ ;) denotes the estimated relative risk for the jth subject whose time
of death is ¢,—that is, j/ € D(t,).

In the case of tied observations among the death times, the normal equa-
tions (Equation 3.36) should be solved numerically.

The baseline survival function is estimated by a step function

Il #, t>o0
1:t;<t

Therefore, by Equation 3.31, the estimate of the survival function S(t) for a
subject with the values of covariates z1, ..., T, is

€Xp { Bl Ti+-+ Bm Tm }
St)y=| [ # , t>0 (3.37)
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Remark 3.14 The estimator (Equation 3.37) is a generalization of the Kaplan-
Meier estimator of the survival function (Equation 3.4). If there are no co-
variates, then all the relative risks equal 1, and the likelihood function in
Equation 3.34 simplifies to the form given in Equation 3.7. O

Data Example

Example 3.15 Consider the data in Example 3.8. The objective of the present
example is to fit the alternative form of the Cox proportional hazards model
(Equation 3.31) to these data. Before attending to this matter, however, re-
call that the final model in Example 3.8 was the exponential regression model
(Equation 3.24) with the fitted survival function S(t) = exp {- j\t} , t >0,

where A = exp {1.6094 — 4.1026 y, — 3.0123 y5 — 2.7647 Y4 }. This function can
be rewritten according to Equation 3.33:

() = [S,O(t)]exp {~4.1026 yo—3.0123 5 ~2.7647y, } (3.38)

where So(t) = exp{ — te8%%} = exp{ - 4.9998¢}. The estimator S(t)
should not differ too much from the one computed using Equation 3.37. The
calculations and comparison of the results are presented next.

To request in SAS the estimates of Sy(t) and G values for the Cox model
given by Equation 3.31, use the procedure phreg. Unlike lifereg, phreg can-
not handle categorical variables; thus the values for the dummy variables 12, s,
and y4 must be input manually. The required SAS code follows:

data fromExample3_8;

input y2 y3 y4 duration status @Q;
datalines;
1 0

O O »Hr O O O O +» O
H Rk, O L, OO R O O

O 0O 0o krHr oo o o

O H B DM O W WO O N
WO WO oo o N N~
Ok O R B OO+~ o O
H O O 0O Ok OO0 O O
©O O OkRr P, OO OO O
O O B O O R K B = F
OB OO NO O NN
O NN Wk OO ©© o
O B O O R R Rk O R Rk

’
proc phreg outest = betas;
/*data=betas contains estimates of betasx*/

model duration * status(0) = y2 y3 y4;
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baseline out = outdata survival = s;

run;
proc print data = betas;
run;

proc print data = outdata;

run;

There are two uncensored tied observations at time 0.2. SAS uses the
Breslow approximation to handle the ties; thus the estimators of 3 solve
Equation 3.29. As part of SAS output, the estimated regression coefficients
and their P-values (all less than 0.05) are printed:

Parameter
Variable Estimate Pr>ChiSq
y2 -3.79237 0.0144
y3 -2.73611 0.0352
y4 -2.53165 0.0480

Note that these estimates do not drastically differ in absolute value from the
ones in the exponential model (Equation 3.38).

Further, in the SAS code, the statement baseline produces the estimate
s of the survival function for a subject who has as values of the covariates their
respective sample means. That is, the following function is evaluated:

Sest(t) = [510 (t):l exp { B1Z1 B, B }

where Zi, ..., Z,, are the sample means of the respective covariates.
SAS outputs the following table:

y2 y3 y4 duration s
0.256 0.35 0.3 0.0 1.00000
0.26 0.35 0.3 0.1 0.97716
0.26 0.35 0.3 0.2 0.90434
0.26 0.35 0.3 0.6 0.82978
0.26 0.35 0.3 0.8 0.75196
0.25 0.35 0.3 1.8 0.65984
0.25 0.35 0.3 2.0 0.57237
0.25 0.35 0.3 2.8 0.47476
0.25 0.35 0.3 2.9 0.37416
0.25 0.35 0.3 4.0 0.22072
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In this table the values for the covariates are all the same: they are equal to
the sample means of the respective variables. The column labeled s contains
the following estimator:

Q —(3.79237)(0.25)—(2.73611)(0.35)—(2.53165)(0.3
Sestlt) = [So()] ™ @ 7RO 29)-273011) 039 2.53165)(0.3) }

_ [5'0 )] exp {—2.66523 }
From here,

SO (t) = [S’est (t)] exp {2-66523}

Recall that this is a stepwise function. To see whether its overall decrease
resembles that of its counterpart exp {—- 4.9998 t} in the exponential model in
Equation 3.38, add the following lines to the SAS code:

data new;

set outdata;

s_null = s**exp(2.66523); /*two *’s mean exponentiation*/
/*computes baseline survival function for Cox model*/

s_exp = exp(-4.9998 * duration);

/*computes baseline survival function for exponential modelx*/
run;

proc print data = new;
run;

The output contains the following columns:

duration s_null S_exp
0.0 1.00000 1.00000
0.1 0.71741 0.60654
0.2 0.23573 0.36789
0.6 0.06846 0.04979
0.8 0.01663 0.01832
1.8 0.00254 0.00012
2.0 0.00033 0.00005
2.8 0.00002 0.00000
2.9 0.00000 0.00000
4.0 0.00000 0.00000

As can be seen from the table, the two functions are not far apart from
each other at the observed death times, suggesting that their rates of decrease
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are similar, and, overall, the exponential and Cox models produce similar esti-
mators for the survival function.

Finally, the estimated survival function for any subject in the Cox model
is given by
S t(t)]exp{2.66523—3.79237yz—2.73611y3——2.53165y4}
es

S@t) =

In the Cox model, the fitted regression coefficients yield the following int-
erpretation (see Subsection 3.8.3). The ratios of hazard functions, expressed as
a percentage, for two subjects in different NYHA classes are

e NYHA class I to class II: 100 exp{—3.79237+2.73611 } % = 34.78 %. Thus
the hazard function for subjects in NYHA class I is only 34.78% of that
for subjects in NYHA class II.

e NYHA class I to class III: 100 exp{—3.79237 + 2.53165 } % = 28.34 % .
e NYHA class I to class IV: 100 exp{—3.79237} % = 2.25%.

e NYHA class II to class ITI: 100 exp{—2.73611 + 2.53165 } % = 81.51 %.
e NYHA class II to class IV: 100 exp{—2.73611} % = 6.48 %

e NYHA class III to class IV: 100 exp{—2.53165 } % = 7.95 %.

Exercises for Chapter 3
Section 3.1

Exercise 3.1 Prove that the following formulas are true for the functions
f(t),S(t),h(t), and H(¢t) for any t > 0:

(a) h(t) =-S8'(t)/S(t)

(b) H(t) =-InS(t)

(c) S(t) =exp {— H(t :exp{ — [t h(z) d:c}
) £(2) = h(t) St) = h(t) exp {— H(®)}

Exercise 3.2 Often survival times are assumed to follow the Weibull distribu-
tion with density

fit)=axt* lexp{—At®}, ¢t>0, o, A>0

d

Show that the survival, hazard, and cumulative hazard functions for this distri-
bution are, respectively, S(t) = exp{ — At®}, h(t) = aAt®!, and
H(t) = At®, t>0.
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Section 3.2

Exercise 3.3 Suppose the data from a clinical trial consist of deaths at 2.1,
2.9, 3.6, 4.5, 5.6, and 6.9 months, and censored observations at 3.0, 3.6, 6.9, and
9.1 months. Find the Kaplan—-Meier estimator of the survival function. Perform
this calculation both by hand and by using SAS software.

Section 3.3

Exercise 3.4 For the data given in Exercise 3.3, construct the Kaplan-Meier
survival curve. Perform this calculation both by hand and by using SAS.

Section 3.4

Exercise 3.5 A clinical study is conducted that tests a new cancer treatment.
Nine subjects with advanced-stage liver cancer are randomized into the treat-
ment and control groups. The study continues until all subjects die. The survival
times (in years) are recorded. The data are as follows:

Treatment | 23 3.1 32 3.6 3.6
Control | 1.2 1.6 2.3 3.1

(a) Test by hand at the 5% significance level whether the new treatment is
effective.

(b) Plot by hand the Kaplan—-Meier survival curves for the two groups and
comment on their relative positions.

(c) Repeat parts (a) and (b) using SAS software.

Section 3.5

Exercise 3.6 Clinical researchers recorded the number of days until the re-
currence of a kidney infection in 45 subjects who use an innovative portable
dialysis machine. The censored observations are for the subjects who still had
no recurrence of a kidney infection at the time the study terminated. The data
are as follows:

15, 11, 22, 1214, 38, 45, 76, 18, 139+,
1054+, 51, 44, 10, 1114, 137+, 11, 132, 43,

10, 271+, 77+, 56, 44, 28, 27, 36, 11,

76, 1154, 148+, 43, 56, 179+, 182, 123, 27,
174, 16, 24, 18, 95, 128+, 40, 36, 13

The researchers decide to group the observations into eight time intervals of
nonequal lengths: [0, 20), [20, 30), [30, 40), [40, 50), [50, 100), [100, 150),
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[150, 200), and [200,300). Construct a survival curve using the actuarial
estimation method. Do the work both by hand and by using SAS.

Section 3.6

Exercise 3.7 A new drug is tested in patients with emphysema (a chronic
pulmonary disease). The trial is run until all the subjects die. The observations

are survival times in years:
01, 0.1, 03, 09, 1.0, 1.1, 12, 13, 21, 3.0, 36, 58

Using SAS, draw the Kaplan—-Meier survival curve for these data. Explain why
the exponential model for lifetime distribution is appropriate. Find by hand
the maximum-likelihood estimator of the survival function.

Exercise 3.8 A clinical trial for a new medication is conducted on 12 subjects
with advanced-stage pancreatic cancer. The trial is stopped when all subjects
die. The data are the survival times in months:

1.1, 1.2, 1.3, 1.3, 15 20, 21, 21, 22 31, 38, 41

Using SAS draw the Kaplan-Meier survival curve for these data. Explain why
the Weibull model for survival time distribution fits the data well. Compute by
hand the maximum-likelihood estimator of the survival function.

Section 3.7

Exercise 3.9 For a parametric regression model defined in Equation 3.14, show
that if o = 1 and the random term ¢ has the extreme-value distribution with the
density given by Equation 3.15, then the survival time T' has the exponential
distribution with the density shown in Equation 3.16.

Exercise 3.10 In the parametric regression model introduced in Equation 3.14,
show that if the random error € has the extreme-value distribution with density
given by Equation 3.15, then the survival time T has the Weibull distribution
with the density shown in Equation 3.22.

Exercise 3.11 Consider the data in Exercise 3.7. Use SAS software to obt-
ain the goodness-of-fit test statistic for testing the exponential model versus
the Weibull model. Does your result confirm that the exponential model has a
better fit? Assume a 0.05 level of significance. Use SAS to estimate the param-

eter(s) of the model.

