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To show a satisfactory performance of

a new heart valve in a non-randomized

clinical study, the complication rates of

the new device are statistically compared

to the past-experience values listed in

the FDA Draft Replacement Heart Valve

Guidance [2]. The required number of

follow-up years is determined by the spec-

ified values, called Objective Performance

Criteria (OPCs). In Grunkemeier et al.

[4], the method for computing the required

number of valve-years for any OPC is pre-

sented. The idea of the method is to use

a Gamma distribution to approximate the

Poisson distribution. We claim that this

approximation results in over-estimation

of type I error and under-estimation of

type II error. We suggest to use an ex-

act continuous interpolation instead. Both

the approximation and the exact interpo-

lation, however, result in the same num-

ber of required patient-years. Thus, for all

practical purposes it is largely irrelevant

which formula is used, but for the sake of

mathematical preciseness and accuracy we

propose to use the exact interpolation.

To determine whether a tested heart valve is effi-
cient, the statistical hypotheses testing should be
performed. According to guidelines worked out
in [2], the null hypothesis is that the true com-
plication rate of a new heart valve (R) is equal
to or greater than twice the OPC rate (ROPC)
shown by commercially available valves. Thus,
the clinical data are accumulated with the hope
to reject H0 : R ≥ 2ROPC in favor of the alterna-
tive hypothesis H1 : R < 2ROPC. The derivation
of the required minimum number of patient-years
in [4] is based on the assumption that the num-
ber of complication events E in a clinical trial
over a fixed time period T has a Poisson dis-
tribution with a fixed rate λ = ROPC T . The
rate λ can be computed if the type I and type
II errors in the hypotheses testing are specified.
Consequently, the total number of patient-years
corresponding to a particular OPC rate is deter-
mined by T = λ/ROPC. The type I error, de-
noted by α, is defined as the probability to reject
the null hypothesis provided it is true. Type II
error, denoted by β, is the other possible error in

hypotheses testing, that is to accept H0 when it
is false. The type II error depends on a particular
value of R under the alternative hypothesis. We
are assuming R = ROPC. It is usually desirable
for type I error not to exceed 5%, and for type
II error not to exceed 20%, that is α ≤ 0.05 and
β ≤ 0.20. From the theory of hypotheses test-
ing, the null hypothesis is rejected if an observed
number of valve-related complications is less than
or equal to some critical value CV , and accepted
(failed to be rejected) otherwise. Therefore,

α = P(E ≤ CV |R ≥ 2ROPC),

and

β = P(E > CV |R = ROPC).

For fixed CV , the largest α corresponds to the
case R = 2ROPC. The formulas for α and β
define a system of two non-linear equations with
two unknowns, CV and λ:

0.05 =

CV∑
k=0

(2λ)k

k!
e−2λ (1)
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and

0.20 =

∞∑
k=CV+1

λk

k!
e−λ. (2)

These equations cannot be solved exactly since
the critical value CV for a discrete Poisson dis-
tribution must be an integer. However, a contin-
uous interpolation of a Poisson distribution can
be used to rewrite the above sums as appropriate
integrals.
Suppose Nt ∼ Poisson(λ̃ t) where t denotes a
time interval and Nt is the random number of
events in this interval. Let Tn be the wait-
ing time for the nth event. It is known that
Tn ∼ Gamma(n+ 1, λ̃). Thus,

P(Nt > n) = P(Nt ≥ n+ 1)

= P(Tn+1 < t) =

∫ t

0

λ̃n+1 yn

Γ(n+ 1)
e−λ̃ y dy

=

∫ λ̃ t

0

un

Γ(n+ 1)
e−u du (3)

where Γ(x) =
∫∞
0

yx−1 e−y dy is the gamma
function, x > 0.
Also, P(Nt ≤ n) = 1− P(Nt > n)

= 1− P(Tn+1 < t)

=

∫ ∞
λ̃ t

un

Γ(n+ 1)
e−u du. (4)

The value of n in the integrals in (3) and (4) can
now be any real number, not necessarily integer.
Hence, these formulas determine an exact con-
tinuous interpolation for the Poisson probability
function. Indeed, for any integer n,

P(Nt = n) = P(Nt ≥ n)− P(Nt ≥ n+ 1)

= P(Tn < t)− P(Tn+1 < t)

=

∫ t

0

λ̃nyn−1

Γ(n)
e−λ̃ydy −

∫ t

0

λ̃n+1yn

Γ(n+ 1)
e−λ̃ydy

=

∫ λ̃ t

0

(
un−1

Γ(n)
− un

Γ(n+ 1)