Exercise 3.12 Write SAS code for Exercise 3.8. Obtain the goodness-of-fit test
statistic, and draw conclusions. Use a significance level of 0.05. Also, estimate
the parameter(s) of the chosen model.
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Exercise 3.13 A new product for treating recurring ear infections in babies
is tested. The covariates are the age of the baby (in months) and the number
of previous infections. Each subject starts using the product and continues
until an infection occurs. All babies who reach the age of 15 months without
recurrence of an ear infection are automatically dropped from the trial. The
observations are censored for these subjects. Babies who are younger than 15
months old at the end of the clinical trial and who have not had a recurrence
are censored as well. The data on 20 subjects are as follows:

Subject Age Number of Duration Censored

Infections
1 2.0 1 10.1 0
2 2.1 1 10.9 0
3 3.0 4 1.6 0
4 3.1 1 10.1 1
5 3.8 5 0.3 0
6 4.2 3 7.3 1
7 5.1 3 8.2 0
8 5.4 2 8.0 0
9 6.0 1 5.7 0
10 7.0 1 4.9 0
11 7.6 3 2.5 0
12 7.7 3 1.0 0
13 7.8 3 2.8 0
14 8.1 6 1.4 1
15 8.2 2 6.3 0
16 8.5 2 4.0 0
17 9.4 4 1.8 0
18 11.0 2 1.9 1
19 12.5 2 2.5 1
20 13.1 3 1.9 1

(a) Which parametric regression model for the survival time distribution is
more appropriate for these data—exponential or Weibull? Conduct the
goodness-of-fit test using SAS. Assume a significance level of 5%. Treat
the number of infections as a categorical variable with four levels: 1, 2, 3,
and 4 or more.
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(b) Use SAS to estimate the parameter(s) of the model you chose in part
(a). Rerun the model, if necessary, to obtain a reduced model with all
significant covariates.

Section 3.8

Exercise 3.14 Derive the normal equations given in Equation 3.36.

Exercise 3.15 Fit the Cox proportional hazards model to the data in Exercise
3.13. Use SAS. Assume the 5% significance level for the tests involved. Are the
estimates of the regression coefficients and the baseline survival function similar
to the ones obtained earlier? Interpret the estimated regression coefficients.

Exercise 3.16 Seventeen subjects are recruited to a clinical study of a new
treatment for cirrhosis of the liver, a chronic disease characterized by the loss of
functional liver cells. It is believed that the new treatment may put cirrhosis into
remission, if the disease is caused by alcohol abuse. The covariates are the age of
a subject (in years) and the indicator of current alcohol abuse (yes = 1, no = 0).
The survival time is the time until a remission (in weeks). A subject who died
during the trial is censored. A subject who was awaiting remission at the end
of the trial is censored as well. The observations are as follows:

Subject Age Alcohol Abuse Time to Remission Censored

1 42 1 0.2 0
2 45 0 1.7 0
3 47 0 1.6 0
4 49 1 1.4 0
) 51 0 2.4 0
6 53 0 3.5 0
7 o4 1 2.8 0
8 95 1 2.2 1
9 o7 0 4.5 0
10 o7 0 3.6 0
11 o8 0 5.1 0
12 61 1 3.4 0
13 62 0 24 0

(continued)
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Subject Age Alcohol Abuse Time to Remission Censored

14 67 1 5.3 0
15 68 1 : 2.6 1
16 68 1 3.8 0
17 69 1 5.8 0

Fit the Cox proportional hazards model. Assume a 0.05 level of significance.
Use SAS. Interpret the estimated regression coefficients. Do the subjects who
abuse alcohol have a larger “hazard” of going into remission?
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Chapter 4

Introduction to
Longitudinal Data
Analysis

Often clinical researchers are interested in tracking changes in the measure-
ments that are taken on subjects during follow-up visits. The focus of the
present chapter is to introduce several regression models that may be used to

fit the data.

4.1 Basic Definitions

Longitudinal data analysis is the analysis of the data obtained through a longi-
tudinal study. A longitudinal study collects measurements repeatedly over time
on the same subjects. In medical research, the data obtained in this way are
called longitudinal data. An alternative method of measurement-taking consists
of conducting a cross-sectional study, in which the measurements are collected
on subjects at a single point in time. The advantage of longitudinal studies is
that the changes in the measurements are traceable, whereas in cross-sectional
studies they are not. :

Clinical trials are a special case of longitudinal studies, in which the res-
ponse measurements are taken several times during follow-up visits. For example,
in a clinical trial of a new drug developed to help decrease levels of low-
density lipoprotein (LDL—commonly known as bad cholesterol) in the body,
periodic measurements of the blood cholesterol level are recorded. Repeated
measurements of some other variables, such as amount of daily exercise, body
weight, and observing a proper diet, might be taken during the follow-up visits
as well.

75
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4.2 Graphical Presentation

Several plots are frequently constructed for visual display of longitudinal data.
Example 4.1 illustrates the use of graphical presentation.

Example 4.1 Twenty-four subjects with recurrent malignant gliomas (can-
cerous brain tumors) are randomized into two treatment groups. Subjects in
group 1 receive intravenous chemotherapy, and subjects in group 2 receive con-
current chemo-radiotherapy. The diameter (in centimeters) of the tumor shown
via magnetic resonance imaging (MRI) is recorded for each subject at 0-, 3-,
6-, 12-, 18-, and 24-month visits to the clinic. The data are shown in Table 4.1.

Table 4.1 Data for Example 4.1

Tumor Size

Subject Group 0 Month 3 Months 6 Months 12 Months 18 Months 24 Months

1 1 3.1 3.0 2.7 2.3 2.1 1.8
2 1 3.3 2.9 24 1.8 L. T 0.2
3 1 2.9 24 2.3 2.1 2.1 1.6
4 1 3.2 2.7 2.7 2.2 2.1 1.3
) 1 3.5 3.2 3.2 3.2 3.1 0.8
6 1 3.6 3.5 17 1.6 1.5 1.1
7 1 2.2 2.0 2.7 2.4 2.4 1.6
8 1 3.8 3.7 3.0 2.8 2.6 1.0
9 1 3.4 3.1 3.3 4.3 4.1 3.6
10 1 4.6 4.4 2.6 2.5 2.4 1.5
11 1 2.7 2.6 3.1 3.1 3.0 1.6
12 1 4.9 4.7 2.9 2.9 2.8 2.6
13 2 4.0 3.5 3.1 2.0 1.1 1.0
14 2 3.8 3.3 2.7 1.6 1.2 0.6
15 2 3.7 3.2 2.9 24 1.5 14
16 2 3.2 3.1 2.9 1.8 0.6 0.0
17 2 2.5 2.1 1.5 0.3 0.1 0.0
18 2 2.9 2.2 3.1 1.9 1.7 1.5
19 2 2.8 2.6 2.8 2.6 2.6 2.3
20 2 3.1 2.7 2.3 2.0 1.9 1.3
21 2 4.3 4.2 24 2.3 1.2 0.4
22 2 2.9 2.4 2.1 2.1 1.7 1.7
23 2 4.0 3.4 2.3 1.4 0.9 0.0
24 2 2.5 24 2.0 1.0 0.3 0.0
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To start, one can plot the response variable for each visit, and join the
data points related to the same subjects (see Figure 4.1). The lines obtained
in this way are called individual response profiles. In Figure 4.1, the solid lines
correspond to subjects in group 1 and the dashed ones to subjects in group
2. As seen on the graph, all tumors are shrinking (or, rather, not growing) in
size as time progresses, except for one outlying individual. Also, most of the
individual profiles for group 2 subjects tend to lie lower than those for most of
the group 1 subjects.

To make this statement rigorous, the mean response profile may be con-
structed for each group. On this graph, by-visit group means of the response
variable are plotted and the points are connected by a straight line (see
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Figure 4.1 Individual response profiles in Example 4.1 (solid lines = group 1,
dashed lines = group 2)

Tumor Size

¢’ -

OMonth 3 Months 6 Months 12 Months 18 Months 24 Months

Figure 4.2 Mean response profiles in Example 4.1 (solid line = group 1, dashed
line = group 2)
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Tumor Size

O B B B e e e e e e e e e e e e e e e |
0 Month 3 Months 6 Months 12 Months 18 Months 24 Months

Figure 4.3 Boxplots for two treatment groups in Example 4.1 (left = group
1, right = group 2).

Figure 4.2). As seen in Figure 4.2, the mean tumor size for group 2 subjects
at each visit is smaller than that for group 1 subjects. The solid vertical lines
depicted on the graph span the interval of sample mean + one sample standard
deviation.

Another option is to draw boxplots for the response variable for each group
at each visit. A boxplot is a convenient way to display the five-number summary
for a data set: the median, the upper and lower quartiles, and the largest and
smallest observations. The graph is given in Figure 4.3. For each visit, the
boxplot on the left corresponds to the subjects in group 1, and the one on the
right to the subjects in group 2. Note that the boxplots for group 1 tend to lie
higher than those for group 2.

Thus, as the visual aids suggest, the second treatment—concurrent chemo-
radiotherapy—is superior to the first one—chemotherapy.

The SAS code that produces these graphs is as follows:

data glioma;
input individual group visitO visit3
visit6 visitl2 visit18 visit24;
cards;
i 1 3.1 3.0 2.7 2.3 2.1 1.8

2 1 3.3 2.9 2.4 1.8 1.7 0.2

24 2 2.5 2.4 2.0 1.0 0.3 0.0

data new;
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4.2 Graphical Presentation 79

set glioma;
array x{6} visitO visit3 visit6 visitl2 visit18 visit24;
do visits = 1 to 6;
tumorsize = x{visits}; /#*creates response vector*/
if group = 1 then boxposition = visits;
else boxposition = visits + 0.1;
/*above two lines are needed for boxplots display*/
output; ;
end;
keep individual group visits boxposition tumorsize;
/*now data set = new contains only the kept variables*/

run;

axisl label = none value = (t=1 ‘OMonth’ t=2 ‘3Months’ t=3 ‘6Months’
t=4 ‘12Months’ t=5 ‘18Months’ t=6 ‘24Months’ t=7 ¢’);

/*individual response profiles*/

proc gplot data = new;

plot tumorsize * visits = individual / nolegend haxis = axisi;
symboll interpol = join value = none color = black

line = 1 repeat = 12;

/*these settings are repeated for 12 subjects in group 1%/
symbol2 interpol = join value = none color = black

line = 2 repeat = 12;

/*¥these settings are repeated for 12 subjects in group 2%/
run;

goptions reset = symbol;

/*mean response profiles*/

proc gplot data = new;

plot tumorsize * visits = group / nolegend haxis = axisl;
symboll interpol = stdmlj color = black line = 1;

symbol2 interpol = stdmlj color = black line = 2;

/*stdml = solid vertical bar comnects group mean with*/
/*plus/minus one sample standard deviation,*/

/*j = group means are joined across visits*/

run;
goptions reset = symbol;
/*boxplots for two treatment groups*/

proc gplot data = new;
plot tumorsize * boxposition = group / nolegend haxis = axisi;
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symboll interpol = box00 color = black;

/*¥box00 = vertical lines extend from box to min and max*/

symbol2 interpol = box00 color = black;

run; ]

4.3 Random Intercept Model

Longitudinal studies are designed to measure the change in the response vari-
able for individual subjects in relation to a set of covariates, the predictor
variables. Linear models for longitudinal observations must take into account
the covariance structure of the data. In the models considered in this section,
it is assumed that the data for different subjects are independent—that is, it
is assumed that there is a within-subject correlation of the response variable
across time, whereas the between-subject correlation is negligible.

A mized-effects model is used to model longitudinal data. In this model,
some of the covariates have random effects (random levels), while the others
have fized effects (fixed levels). In this section, a simple special case of a mixed-
effects model called a random intercept model is discussed. In Sections 4.4 and
4.5, some other models with interesting correlation structures of the error terms
are considered.

4.3.1 Model Definition and Interpretation of Coefficients
Definition

Suppose longitudinal observations are available on n subjects. The data are
collected at fixed times t;,...,%x. Let y;; be the observed response on the
ith subject, ¢ = 1,...,n, at time ¢;, 7 = 1,...,k, and z14j,...,%ps; be the
observed values of p fixed-effects covariates on the ith subject at time ;. A
random intercept model has the form

Yij = Bo+ Br1ij + -+ Bp Tpij + Bpy1ty + ui + &y

where u; “%* N(0, o) are the random intercepts, and ei; "5 N(0,0?) are the
random errors. It is assumed that u; and €;; are independent. In this model,
the variance of the observations is constant. Indeed, Var(y;;) = Var(u; +€45) =
02 + o2. Likewise, the covariance between the repeated observations at times
t; and t; in the ith subject is constant:

Cov(yij, yijr) = Cov(u; + €45, ui + €450) = Var(u;) = ai

The observations for different subjects i and i’ at times ¢; and ¢;- are uncorrel-
ated because

Cov(yij, yi’j’) = Cov(u; + €ijy Ui + €ifjl) =0

AAMAARAMNAAARAAARAARAAANDIARRARAANRMND M M |
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In matrix notation, the random intercept model is written as

y=XpB+u+e

where
Fyll 1 2ng ... Zpn 4
Yik 1 Zidk ... Tpup I
Y =]..:] 3 == )
nk x 1 nk x (p+2)
Yn1 1l @ svx Bpmi G
| Unk | | 1 Tink --- ZTpnk tk:J
Ful F€11
50 U1 €1k
B =|...|, u =|[.|, e =
(p+2)>(1 nk X1 nk x 1
Bp+1 Up Enl
-Unj | Enk ]

The covariance matrix V for the response vector y is a block-diagonal matrix
with non-zero k& x k blocks :

o? +aﬁ aﬁ aﬁ
Vo = a’ﬁ o2 + 0'3 .. 0'3 = lek + 0’5 Ji (4.1)
e o2 o2 o2 + o2
u u ee u

where I is the & x k identity matrix, and J; denotes the k x k matrix with
all unit entries.

Interpretation of Coefficients

The interpretation of the regression coefficients f3i,..., 03 p+1 is the same as in
the ordinary linear regression model. The mean response E(yi;) = Bo+061 z145+
“oo+ Bp Tpij + Bpy1t; and, therefore, each coefficient 3 represents the change
in the mean response for a unit increase in the respective variable, provided
the other variables are fixed.

For a categorial variable with [ levels, the coefficients (say, G, ..., Bi—1)
correspond to the dummy variables, which are indicators of levels 1,...,1 — 1.
Then 3, — B, where a, b=1,...,1 —1, is interpreted as the difference in mean

response for subjects at level a and at level b of the covariate, with the other
variables being equal. The coefficient 3, is the difference in mean response for
subjects with the covariate at level a and at level .
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4.3.2 Estimation of Parameters

Two methods of model parameter estimation—the maximum-likelihood method
and the restricted maximum-likelihood method—are considered in detail in this

subsection.

Maximum-Likelihood Method

A usual approach to estimation of the model parameters Sy, ..., p+1, 02, and
02 is the maximum-likelihood method (ML). The distribution of the nkxnk res-
ponse vector y is a multivariate normal with mean X 3 and covariance matrix
V. The nk x nk matrix V is block-diagonal with n blocks V| of dimensions
k x k. Therefore, the log-likelihood function is proportional to

InL(B, Vo) oc—g In|Vo| - % (y-XB) V™ (y-Xp) (4.2)

where lVol denotes the determinant of Vg, and the inverse matrix V! is
block-diagonal with blocks V5'. It can be shown (see Exercise 4.2) that in the
random intercept model,

[Vo| = o2k 4 ko212 (4.3)
_ 1
01:~————0_4+k0203 [(0”2 +k0'12L)Ik_Ung] (4.4)

If V is known, then the maximum-likelihood estimator of 3 is (show it!)
B(Vo)=(X'VIX) X' Vly (4.5)
Substituting this expression into Equation 4.2 yields

In L(B(Vo), Vo) o« — g In|Vo| - %RSS(VO) (4.6)

where RSS(Vy) = (y—XB(VO))/V_l (y—X,B(Vo)) denotes the residual sum
of squares. This reduced log-likelihood function depends only on ¢? and o2.
Maximizing with respect to these variables produces the maximum-likelihood
estimators 62 and 62 (and thus Vo), which are plugged into Equation 4.5 to

obtain B(Vy).

Restricted Maximum-Likelihood Method

The maximum-likelihood method produces a biased estimator of the variance.
An alternative approach is the restricted mazimum-likelihood method (REML).
SAS uses this method as a default.

The REML estimators of 02 and 02 maximize the log-likelihood function
of a certain linear transformation of y. The transformation is chosen in such

ﬂﬂﬂfﬂﬂﬂ!ﬂMﬁﬂﬁaﬂﬂﬂﬂﬁﬁﬂﬂﬂﬁgvagﬂﬁﬂﬂﬂmﬂﬁﬁ
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a way that the resulting log-likelihood function, unlike that for the maximum-
likelihood method given in Equation 4.2, does not depend on 8. The REML
estimators of the variances 62 and 42 maximize this log-likelihood function,
and are unbiased estimators of the parameters.

Proposition 4.1 Consider the nk x nk matrix I,,;, — X (X’ X) X’ that con-
verts y into the ordinary least-squares residuals. Here I,,; denotes the nk x nk
identity matrix. From the general theory of linear algebra, there exists an
(nk —p—2) x nk matrix A with the properties A’A =1,;, — X (X’ X)*lX’
and AA’ =1,x_p 2, where I,;_p_5 is the (nk—p—2) x (nk —p—2) identity
matrix.

Introduce the REML transformation Z = Ay. It is a random vector of
length nk — p — 2. Then the corresponding restricted log-likelihood function has

the form

InL,; (Vo) —g In [Vo| — % In|X'V1X| - %RSS(VO) (4.7)

where the residual sum of squares RSS(Vo) = (y—X 3(Vy)) V! (y—X B(Vo))
is as in Equation 4.6.

Proor: Consider the weighted least-squares estimator of 3:
B=(X'V1X)"'X'V-ly=By

where B = (X' V! X)_1 X’'V~lis a (p+2) x nk matrix. It is a well-known
result that ,3 has a multivariate normal distribution with mean 3 and covariance
matrix (X' V1 X)_l. Thus the density of 3 is

f3(B) = @m)” =[x VX[ exp{ - 1 (B-B) (X' VIX) (3-6))

(4.8)
where [X’' V=1 X| denotes the determinant of the matrix X’ V-1 X,
Further, using the properties of A, derive that
AX =TI, 2AX=(AA)AX=A (A’A)X
=A(Lx-X(X'X)'X')X=A(X-X)=0 (4.9)

Now recall that the response vector y has a multivariate normal distribution
with mean X 3 and covariance matrix V. Because Z is a linear transformation
of y, its distribution is also multivariate normal. The mean of Z is E(Z) =
E(Ay) = AX 3 = 0, by Equation 4.9. Also, Z and 3 are uncorrelated (and
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hence independent because they both are normally distributed). Indeed,
Cov(Z, B) = E[Z(B - ﬂ)’] = IE[Ay (y'B' - B’)]
=AE(yy)B —AE(y) s
= A[Var(y) + E(y)E(y) |B' - AX 88
—A[V+XBFX'|B -AXBS
=AVB (by Equation 4.9)
=AVVIX(X'V1X) “'=0 (by Equation 4.9 again)

Next, write the introduced transformations in a matrix form

i)

B
From linear algebra, the identity equating the respective differentials is

dZdB = |J(A, B)|dy (4.10)

denotes the Jacobian determinant that is computed

)1/2

{AA’ AB

where |J(A, B)| = ’ [g]

as follows:
A fr—
B

Now make a use of the following result on determinants. For any matrices
F, G, and H,

a) [ »]

B

1/2 1/2

A
B

A’ B
| ] BA’ BB

G H
Applying this result and the definitions of A and B, yields (see Exercise 4.3)

JI:IFH—FG’F‘1G|

[FG

J(A,B)|=|(AA)BB - (AA')BA'(AA) " AB |/
= [x'x|7" (4.11)
Finally, it remains to express the density of Z in terms of y. Write
f(2, B) dZ dB = fz(Z) f5(B) dZdB  (by independence)
— fy(¥)|X'X|?dy  (by Equations 4.10 and 4.11)

mPAMAAARMAABSBAARAAAMMAAN DO AARAANAANMNMMM .




4.3 Random Intercept Model 85

Consequently, using Equation 4.8, obtain

7) = |X'X ‘1/2f”—<3f)
= (2m) T X XA v ) v x

X exp{ -z [(y—Xﬁ)/V‘l (y—XpB)
- (B-8) (X'V'X) (B —ﬁ)”
o« XXV v x v x [T
xexp{—4(y-XB8)' V' (y-XB)}

The expression for the restricted log-likelihood function in Equation 4.7
follows. O

4.3.3 Data Example

Example 4.3 Consider the data in Example 4.1. The random intercept model
may be appropriate for these data for the following reasons. As seen in Fig-
ure 4.1, the scatter of glioma diameter does not increase drastically over time. It
may, therefore, be assumed that the response varies constantly over time. Also,
for each subject, the historical tumor diameters may be equally influential on
a current diameter. It may, therefore, be assumed that the constant covariance
assumption holds.

Given that the subjects in group 1 (chemotherapy patients) are to be com-
pared to the subjects in group 2 (chemo-radiotherapy patients), the variable
group should be used as a covariate in this model. Denote the individual values
of this covariate by z;. Note that z; = 1 if the ¢th subject is in group 1 and
that z; = 2 if the ith subject is in group 2. Let y;; be the tumor size of the
ith subject at visit time ¢;, where ¢; = 0, t3 = 3, t3 = 6, t4 = 12, t5 = 18, and
te = 24 (all in months). Then the model is

Yij = Po+ b+ Poti +us 655, i=1,...,24, §=1,...,6

where the random intercepts u; vRE N (0,02) are independent of the random

€rTors £;; g N(0,02).
In SAS, procedure mixed is used to compute the estimates of the model
parameters. The ML and REML methods are applied. The relevant fragments
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of the SAS output are shown here:

Effect Estimate Pr > |t]|
Bo — Intercept 4.1240 <.0001
B, — group -0.5625 0.0038 ML method
0.0055 REML method
By —  time -0.0855 <.0001
Covariance
Parameter Estimate
ML method Intercept 0.1636 « 42
Residual 0.3237 «+ 42
REML method Intercept 0.1829 « 42
Residual 0.3264 +« 62

The estimators of the model coefficients are statistically significant at the
1% significance level.