)
e−u du

=

∫ λ̃ t

0

nun−1 − un

Γ(n+ 1)
e−udu

=
(λ̃t)n

Γ(n+ 1)
e−λ̃t =

(λ̃t)n

n!
e−λ̃t. (5)

Now, in view of (3) and (4), equations (1) and
(2) become

0.05 =

∫ ∞
2λ

uCV

Γ(CV + 1)
e−u du (6)

and

0.20 =

∫ λ

0

uCV

Γ(CV + 1)
e−u du. (7)

The solution of these equations is CV = 11.296
and λ = 9.287. It was obtained numerically us-
ing Mathematica.
In defining the minimum required number of
patient-years, FDA used the OPC rate of
1.2%/year – the smallest OPC rate in [2]. Thus,
T = λ/ROPC = 9.287/0.012 ≈ 774 patient-
years. The approximate solution of the Poisson-
based equations (1) and (2) is λ = 9.72 and
CV = 12 with the left-hand sides equal to 0.05
and 0.183, respectively. This results in T =
9.72/0.012 = 810 patient-years. The quantities
774 and 810 valve-years gave rise to the FDA re-
quirement of the minimum 800 patient-years in
a non-randomized clinical study of a new heart
valve.
Grunkemeier et al. [4] proposed a different
Gamma-based continuous approximation to the
Poisson distribution. The idea is borrowed from
Cox [1]. In the notation described in the para-
graph proceeding equation (3), Cox suggests to
use the approximation

P(Nt > n) ≈ P(Tn+0.5 < t).

In this case, the equations (6) and (7) become

0.05 =

∫ ∞
2λ

uCV−0.5

Γ(CV + 0.5)
e−u du

and

0.20 =

∫ λ

0

uCV−0.5

Γ(CV + 0.5)
e−u du.

The solution of these equations is CV = 11.796
and λ = 9.287, which differs from the solution
for the exact interpolation only in the value of
CV . Since the λ’s are the same, the number of
patient-years is intact. The fact that the CV
proposed by Grunkemeier et al. [4] is larger than
ours by 0.5 results in over-estimation of α and
under-estimation of β.
The difference between this approximation and
the proposed exact interpolation is negligibly
small only for large values of λ, but for the ob-
tained value of 9.287 the difference is noticeable
(see Figure 1 and Figure 2).
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Figure 1: Cox’s approximation curve is shifted
with respect to the exact interpolation curve.

To prove the behavior of this difference analyti-
cally, first compute P(Nt = n) for Cox’s approx-
imation,

P(Nt = n) = P(Nt > n− 1)− P(Nt > n)

= P(Tn−0.5 < t)− P(Tn+0.5 < t)

=

∫ t

0

λ̃n−0.5 yn−1.5

Γ(n− 0.5)
e−λ̃ydy

−
∫ t

0

λ̃n+0.5yn−0.5

Γ(n+ 0.5)
e−λ̃ydy

=

∫ λ̃ t

0

(
un−1.5

Γ(n− 0.5)
− un−0.5

Γ(n+ 0.5)

)
e−u du

=

∫ λ̃ t

0

(n− 0.5)un−1.5 − un−0.5

Γ(n+ 0.5)
e−udu

=
(λ̃t)n−0.5

Γ(n+ 0.5)
e−λ̃t. (8)

The difference between the probabilities in (5)
and (8) is

(λ̃t)n

Γ(n+ 1)
e−λ̃t − (λ̃t)n−0.5

Γ(n+ 0.5)
e−λ̃t

=
(λ̃t)n

Γ(n+ 1)
e−λ̃t

(
1− 1√

λ̃t

Γ(n+ 1)

Γ(n+ 0.5)

)
.

If we denote λ = λ̃t, then the difference equals

(λ)n

Γ(n+ 1)
e−λ

(
1− 1√

λ

Γ(n+ 1)

Γ(n+ 0.5)

)
,

which decreases as λ goes to infinity, and is
still considerably large for the moderate value of
9.287. In Figure 2, this expression is plotted as a
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Figure 2: Difference between Cox’s approxima-
tion and the exact interpolation as function of n.

function of n for different values of λ. From the

graph, the maximum difference for λ = 9.287 is

about 0.015.

Comments

For the Bayesian analysis of a non-randomized

clinical study of a new heart valve, Grunkemeier

et al. [3] proposed to use the gamma approxi-

mation to the Poisson distribution as a guideline

for choosing the prior distribution for R. The

CV plays a crucial role as a constraint for deter-

mining parameters of the prior distribution. The

usage of the CV obtained with the approxima-

tion formula results in a slight underestimation

of the posterior probabilities of the true alter-

native hypothesis. We suggest to use the exact

interpolation value of CV .
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