Notice that the estimator of (3; is negative. This confirms the conclusion
from Figures 4.1, 4.2, and 4.3 that the second treatment (chemo-radiotherapy)
is superior to the first one (chemotherapy). In fact, at every fixed visit time, the
average tumor size for subjects in group 2 is estimated to be 0.5625 cm smaller
than that for subjects in group 1. Also, for either group, an average monthly
decrease in tumor diameter is estimated as 0.0855 cm.

The required SAS code follows:

data glioma;
input individual group visitO visit3
visit6 visitl2 visitl8 visit24;
cards;
i 1 3.1 3.0 2.7 2.3 2.1 1.8

2 1 3.3 2.9 2.4 1.8 1.7 0.2

24 2 25 2.4 2.0 1.0 0.3 0.0

1)
data new;

set glioma;

array x{6} visitO visit3 visit6 visitl2 visitl8 visit24;
array t{6} t1-t6 (0 3 6 12 18 24);

do visits = 1 to 6;

tumorsize = x{visits};

time = t{visits};

mAMAMAMAMAMNAAABERERARNANAAANEDEAARAAA MM N MO M|
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output;

end;

keep individual group tumorsize time;
run;

/*Maximum-Likelihood Method#/
proc mixed data = new method = ml;
model tumorsize = group time / solution;
/*‘solution’ option requests estimates of beta parameters*/

random intercept / subject = individual;
run;

/*Restricted Maximum-Likelihood Method*/
proc mixed data = new method = reml;
model tumorsize = group time / solution;
random intercept / subject = individual;
run;

4.4 Random Slope and Intercept Model

The random intercept model introduced in Section 4.3 backs up the assump-
tions that variances and covariances remain constant over time. In practice,
however, these assumptions rarely hold. A more realistic model that allows for
heterogeneity is called the random slope and intercept model. In this model,
¥ij, the observation of the response variable on the ith subject at time tj, i =
1,...,n, j=1,...,k, is of the following form:

Yij = Po+ Br&rij + -+ BpTpij + Bpr1ty + win +uint; + €45

where u;; “5F N(0, 02) are the random intercepts, and uzz "5 N(0, o)

are the random slopes. Also, Cov(us1, Ui2) = Oyyuy, i = 1,...,7n, and Cov (w1,

uig) = 0 for i # i’. The error terms &;; Ve (0,0?) are independent of u;

and usg. In this model
Var(y;;) = Va’r(uil +upt; + Eij) = 0’31 + 20,4, tj + crﬁ2 t;’f +0% (412
and
Cov(ysj, yijr) = Cov(usg + usa ty + €45, Uit + Uiz ti + €j)
= O’Zl b iy g (tj + tjl) + 0’52 tj tj/ for 7 # j/ (4.13)
(CO’U(yij, yi’j’) = (CO'U(UZ'l + 'U,iztj + €45, U1 + Uz'lztj/ + Ei’j’) =0 for: # i’ _

Notice that now the variances and the covariances depend on time. The
covariance matrix V is still block-diagonal, but the block matrix Vg has a
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nonsymmetric structure as opposed to that in Equation 4.1. The log-likelihood
function in Equation 4.2 and the restricted log-likelihood function in Equa-
tion 4.7 are still valid, and the two methods of parameter estimation are appli-
cable.

In this model, the regression coefficients are interpreted the same way as
in the random intercept model (see Section 4.3).

Example 4.4 Often clinical trials include substudies focusing on the health-
related quality of life for subjects. Even though a treatment prolongs the life-
time of a subject, it might reduce the quality of that life—for example, by
causing depression, limitations in mobility, and difficulties with everyday activ-
ities. During follow-up visits to the clinic, subjects fill out therapy satisfaction
questionnaires. Scores on these questionnaires are recorded, and the response
variable is the percentage satisfaction with the therapy. Suppose that for the
subjects from Example 4.1 the data are as shown in Table 4.2 on page 90.

The individual response profiles are plotted in Figure 4.4. The mean res-
ponse profiles are displayed in Figure 4.5, and the boxplots are shown in
Figure 4.6.

Recall that the conclusion regarding the two treatments—chemotherapy
and chemo-radiotherapy—was that the chemo-radiotherapy, on average, red-
uces the tumor size faster than the chemotherapy treatment; thus chemo-
radiotherapy was deemed the superior treatment. However, as seen in
Figures 4.4, 4.5, and 4.6, the therapy satisfaction scores for subjects who rec-
eive the chemo-radiotherapy (group 2) are, on average, lower than those for
subjects undergoing chemotherapy (group 1). The point illustrated here is that
even though a treatment may be more powerful in fighting a disease, it may
lead to a lower quality of life of subjects.

For the data set in Table 4.2, the variance of the response is not constant
over time; that is, the observations become more scattered toward the end of
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Figure 4.4 Individual response profiles in Example 4.4 (solid lines = group 1,
dashed lines = group 2)
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Figure 4.5 Mean response profiles in Example 4.4 (solid line = group 1, dashed
line = group 2)
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Figure 4.6 Boxplots for two treatment groups in Example 4.4 (left = group 1,
right = group 2)

the study. Thus the random slope and intercept model will be fitted to these
data. The model is

ij = Bo + B1Z1ij + B2 Taij + P3t; + usr + usn by + €45

where y;; is the therapy satisfaction score for the ith subject at time tj, i =
1,...,24, j=1,...,5; 2145 = z1; is the group number of the ith subJect (the
same for all times tj); T24; is the tumor size of the ith subject at time ¢;; and
t1=3,12 =6, t3 = 12, t4 = 18, and 5 = 24 (all in months). In addition to the
regression coeﬂicuents the other parameters of the model are Var(uzl) = gl 1
Var(usz) = O’u2, Var(su) =02, and Cov(uzl, ’U,zg) = D g -

To estimate the unknovvn parameters in SAS, use the following code. It
assumes that the data set glioma has been defined earlier. For the sake of
brevity, only the restricted maximum-likelihood estimation method is applied

here.
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Table 4.2 Data for Example 4.4

Therapy Satisfaction Score

Subject Group 3 Months 6 Months 12 Months 18 Months 24 Months

1 1 90 85 70 67 63
2 i 87 90 95 90 90
3 1 78 67 65 63 60
4 1 7 65 61 57 56
5 1 78 7 7 67 67
6 1 82 80 80 73 95
7 1 88 83 68 o8 o8
8 1 95 95 90 87 85
9 1 84 74 64 60 27
10 1 78 71 63 60 60
11 1 91 90 84 84 78
12 1 83 81 80 81 80
13 2 78 67 63 70 70
14 2 85 78 63 61 40
15 2 85 70 70 70 70
16 2 85 78 63 53 13
17 2 85 79 44 41 30
18 2 96 66 o8 40 32
19 2 89 63 60 92 45
20 2 95 65 95 40 33
21 2 73 68 41 52 26
22 2 85 5 41 37 33
23 2 74 70 64 63 42
24 2 96 67 78 74 95

data scores;
input individual group mos3 mos6 mosl2 mosl8 mos24;

cards;
1 1 90 85 70 67 63

2 1 87 9 95 90 090

24 2 96 67 78 74 655

?
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data combined;

merge glioma scores;
by individual;

run;

data new;

set combined;

array x{5} visit3 visit6 visit12 visit18 visit24;
array z{5} mos3 mos6 mosl12 mos18 mos24;
array t{56} (3 6 12 18 24);

do visits = 1 to 5;

tumorsize = x{visits};

time = t{visits};

score = z{visits};

output;

end;

keep individual group tumorsize time score;
run;

proc mixed data = new method = reml;
model score = group tumorsize time / solution;
random intercept time / subject = individual type = un;

/*option un = ‘unstructured’ requests covariance estimation*/

run;

The estimated regression coefficients are as follows:

Effect Estimate Pr > |t]|
Bo — Intercept  96.7818 <.0001
B, — group -5.6229  0.0370
By — tumorsize -0.7679 0.6028
B3 — time -1.4546 <.0001

91

The P-value for the estimator ,32 is larger than 0.05, indicating that the
variable tumorsize has an insignificant effect on the level of satisfaction with
the therapy. Removing this covariate from the model and reestimating the

parameters using the REML method yields the following results:

Effect Estimate Pr > |t]|
Bo — Intercept  93.9689 <.0001 s
B, — group -5.3926 0.0398

f3 — time ~-1.3919 <.0001
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Covariance

Parameter Estimate

UN(1,1) 31.3316 «— 62
UN(2,1) -2.8514 Gy,
UN(2,2) 0.7508 « 62
Residual 46.2082 +« 42

In the reduced model, the estimates of the 3 values are all significant. The
estimated coefficient in front of the covariate group is negative. This proves
that chemo-radiotherapy subjects have a lower quality of life compared to that
of the members of the radiotherapy group. In fact, the satisfaction score in the
chemo-radiotherapy group at any given time is roughly 5.39 points lower than
that in the other group.

For both groups, the satisfaction score decreases, on average, by about 1.39
points every month. ]

4.5 Model with Spatial Power Covariance
Structure for Error

Other useful models for longitudinal data include a mixed-effects model with
spatial power covariance structure for error. The observation y;; of the response

variable on the ith subject, i =1,...,n, at time ¢;, j =1,...,k, is modeled as
follows:

Yij = Bo+ BrT1ij + - + Bp Tpij + Bpt1ty + uir + ui ty + wi(t;)
where z1,5, . . ., Tpi; are the fized-effects covariates observed on the ith subject at

. : i.i.d.
time ¢;, and u;; and u;o are the random-effects terms. It is assumed that u; "~

2 i.1.d. 2 _ _
N0, 07.), ug ~" N(0, a2,), Cov(uil, Uig) = Oyyuy, and Cov(uﬂ, ’U,ilg) =0
if 7 # 4'. The component w; is a discrete-time process with a constant mean
and constant variance. This process satisfies the recursive formula

wz-(tj) =p ’wi(t]‘ — 1) + Zz'(tj) (414)

Here p, |p| < 1, is a fixed number, and z(%;) e N(0, (1 —p?)o?) are
independent of w;(t1), the initial observation on the ith subject. It follows that
for any j' > j, w;(t;) and 2z;(t;) are independent. Indeed, by Equation 4.14,

wilty) = p (pwilty —2) +z(t; = 1) ) +2(t;)

= p2 (p wz-(tj - 3) + Zi(tj = 2)) & pzi(tj - 1) + Zi(tj)

== pl T (t) + oY T it + 1) + -+ p it — 1) + ()
(4.15)

and every term in this sum is independent of z;(¢;/).
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It can be shown (see Exercise 4.6) that the process w; has mean zero and
variance ; that is, E(w;(t;)) = 0 and ]E(wi(tj))2 = 0. To compute the covari-
ance matrix of this process, note that Cov(ws(;), wi(t;)) = E(w;(t;) w;(t;))
for any j° > j. As in Equation 4.15, w;(t;/) can be written as

wi(tyr) = p'' ™ wity)+p% T Zi(t+ 1)+ +p zi(ty — 1)+ z(ty) (4.16)

By independence of w;(t;) and z;(t;~) for any j” > j, E(ws(t;) zi(tjn)) =

E(wi(t;)) E(2(tj#)) = 0. Therefore, in view of Equation 4.16, the covariance
between w;(t;) and w;(¢;/) is

E(’U)z(tj) wz(tjl)) = ptj’_tj ]E(wz(t])) 2 = ptj’_tj 0-2

Consequently, the covariance matrix of the error terms is an nk x nk block-
diagonal matrix with k& x k blocks

1 ptz—tl ptg-—tl . ptk—tl
to—1q tz—iz te—t2
o2 | Loo» e P (4.17)
ptlc-tl ptk—tz ptk—-ts L. 1

A matrix of this form is called a spatial power matriz, and the corresponding
process is said to have a spatial power covariance structure.

The covariance matrix V of the response variable is an nk x nk block-
diagonal matrix, in which the & x & blocks Vg have diagonal entries (compare
them to Equation 4.12) of the following form:

Var(yij) = Var(uz-l -+ U;o tj + wi(tj) ) = 0'51 42 Oy ug tj + 0'52 t? + 0'2
where j = 1,...,k, and the off-diagonal entries of V are (cf. Equation 4.13)

CO’U(yija yij/) = Cov (uﬂ + gty + wit;), uin + usnty + wi(tj,))
- 0'21 +Uul Us (tj +tjl) —+ 0‘52 t] t], +p 1 —tj 0_2

As in the random slope and intercept model, the variance and covariance of
the response variable depend on time. However, unlike in the models discussed
earlier, where no correlation between the error terms was assumed, in the model
with spatial power covariance structure for error, a weak dependence between
error terms for the same individual is present. In absolute value, the covariance
between the error terms decays exponentially fast as the time span increases.

For this model, the validity of the ML, and REML estimation methods in-
troduced in Subsection 4.3.2 holds. The regression coefficients admit the int-
erpretation identical to that in the random intercept model introduced in

Section 4.3.
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Example 4.5 Consider the data in Example 4.4. The objective is to fit the
mixed-effects model with the spatial power covariance structure of the error
terms. The model is of the form

i = Bo + B x1; + B T2ij + (3 tj + us + Uty + wi(tj)

where y;; denotes the therapy satisfaction score for the ith subject at time 2;;
z1; is the group (1 or 2) of the ith subject; z9;; is the tumor size of the ith
subject on the jth occasion; t; = 3, t3 = 6, t3 = 12, t4 = 18, t5 = 24 (all in
months); i =1,...,24, and j = 1,...,5. The random variables w;; and wu;y are
the random intercept and the slope, respectively. The error terms w;(t;) have
the zero mean and a 120 x 120 block-diagonal covariance matrix with 24 5 x 5

blocks:

(1 p3 p9 pl5 p21]
p3 1 pb pl2 18

2
o | p® p8 1 pb p2
15 512 5,6 1,6
020 pl8 pl2 560 7 ]

The parameters of this model are Gy, B1, B2, O3, 012“, aﬁz, Ouyugr 02, and

p. The REML parameter estimation method is applied. The SAS code for data
new defined in Example 4.4 is as follows:

proc mixed data = new method = reml;

model score = group tumorsize time / solution;

random intercept time / subject = individual type = un;
repeated / subject = individual type = sp(pow) (time) ;
/*option sp(pow) (time) requests estimation of rho */
run;

The estimated regression coeflicients are

Effect Estimate Pr > |t|
By — Intercept  97.4115 <.0001
B — group -5.2655 0.0410
B, — tumorsize  -1.0294 0.4965
B3 — time -1.4827  <.0001

As in the random slope and intercept model in Example 4.4, here the
variable tumorsize is not a significant covariate at the 5% level of significance
either. Removing it from the model results in the reduced model with the

MPAMAMAAMAMNAMNAAAAAARAAANANEARAG@AAANARN MM M|
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following parameter estimates:

Effect Estimate Pr > |t|

Bo — Intercept 93.7869  <.0001
B — group -5.0584 0.0455
By — time -1.3989 <.0001

Covariance

Parameter Estimate

UN(1,1) 42.3477 «— 62

UN(2,1) -3.6335 «— Gy,u,

UN(2,2) 0.7928 ¢ 62,

SP (POW) -0.7687 «p

Residual 46.4864 <« 62

Note that the parameter estimates in this model are close to those produced
in the random slope and intercept model. The fitted coefficients are interpreted
in the same fashion for both models. O

4.6 Random Intercept Logistic
Regression Model

Definition

If the response y;5, ¢ = 1,...,m, 5 = 1,...,k of the ith subject at time t; is
binary (that is, assumes values that may be coded 0 and 1), a random intercept
logistic regression model may be used. Denote by m;; (u) = ]P’(yz-j == ] [u) the
conditional probability of y;; = 1 given some random variable u. The ratio

mig (w) Py =1]u)
1-— 'frz-j(u) P(yz’j =0 l ’LL)

is called the conditional odds in favor of y;; = 1, given u. A logit transformation
of m;; (u) is the natural logarithm of the odds in favor of y;; = 1 conditioned

on u—that is,

logit (mi; (u)) = In < M)

1 -7 ij (u)
The random intercept logistic regression model has the form

logit (75 (wi)) = Bo + B Z1ij + -+ + Bp Tpij + Bpa1 ty + us
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where u; b N (0, 02) are the random intercepts, i = 1,...,n, j = 1,...,k.
Equivalently, the model can be written as

eXp{ﬁO+ﬁ1m1ij+-..+ﬂpwpij+ﬁp+ltj+ui} (4.18)
1+exp{,80 + Blmlij+"'+)8p$pij+,3p+1tj +ui}

Tij (Uz) =

Estimation of Parameters

The parameters of the model are fy, . . ., 8p+1 and o2. The maximum-likelihood
method is commonly used to estimate these parameters. For given u;, i =
1,...,n, the distribution of y;; is Bernoulli with parameter m;;(u;) defined by
Equation 4.18. Therefore, the conditional likelihood function is

L(Boy-- -+ Bpta [ur,.- un) = H LT (s ()™ (1= mis (i) "

:Hﬁ[ exp {fo + - +ﬁp+1tj+uz_}}rij

1+exp{fo+--+ Bpt1t; + us

1 1—yij
L+exp{fo+ -+ PBpsr1t; +us}
k eXP{ 5o+"'+ﬁp+1t'+uz')y¢j}
=1 j=1 1+eXP{ﬁo+ ++ Bpt1t; +Uz}

To obtain the conventional likelihood function, integrate this expression
over all possible values of uj, ..., un, which are independent NV'(0,02) random

variables:

n k
L(Bo,---,Bp+1, 02) = (2m02)” exp{ Z Z (Bo+ -+ Bps1 tj)yij}

i=1 j=1

R U (1 +exp{Bo+ -+ Bpsty + uz})
(4.19)

The estimators Bo, B p+1, and &2 are the numerical solution to the maximization
problem for this function.

F“?ﬂﬁﬂﬂﬁﬂﬂ&@ééﬁﬂﬂﬂﬁﬂmmﬁggagﬂmﬁﬂﬁﬁﬁﬁa
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Interpretation of Coefficients

The interpretation of the regression coefficients f, ..., Bp+1 is analogous to
that in the ordinary logistic regression model. For convenience, denote by

exp{Bo+Biai+ -+ Pm@m+ 4 Loty + Bpirt + ul
1+exp{fo + fiz1+ - +BmTm+ -+ Fpp + Bpp1t +u)

M Em) =

where m = 1,...,p+1. Then the exponentiated regression coefficient ,, repre-
sents the odds ratio conditioned on u, when z,, is increased by one unit holding
all the other covariates fixed. That is,

T(Tm + 1)/ (1 — m(zm + 1))
W(mm)/(l — w(mm))

Hence, 100( exp{fm} — 1) % is the corresponding percentage change in odds.

In the case of a categorical covariate with [ levels, the coefficients, say,
P1,...,B1—1, correspond to the dummy variables for levels 1 through [ — 1 and,
therefore, the quantity 100 exp { Ba — ,Bb} %, a,b=1,...,1 — 1, represents the
percentage of conditional odds for subjects with the covariate at level a as
compared to those for subjects at level b, provided the equality of the other
covariates. The percentage of conditional odds for subjects at level a versus
those for subjects at level { is 100 exp{3,}%.

exp {fm} = (4.20)

Example 4.6 Osteoporosis is a metabolic bone disease in which the bones in
the body become extremely porous and can be easily fractured. Most commonly,
this disease occurs in women older than age 50. A medication that is supposed to
help rebuild bones is tested in a nonrandomized clinical trial on 20 women who
suffer from osteoporosis. Age at primary visit (in years), calcium supplement
intake (yes = 1, no = 0), and family history of osteoporosis (yes = 1, no = 0)
are recorded for each subject. During a follow-up visit, each sub ject has a bone
density test. The response variable is whether osteoporosis is present (yes = 1,
no = 0). The data are shown in Table 4.3.
The random intercept logistic regression model for these data is

exp {fo + B1z1i + BoTas + B3 x3i + Bat; + u; }
1+exp{ﬂ0+ﬂlmlz‘ + B2 T2; + f3 x3; + Pat; +ui}

g (u;) =

where 7;; (u;) is the conditional probability of the ith subject having osteo-
porosis on the jth visit, given u;, i = 1,...,20, j = 1,...,4; 14, T2;, and x3;
are, respectively, the age, calcium intake, and history of osteoporosis for the
ith subject; t1 = 3, t, = 9, ¢t3 = 12, and ¢4 = 18 (all in months); and u; is the
random intercept.

The parameters of this model are fo, ..., B4, and 02. SAS is used to esti-
mate the parameters by the maximum-likelihood method. Procedure glimmix
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Table 4.3 Data for Example 4.6

Presence of Osteoporosis

Subject Age Calcium History 3 Months 9 Months 12 Months 18 Months

1 76 0 1 1 1 1 1
2 o7 1 1 1 1 0 0
3 o8 0 1 1 1 1 0
4 62 1 0 1 0 0 0
d 60 1 0 0 0 0 0
6 o8 0 3 1 0 1 1
7 52 1 0 0 1 0 0
3 74 0 1 1 0 1 0
9 o1 0 0 0 1 0 0
10 56 1 0 0 1 0 0
11 75 0 1 | 1 1 1
12 63 1 0 1 0 0 0
13 67 1 1 0 1 0 0
14 68 0 0 1 1 0 0
15 56 1 0 1 0 1 0
16 62 1 0 1 0 1 1
17 60 1 1 -0 0 0 0
18 61 1 1 1 1 0 0
19 54 1 0 1 0 0 0
20 93 0 0 1 1 0 0

fits generalized linear mixed-effects models. To specify the logistic model for a
binary response, add the options dist = binary and link = logit. Also, the
probability P(y;; = 0) is modeled unless the option (event = "1") is typed
in. The SAS code is as follows:

data osteoporosis;
input individual age calcium history mos3 mos9 mosl2 mosl8 @@;

datalines;
i 76 o0 1 1 1 1 1

2 57 1 1 1 1

20 3 0 0 1 1 O O

)
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data new;

set osteoporosis;

array x{4} mos3 mos9

array t{4} (3 9 12 1
do visits = 1 to

mos12 mosi8;
8);
4;

disease = x{visits};

time = t{visits};
output;
end;

keep individual age calcium history disease time;

run;

proc glimmix data = new;

model disease(event =

dist = binary link =

logit;

random intercept / subject = individual type = un;

run;

As given by SAS, the regression estimates in the full model are

Bo —
Br —
s
B3 —
By —

Effect Estimate
Intercept -0.9445
age 0.0545
calcium -1.4343
history 0.5401
time -0.1926

Pr > |t]|
0.7544
0.2692
0.0309
0.4273
0.0012

99

"1") = age calcium history time / solution

In this model, only calcium and time are significant variables (at the 0.05 level

of significance). The parameter estimates in the reduced model are

Effect Estimate
BO-—+ Intercept 2.7129
By — calcium -1.7626
Bs — time -0.1825
Covariance
Parameter Estimate
UN(1,1)

Pr > |t
0.0031
0.0060
0.0014

0.3225 « 52

From here, the odds in favor of osteoporosis, conditioned on u, for sub jects
who take calcium supplement is only 100exp{—1.7626} = 17% of those for
subjects who do not take calcium. In addition, the odds in favor of osteoporosis
= —16.68 %; that is, they

change every month by 100(exp {—0.1825} - 1) %

decrease by about 17%.

O
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4.7 Handling Missing Observations

In practice, some observations are frequently missing from a longitudinal data
set. If for some reason a subject fails to appear for a particular follow-up visit,
the missing observation is called an intermittent missing value. If a subject
drops out of the study, then starting at some point, all observations are missing
for this subject (called a drop-out case). A data set with missing observations
is called an unbalanced (or incomplete) data set.

4.7.1 Missingness Mechanism

Several approaches may be used to model longitudinal data with missing obs-
ervations, depending on the missing value mechanism. Denote by y;(ss) the
observed response measurements for the ith subject, and let y;(ms) be the
missing values—the responses that could have been observed were they not
missing. Let r; be a set of binary random variables indicating whether y;; is an
observed or a missing value, 7 = 1,...,k. Then the missing values fall into one

of three categories:

o Missing completely at random (MCAR), if r; is independent of both y;(obs)
and Yi(mis)

e Missing at random (MAR), if r; depends on y;(ops) but not y;(mis)

o Missing not at random (MNAR), if r; depends on y;(m;s), and may depend
On ¥i(obs)

Missing Completely at Random (MCAR)

For MCAR values, the missingness does not depend on the response. In other
words, missing a follow-up visit or dropping out of a study could have happened
to any subject in the study. For example, if a subject missed a scheduled visit to
the clinic due to a family emergency, and at that time could not been reached
by investigators to reschedule the appointment, the planned measurement was
not taken for this subject. Because the subject remained in the study, this is
an intermittent missing value that occurs completely at random. An accidental
death or geographical relocation may, for example, cause a subject to drop out
of a study completely at random.

Missing at Random (MAR)

An MAR intermittent value or a drop-out occurs when the missingness depends
on the observed measurement history. For example, suppose an overweight sub-
ject enters a clinical trial of a body-fat-reducing medication, but after two
follow-up visits that did not show much weight reduction, the subject misses
the next visit due to either depression or embarrassment. This is an instance of
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an intermittent value that is missing at random. Suppose now a young woman
suffering from anorexia participates in a study testing a new drug for this psy-
chological disorder. The drug does not help her lack of desire to eat because of
fear of becoming obese, and she constantly loses weight. After several visits to
the clinic, investigators decide that it is unethical and dangerous to keep her
in the study. Her withdrawal from the study is an MAR drop-out.

Missing Not at Random (MNAR)

Intermittent values or drop-outs missing not at random arise when the miss-
ingness is related to an unrecorded change in the response variable that causes
it to be too high or too low. For example, an overweight subject in the study
of a body-fat-reducing medication might show an improvement during the first
couple of visits, but suddenly put on weight and become too depressed or em-
barrassed to show up for the next visit. Then the response measurement for
this visit is missing not at random. In the study for an anorexia drug, sup-
pose a subject gains some weight at the beginning, but between two visits she
loses weight severely and drops out of the study. The resulting drop-out case is
nonrandom.

Distinguishing between MCAR, MAR, and MNAR Observations

How can one tell whether an observation is missing completely at random, at
random, or not at random?

For intermittent missing observations, this question is easy to answer, be-
cause the subject can be asked personally during the next visit (assuming, of
course, that the subject tells the truth). For drop-outs, it is more difficult to
know the exact reason, if the person (or the person’s relatives) cannot be con-
tacted by investigators. Here, the case of a subject who is withdrawn from the
study by the investigators themselves (an MAR drop-out) is dismissed from
consideration.

To understand on an intuitive level how to classify drop-outs, consider first
a hypothetical situation in which a subject progresses well but then suddenly
drops out of the study. It is unlikely that the drop-out decision occurred com-
pletely at random, even though it is possible. It is more likely that the person
dropped out because he or she was still doing fine (an MAR drop-out) or sud-
denly felt much worse (an MNAR drop-out). It is not possible, however, to tell
which one of these two cases applies, because the actual reason for the drop-out
is unknown.

Now suppose that a subject is doing badly and drops out. Again, it is more
likely that this case is not an MCAR. drop-out, but it is difficult to tell whether
it is an MAR drop-out (the person decided to drop out because his or her health
was progressively deteriorating) or an MNAR drop-out (the subject suddenly
felt much better).
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If a subject neither progresses steadily nor regresses and drops out, it is
more likely an MCAR drop-out.

Thus, based on the observed response history of a drop-out, it is possible to
distinguish between MCAR. and the other two cases (with high probability). It
is never possible to separate MAR and MNAR drop-outs in this way, however,
because in both cases the decision to drop out is based on measurements un-

available to the investigators.

4.7.2 Fitting Mixed-Effects Model to Unbalanced
Data Sets

Ignorable and Non-ignorable Missing Observations

MCAR and MAR observations are called ignorable, while MNAR values are
called non-ignorable or informative.

The reason for this terminology is as follows. When fitting a mixed-effects
model to unbalanced data, the ML or REML methods are applied to estimate
the parameters. MCAR or MAR values do not appear in the likelihood function
and, therefore, can be ignored. However, the likelihood function depends on
missing observations if they are MNAR, and therefore, these are non-ignorable.
To see this, note that the contribution of the ith subject to the likelihood

function is
I (rs, Yigobs)) = / F(xs, Yi(obs)s Yi(mis)) AYi(mis)
= / f(rz | Yi(obs)s yz’(mis)) f(Yi(obs)a yi(mz’s)) in(’mis) (421)

e If the values are MCAR, then
F (T | Yi(obs)s Yi(mis)) = F(rs)
According to Equation 4.21, the ith factor of the likelihood function is
f(r:) / f(Yi(obs)v Yz'(mz's)) dYi(mis) = f(ri) f(Vi(obs)) o f(Yiobs))

as f(r;) does not depend on the model parameters and, therefore, can be
disregarded in the likelihood maximization problem.

e If the values are MAR, then
f(ri Iyi(obs)a yi(mz’s)) = f(rz IYi(obs))
and Equation 4.21 is equal to
F(ri| Viobs)) / F (Yiovs)s Yi(mis)) @Yi(mis) = F (ti | Yi(obs)) f (Fi(ovs))
(&8 f(Yi(ob.s))

as f (ri [yi(obs)) is constant with respect to the model parameters.
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e If values are MNAR, then Equation 4.21 cannot be simplified any further.
Thus the likelihood function depends on the missing observations, which
cannot be ignored for the likelihood maximization purpose.

Managing Unbalanced Data Sets

There are several relatively simple ways to handle the missing observations
when fitting a mixed-effects model to an unbalanced data set:

e Work with the unbalanced data and use the ML or REML method for
parameter estimation. This approach works best if all missing values are
ignorable. However, for MNAR values, this strategy results in biased es-

timates.

e Delete all incomplete cases, which are the subjects with at least one miss-
ing observation, and analyze the resulting balanced data. This approach
is called a case-deletion method. It works best when the number of in-
complete cases is not large, and there is no structure to the missing data
(they are MCAR observations). Otherwise, this method produces biased
estimates.

e Impute the missing values and work with the resulting complete data set.
Imputation is the substitution of some values for the missing ones in an
incomplete data set. The resulting parameter estimates are biased.

Imputation Procedures

Two types of imputations for intermittent missing values are commonly used.
If y;;+ is missing, it can be replaced by a value §;;; which is

e The mean response for the ith subject:

k
Zj:l Tij Yij
k
D1 Tij

where r;; = 1 if y;; is observed, and r;; = 0 if y;; is missing.

Yijr =

This type of imputation is called the subject-mean imputation.
e The mean response for the j’-th occasion:

n
N Zi:l Tij' Yig’
Yijr = S
i=1 Tij’

where 75 = 1 if y;;» is observed, and r;;» = 0 if y;;+ is missing.
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This imputation type is called the occasion-mean imputation.

The simplest way to impute missing values for a dropped-out subject is
to replace all missing values by the last observation for this subject. That
is, if a subject drops out after the j’-th visit, replace the missing responses
Yi, j'+1> Yi,j'+21 - -1 Yik DY ¥ijr. This method is known as the last observation

carried forward imputation.

Remark 4.7 There are several ways to handle missing observations of a binary
variable:

e Ignore the missing values and fit the random intercept logistic regression
model to the incomplete data set.

e Remove all incomplete cases and fit the logistic model to the complete
data set.

e Impute the missing values and fit the logistic model to the imputed data.
Two simple-to-implement imputations for intermittent missing values are

1. Replace a missing value by the within-subject mode, which is the most
frequent observation (0 or 1) for the subject.

2. Replace a missing value by the within-occasion mode, which is the most
frequent observation (0 or 1) for the occasion.

For a drop-out, use the last observation carried forward technique. O

Remark 4.8 In some clinical trials, skipping a visit or dropping out results in
missing values for both the response variable and the covariates. The same
approaches described previously in this section can be applied to handling
the missing values in the unbalanced data. In the imputation method, missing
observations of the response variable as well as the covariates are

imputed. O

4.7.3 Data Example

Example 4.9 Fourteen deaf recipients of cochlear implants (inner ear hear-
ing devices) were followed for 3 years. The response variable was a speech
intelligibility score assessed by a panel of investigators. Three subjects were
lost to follow-up, and two subjects failed to show up for a visit. The unbal-
anced data are shown in Table 4.4.

ﬁﬂﬂﬁﬂﬂgﬂ&ﬂﬂﬂgﬁ&ﬁﬁﬁmﬂmﬁ@ggﬁﬁﬂﬂﬂﬁﬂﬁﬁs
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Table 4.4 Data for Example 4.9

Speech Intelligibility Score

Subject 3 Months 6 Months 12 Months 24 Months 36 Months

1 46 o7 67 68 75
2 24 35 = e —
3 30 45 58 72 82
4 22 = 48 66 76
5 18 15 14 — —
6 35 67 [ 80 86
7 27 47 a0 95 67
8 12 31 41 47 52
9 95 76 - — —
10 18 39 90 67 78
11 10 25 28 33 33
12 35 44 67 73 84
13 22 45 — 68 78
14 35 95 70 75 83

The three methods discussed previously are implemented to fit a mixed-
effects model. For simplicity, the procedure is illustrated by fitting a random

intercept model
yz‘j:ﬂO‘i‘ﬁltj-{-ui-f-Eij, 7:=1,...,14, j=1,...,5

where y;; is the recorded score for the ith subject on the jth visit, ¢; = 3, to =
6, t3 = 12, t4 = 24, t5 = 36 (all in months), and the random intercepts u; gk
N(0,02) are independent of the random errors &;; “%* A/(0,02). The REML
parameter estimation method is employed.

The first approach is to run procedure mixed to produce parameter esti-
mates for the given unbalanced data set. To input the unbalanced data in SAS,
write a dot in place of a missing observation. The SAS code is as follows:

data recorded;
input individual mos3 mos6 mosl12 mos24 mos36 QQ;

datalines;
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1 46 57 67 68 75 2 24 35 ; :
3 30 45 58 72 82 4 22 . 48 66 76
5 18 15 14 . . 6 35 67 77 80 86
7T 27 47 50 55 67 8 12 31 41 47 52
9 b5 76 . . . 10 18 39 50 67 78
11 10 256 28 33 33 12 35 44 67 73 84
13 22 45 . 68 78 14 35 55 70 75 83

data unbalanced;

set recorded;

array x{5} mos3 mos6 mosl2 mos24 mos36;
array t{5} ti1-t5 (3 6 12 24 36);
do visits = 1 to 5;

score = x{visits};

time = t{visits};

output;

end;

keep individual score time;

run;

proc mixed data = unbalanced method = reml;
model score = time / solution;

random intercept / subject = individual;
run;

The second approach is to delete all incomplete cases, and apply procedure
mixed to the complete data set (shown in Table 4.5).

In SAS, the incomplete cases are deleted from the unbalanced data set.
The code is as follows:

data complete;

set unbalanced;

if individual 2 then delete;
if individual = 4 then delete;
if individual = 5 then delete;
if individual 9 then delete;
if individual 13 then delete;
run;

proc mixed data = complete method = reml;
model score = time / solution;

ﬁﬁﬂﬂtﬁ‘ﬁmmﬂﬁQgﬁﬁﬂﬁﬁﬂﬁﬂﬂéﬁggﬂﬂﬁﬂﬂﬁﬂﬁ:
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Table 4.5 Complete Data Set for Example 4.9

Speech Intelligibility Score

Subject 3 Months 6 Months 12 Months 24 Months 36 Months
1 46 57 67 68 75
3 30 45 58 72 82
6 35 67 7 80 86
7 27 47 50 55 67
8 12 31 41 47 52
10 18 39 50 67 78
11 10 25 28 33 33
12 35 44 67 73 84
14 35 55 70 75 83

random intercept / subject = individual;

run;

Finally, the missing observations are imputed and procedure mixed is ap-
plied to the imputed data set. For instance, an intermittent missing observation
is replaced by the subject-mean value, and a drop-out case is substituted by
the last recorded observation for the subject. The imputed data are shown in
Table 4.6.

For illustration purposes, the filled-in values are given in boldface in Ta-
ble 4.6. For example, the missing observation for the fourth subject is im-
puted by the mean response for this subject, which is (22 + 48 + 66 + 76)/

4 = 53.

The imputed values are computed manually and recorded in SAS using the
following code lines:

data imputed;
set unbalanced;

if individual = 2 then do;

if score = . then score = 35;
end;

if individual = 4 then do;

if score = . then score = 53;

end;
if individual = 5 then do;

if score = . then score = 14;
end;

if individual = 9 then do;
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Table 4.6 Imputed Data Set for Example 4.9

Speech Intelligibility Score

Subject 3 Months 6 Months 12 Months 24 Months 36 Months

1 46 57 67 68 75
2 24 35 35 35 35
3 30 45 58 72 82
4 22 53 48 66 76
) 18 15 14 14 14
6 35 67 7 80 86
7 27 47 50 55 67
8 12 31 41 47 52
9 59 76 76 76 76
10 18 39 50 67 78
11 10 25 28 33 33
12 35 44 67 73 84
13 22 45 53.25 68 78
14 35 Gh) 70 75 83
if score = . then score = 76;
end;
if individual = 13 then do;
if score = . then score = 53.25;
end;
run;

proc mixed data = imputed method = reml;
model score = time / solution;

random intercept / subject = individual;
run;

As output by SAS, the estimated parameters are

Effect Estimate Pr > |t]|
Unbalanced Complete Imputed

B0—+ Intercept 32.6197 34.7019 34.6573 <.0001

Bl‘* time 1.1867 1.1172 0.9517 <.0001
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Covariance
Parameter

Intercept
Residual

Unbalanced
205.03
85.05618
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Estimate
Complete
178.80
85.5396

Imputed

259.47 «+ 62
107.82 « §2

There is some noticeable variation in the estimates of variances, whereas
the regression coeflicients are relatively stable.

Exercises for Chapter 4

Section 4.2

O

Exercise 4.1 A new drug for mental distress is tested in a randomized con-
trolled trial. The response variable—the general health questionnaire score—is
recorded for 18 subjects during 4 visits. The score range is between 0 and 36.
Scores larger than 25 are evidence of severe mental distress. The measurements
are taken at the initial visit and after 1, 2, and 4 weeks of treatment. Group 1 is
the treatment group, and group 2 is the control group. The data are as follows:

General Health Questionnaire Score

Subject Group 0 Week 1 Week 2 Weeks 4 Weeks

1

© 00 N O Ot i W N

e T s S e U G S G T
0 N O U W N RO

RN NN DNDDNDNDNDN - B b 1 b e e e

1

25
34
31
34
33
30
28
29
28
33
30
29
35
25
36
34
33
28

23
22
24
27
25
23
22
21
21
25
27
22
27
23
25
25
28
24

16
14
14
12
11
13
10
9
9
18
19
20
20
22
20
19
20
20

8

00 O -3

11

o 0o

13
11
15
18
15
16
18
27
19
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Use the graphical tools to determine whether the new drug is effective as a
reducer of mental distress.

Section 4.3

Exercise 4.2 Using the definition of Vj given in Equation 4.1, verify the ex-
pressions in Equations 4.3 and 4.4.

Exercise 4.3 Fill in the details in the derivation of the Jacobian determinant
in Equation 4.11.

Exercise 4.4 Consider the data in Exercise 4.1.

(a) Discuss the appropriateness of the random intercept model for the general
health questionnaire scores.

(b) Write down the model. Estimate all parameters by the ML and REML
methods. Use a 5% significance level.

(c) Interpret the fitted values of the regression coefficients. What is your
conclusion regarding the effectiveness of the new drug?

Section 4.4

Exercise 4.5 Fourteen overweight subjects underwent gastric bypass, a surgi-
cal procedure that reduces the stomach size and allows food to bypass part of
the small intestine. As a result, the subjects consumed less food and lost weight.
Two types of surgery were tested in the study: an open procedure where a large
abdominal incision was made, and a laparoscopic approach where a small in-
cision was made and a viewing camera (laparoscope) was inserted. The seven
subjects in group 1 had open surgery; the seven subjects in group 2 had laparo-
scopic surgery. The subjects were followed for one year. During four follow-up
visits, at 1 month, 3 months, 8 months, and 12 months, the percentage loss of
the original excess weight (weight above normal at the beginning of the study)
was recorded. The data are as follows:

Percentage Loss of Excess Weight

Subject Group 1Month 3Months 8Months 12 Months

1 1 5 12 16 20

2 1 7 7 9 9

3 1 3 6 12 15

4 1 10 15 20 25
(continued)
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Percentage Loss of Excess Weight

Subject Group 1Month 3Months 8Months 12Months

) 1 8 10 13 16
6 1 ) 10 19 22
7 1 6 6 12 15
8 2 8 12 20 27
9 2 10 15 22 32
10 2 12 17 20 30
11 2 8 16 23 28
12 2 7 11 22 32
13 2 10 16 24 28
14 2 13 15 25 20

(a) Discuss the appropriateness of the random slope and intercept model for
these data. Plot necessary graphs to support your argument.

(b) Fit the model using the ML and REML parameter estimation methods.
Assume a 0.05 level of significance.

(c) Discuss the signs and values of the estimated parameters. Draw conclusion
regarding which is the more effective type of surgery.

Section 4.5

Exercise 4.6 Show that in the model with a spatial power covariance structure
of the error terms, the mean of the process w; is zero and the variance is o2.

Exercise 4.7 Consider the data given in Exercise 4.5.

(a) Fit at the 5% significance level the mixed-effects model with a spatial
power covariance matrix for the errors using the ML and REML estima-

tion methods.

(b) Compare the fitted model with the random slope and intercept model
obtained in Exercise 4.5.

Section 4.6

Exercise 4.8 A new oral antifungal medication is tested in a randomized-
controlled clinical trial. Twenty-two subjects with severe toenail fungus infec-
tion participate in the trial. The subjects in the control group (group 1) use
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a common over-the-counter liquid that fights toenail fungus. All subjects are
instructed to use the medication once daily for the duration of 16 weeks. Four
follow-up visits are scheduled, during which the presence or absence of fungus
is recorded (yes = 1, no = 0). The data are as follows:

Presence of Toenail Fungus

Subject Group 3Weeks 6 Weeks 12Weeks 16 Weeks

1 i 1 1 0 1
2 1 1 1 1 0
3 1 1 1 0 0
4 1 1 0 0 0
5 1 0 1 1 0
6 1 1 1 0 0
7 1 1 0 0 0
8 1 1 1 1 1
9 i 1 0 0 0
10 1 1 1 1 1
11 1 1 1 0 0
12 2 1 0 1 0
13 2 0 0 0 0
14 B 0 0 0 0
15 2 1 0 0 0
16 2 1 1 0 0
17 2 1 1 1 0
18 2 0 0 0 0
19 2 1 0 0 0
20 2 1 1 0 0
21 2 1 0 0 0
99 2 1 1 1 1

(a) Fit the random intercept logistic regression model to these data. Use
significance level of 0.05. Do the data suggest that the oral treatment is

effective? Explain.

(b) What is the weekly percentage change in odds of having toenail fungus?

Section 4.7

Exercise 4.9 Suppose in Example 4.4, subject 3 dropped out of the study
after the 6-month follow-up visit; subject 13, after the 12-month visit; and
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subject 16, after the 3-month visit. Also, subject 8 did not show up for the
12-month visit, and subject 19 missed the 6-month and 12-month visits. For
these subjects, the measurements of tumor size and therapy satisfaction scores
on the given occasions were not recorded.

(a)

(b)

()

Fit a random slope and intercept model to the data. Apply REML param-
eter estimation method. Use (i) an unbalanced data set, (i) a complete
data set, and (iii) an imputed data set. Impute the intermittent missing
value for subject 8 by the subject-mean method, and those for subject 19
by the occasion-mean method.

Compare the resulting models to the full model obtained in Example 4.4.
Which covariates are significant at the 5% significance level and which

are not?

Fit the reduced model to the three data sets in part (a). Compare the
estimated values of the parameters for the three cases.

Exercise 4.10 Use the data from Example 4.6. Assume that subjects 5, 9, and
15 dropped out of the study after the 9-month visit, that subject 12 missed the
12-month visit, and that subject 18 missed the 9-month visit.

(a)

(b)

Fit the random intercept logistic regression. Use (i) an unbalanced data.
set, (ii) a complete data set, and (iii) an imputed data set. Apply the
within-subject mode imputation for subject 12, and the within-occasion
mode imputation for subject 18.

Compare the resulting models to the original full-data model in Example
4.6. Which covariates are significant predictors of osteoporosis at the 5%
significance level and which are not?

Fit the reduced model to the three data sets in part (a). Compare the
magnitudes of the parameter estimators for the three cases, and also for
the reduced model in Example 4.6.
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acceptance region, 12

actuarial estimator, 44

actuarial survival curve, 44

addendum to informed consent
form, 2

at-risk subject, 35, 60

baseline hazard function, 59-60
baseline subject, 59, 63, 64
baseline survival function, 64
baseline. See time zero
Bayesian sequential procedure, 18
Bayes’ formula, 19
conjugate prior, 19
enthusiastic prior, 19, 20
likelihood density, 19
posterior density, 19, 21
prior density, 18
skeptical prior, 19, 20
Bayes’ formula, 19
block randomization method, 24
Breslow approximation, 62
partial-likelihood function, 62
partial-likelihood score
equation, 62

case-deletion method, 103
CDA. See confidential disclosure
agreement
censored survival time. See right-censored
survival time
cholesterol, 75
cirrhosis, 73
classical group sequential
testing, 15
clinical research associate, 4
clinical research coordinator, 5
clinical statistician, 6
clinical trial, 1, 3
coordinating center, 3
data manager, 6
double-blinded, 3
early termination, 2
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endpoint, 10
informed consent. form, 1
informed consent process, 1
investigative site, 3
multicenter, 3
nonrandomized, 3
number of patient-years, 9
Phase I, 3-4
Phase 11, 4
Phase III, 4
Phase IV, 4
principal investigator, 5
protocol, 6
query, 6
randomized, 2
randomized controlled, 2
research associate, 4
research coordinator, 5
research personnel, 5
sample size, 9
single-center, 3
sponsor of, 4
statistician, 6
subject, 1
trial length, 9
cochlear implant, 104
complication rate, 10, 25
concealment of group
assignments, 25
conditional likelihood function, 96
conditional odds, 95
confidential disclosure agreement (CDA), 6.
See also confidentiality
agreement, nondisclosure
agreement
confidentiality agreement, 6. See also con-
fidential disclosure agreement, nondis-
closure agreement
conflict of interest, 6
conjugate prior, 19
control group, 2
historical, 3
coordinating center, 3
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covariance structure, 80
covariate, 51, 80
Cox model. See Cox proportional hazards
model
Cox proportional hazards model, 59
alternative form of, 64
baseline hazard function, 59
baseline subject, 59
baseline survival function, 64
Breslow approximation, 62
maximum partial-likelihood
estimator, 60
normal equations, 65
partial-likelihood method, 60
partial-likelihood score equation, 61-62
relative risk, 59
cross-sectional study, 75
cumulative hazard function, 34

data manager, 6
data monitoring, 15
Bayesian sequential procedure, 18
group sequential testing, 15
data monitoring committees (DMCs). See
data safety monitoring boards (DSMBs)
data safety monitoring boards
(DSMBs), 5
double-blinded clinical trial, 3
drop-out, 2, 33, 100
DSMBs. See data safety monitoring boards

early termination of clinical trial, 2
EC. See European Commission
effective sample size, 44
effect size. See minimum detectable
difference
EMEA. See European Medicines Agency
emphysema, 71
endocarditis, 13
endpoint, 10
actual change, 10
complication rate, 10
effect size, 11
event rate, 10
minimum detectable difference, 11
percentage change, 10
primary, 10
enthusiastic prior, 19, 20
European Commission (EC), 4, 5
European Medicines Agency (EMEA),
4,5
event rate, 10
event time. See lifetime
exponential distribution, 47
extreme-value distribution, 52

FDA. See Food and Drug
Administration

fixed-effects term, 80, 92

follow-up visit, 1

Food and Drug Administration (FDA),
4,5

gastric bypass, 110

glioma, 76

group assignment
concealment, 25
randomization, 22

group sequential testing, 15

hazard function, 34
baseline, 59
cumulative, 34

heart valve implant, 13

historical control group, 3

hypertension, 11

IEC. See independent ethics
committee
ignorable missing observation, 102
imputation, 103
last observation carried
forward, 104
occasion-mean, 104
subject-mean, 103
within-occasion mode, 104
within-subject mode, 104
inclusion—exclusion criteria, 7
incomplete case, 103
incomplete dataset. See unbalanced dataset
independent ethics committee (IEC). See
institutional review board (IRB)
individual response profile, 77
informative missing observation. See
non-ignorable missing observation
informed consent form, 1
informed consent process, 1
initial clinical investigation. See
Phase II clinical trial
initial treatment, 1
instantaneous death rate. See
hazard function
institutional review board (IRB), 5
interim analysis, 15
interim sample size, 15
intermittent missing observation, 100
investigative site, 3
IRB. See institutional review board

Kaplan—Meier estimator, 35, 37

Kaplan—Meier survival curve, 38

KM estimator. See Kaplan—Meier
estimator
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last observation carried forward imputa-
tion, 104
leukemia, 44
life-table estimator. See actuarial
estimator
lifetime, 33. See also survival time
likelihood density, 19
log-rank test, 39
logit transformation, 95
longitudinal data, 75
longitudinal data analysis, 75
missing observation, 100
mixed-effects model, 80
mixed-effects model with spatial power
covariance structure, 92
random intercept logistic
regression model, 95
random intercept model, 80
random slope and intercept
model, 87
longitudinal study, 75
lost to follow-up subject. See
drop-out

maximum partial likelihood
estimator, 60, 61
mean response profile, 77
median, 20
minimum detectable difference, 11
missing at random (MAR), 100
missing binary observation, 104
within-occasion mode
imputation, 104
within-subject mode
imputation, 104
missing completely at
random (MCAR), 100
missing not at random
(MNAR), 100
missing observation, 100
of binary variable, 104
case-deletion method, 103
drop-out, 100
ignorable, 102
imputation, 103
incomplete case, 103
intermittent, 100
missing at random (MAR), 100
missing completely at random
(MCAR), 100
missing not at random
(MNAR), 100
non-ignorable, 102
unbalanced dataset, 100
mixed-effects model, 80
fixed-effects term, 80, 92
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maximum-likelihood method (ML),
37, 82
random-effects term, 92
random intercept model, 80
random slope and intercept
model, 87
restricted maximume-likelihood
method (REML), 82
spatial power covariance
structure, 92
mode, 20
most powerful test, 22
multi-centered clinical trial, 3
multiple endpoints, 10

NDA. See nondisclosure agreement
nicotine patch, 41
nondisclosure agreement (NDA), 6
nonignorable missing

observation, 102
nonrandomized clinical trial, 3
nonparametric estimator, 35
number of patient-years, 9, 14, 49

occasion-mean imputation, 104
optimistic prior. See enthusiastic prior
osteoporosis, 97
overall probability of type I

error, 16

overall probability of type II

error, 16

parametric estimation of survival
function, 46-47
exponential model, 49
random censoring model, 48
Weibull model, 50
parametric regression model, 51
covariate, 51
exponential, 52
Weibull, 53
partial-likelihood function, 60, 61
Breslow approximation, 62
partial-likelihood method, 60
partial-likelihood score
equation, 61, 62
pessimistic prior. See skeptical prior
Phase I clinical trial, 3
Phase II clinical trial, 4
Phase III clinical trial, 4
Phase IV clinical trial, 4
PI. See principal investigator
pilot phase. See Phase I clinical trial
placebo, 2-3
posterior density, 19, 21
postmarketing surveillance phase. See
Phase IV trial
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power of test, 11

preclinical data analysis, 7

primary endpoint, 10

principal investigator (PI), 5

principle of similar-sized groups, 22

prior density, 18

probability of type I error, 11
overall, 16

probability of type II error, 11
overall, 16

procedure glimmix, 97-98, 99

procedure lifereg, 56, 57, 58

procedure lifetest, 35, 39, 43, 46

procedure mixed, 85, 87, 91, 94,

106-107, 108
procedure phreg, 66—-67
product-limit estimator. See Kaplan—Meir
estimator

prognosis, 24

prognostic factor, 24

proportion of complications, 27

prospective trial, 2

protocol, 6

quality of life, 88
query, 6

random censoring model, 48
random-effects term, 80, 92
random intercept, 80, 87, 96
random intercept logistic regression model,
95-96
conditional likelihood function, 96
conditional odds, 95
logit transformation, 95
random intercept model, 80
random slope, 87
random slope and intercept
model, 87
randomization method, 23
simple, 23
block, 24
stratified, 24
randomization of group
assignments, 23
randomized clinical trial, 2
randomized controlled trial, 2
relative risk, 59, 62
research personnel, 5
residual sum of squares, 82, 83
restricted maximum likelihood method
(REML), 82
restricted log-likelihood
function, 83
right-censored survival time, 33

sample size, 9
scientific clinical investigation. See Phase
IIT trial
significance level. See probability of type
I error
simple randomization method, 23
single-centered clinical trial, 3
skeptical prior, 19, 20
spatial power covariance
structure, 92
sponsor, 4
standard treatment, 2
statement of economic interest, 6
strata, 24
stratified randomization method, 24
subject, 1
at-risk, 35, 60
baseline, 60, 63, 64
drop-out, 2, 33
lost to follow-up, 2, 33
subject-mean imputation, 103
survival analysis, 33, 34
survival curve
actuarial, 44
Kaplan-Meier, 39
survival function, 34
actuarial estimator of, 44
baseline, 64
Kaplan-Meier estimator
of, 35
survival rate, 33
survival time, 33. See also lifetime
censored, 33
distribution of, 34
right-censored, 33

table of random digits, 24

tied observations, 37, 60, 62, 65
time zero, 2

treatment group, 2

trial length, 9

type I error, 11

type II error, 11

U.S. Food and Drug Administration (FDA),
4,5
unbalanced data set, 100

upper confidence limit
(UCL), 26, 27

valve implant, 13
volunteer, 4

‘Weibull distribution, 47

within-occasion mode
imputation, 104

within-subject mode
imputation, 104
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