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Presenter Notes
Presentation Notes
I included these photos to showcase the biodiversity of California. In these photos you see only a handful of landscapes and a few of the thousands of native plants native to the sate, which many creatures depend on. We are very fortunate to be in a state, or at the least attend school in a state with this amount of diversity in flora, fauna, and landscapes. Unfortunately, all these landscapes have been affected by wildfires and increasingly so every year. According to the California Department of Forestry and Fire Protection (Cal Fire), nine of the ten biggest wildfires in the state’s history have occurred in the past decade. And eight of those nine have occurred in the past five years. 



Wildfires
- Wildfires are a natural process in the 

ecosystem, especially in the Western 
United States

- Fires remove low-growing underbrush, 
cleans the floor of debris, opens it up to 
sunlight, and nourishes the soil

- Provides habitat making way for new 
generations of plants, some of which 
require fire to germinate (sprout)

- Fire kills diseases and insects that prey 
on trees and provides valuable nutrients 
that enrich the soil

- This is all good, however, the frequency 
with which wildfires are occurring now 
negate all these benefits
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Poisson 
Process

• A stochastic process {N(t), t ≥ 0} is 
called a counting process if N(t) 
gives the total number of events 
occurring by time t

• A counting process {N(t), t ≥ 0} is 
called a Poisson process with rate 
λ, if:
• (i) no events occur at time 0, 

i.e., N(0) = 0
• (ii) it has independent 

increments,
• (iii) it has stationary 

increments
• (iv) P(N(t) = n) = λ𝑡𝑡

𝑛𝑛

𝑛𝑛!
𝑒𝑒−λ𝑡𝑡

4



DATAthe
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San Bernardino 
Co.

Los 
Angeles 

Co.

Riverside Co.

- Data obtained 
from Kaggle

- CSV file 
- 1,634 obs
- 40 variables
- Data used were 

from these 
counties from 
2019
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Excel data used in 
modeling after 

filtering and cleaning 
the original 
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Presenter Notes
Presentation Notes
Here is a snippet of the excel data that I used for modeling. I selected the variables “started” and “counties” in the original data set. 



HISTOGRAM

incidents <- read.csv(file = “…", header = TRUE, sep = ",")

# creating date-time variable
datetime<- as.POSIXct(as.Date(incidents$Date, "%m/%d/%Y"))
datetime

# computing lag
datetime.lag<- c(0,head(datetime, -1))

# computing inter arrival times (in hours) and removing 1st val
int.time<- (as.numeric(datetime)-as.numeric(datetime.lag))/(3600*24)
int<- int.time[-1]

# plotting histogram
hist(int, main="", col="green", xlab="Interarrival Time")

#binning inter arrival times
binned.int<- as.factor(ifelse(int<5,"1",

ifelse(int>=5 & int<10,"2",ifelse(int>=10 & int<15,"3","4"))))

#computing observed frequencies
obs<- table(binned.int)
obs

#estimating mean for exponential distribution
mean.est<- mean(int)

#computing expected frequencies
exp<- c(1:4)
exp[1]<- length(int)*(1-exp(-5/mean.est))
exp[2]<- length(int)*(exp(-5/mean.est)-exp(-10/mean.est))
exp[3]<- length(int)*(exp(-10/mean.est)-exp(-15/mean.est))
exp[4]<- length(int)*exp(-15/mean.est)
round(exp,1)

#computing chi-squared statistic
print(chi.sq<- sum((obs-exp)^2/exp))

#computing p-value
print(p.value<- 1-pchisq(chi.sq, df=2)) 8

Presenter Notes
Presentation Notes
The histogram of the incidents shows exponential characteristics.



Goodness-of-Fit Test

incidents <- read.csv(file = “…", header = TRUE, sep = ",")

# creating date-time variable
datetime<- as.POSIXct(as.Date(incidents$Date, "%m/%d/%Y"))
datetime

# computing lag
datetime.lag<- c(0,head(datetime, -1))

# computing inter arrival times (in hours) and removing 1st val
int.time<- (as.numeric(datetime)-as.numeric(datetime.lag))/(3600*24)
int<- int.time[-1]

# plotting histogram
hist(int, main="", col="green", xlab="Interarrival Time")

#binning inter arrival times
binned.int<- as.factor(ifelse(int<5,"1",

ifelse(int>=5 & int<10,"2",ifelse(int>=10 & int<15,"3","4"))))

#computing observed frequencies
obs<- table(binned.int)
obs

#estimating mean for exponential distribution
mean.est<- mean(int)

#computing expected frequencies
exp<- c(1:4)
exp[1]<- length(int)*(1-exp(-5/mean.est))
exp[2]<- length(int)*(exp(-5/mean.est)-exp(-10/mean.est))
exp[3]<- length(int)*(exp(-10/mean.est)-exp(-15/mean.est))
exp[4]<- length(int)*exp(-15/mean.est)
round(exp,1)

#computing chi-squared statistic
print(chi.sq<- sum((obs-exp)^2/exp))

#computing p-value
print(p.value<- 1-pchisq(chi.sq, df=2))

The p-value is larger than 0.05, indicating that the wildfires in the 
given time frame occurred according to a Poisson process.
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Presenter Notes
Presentation Notes
Here we have the observed frequencies and conduct the goodness of fit test. The p-value for the test is larger than 0.05, indicating that the Poisson process models the data well. 



Plotting Actual 
Trajectory

fires <- c(1:38)
date<- as.POSIXct(as.Date(incidents$Date, 
"%m/%d/%Y"))

#plotting stock price against date
plot(date, fires, type="n",

xlab="Time", ylab="Number of Fires", 
first.panel=grid())

segments(date[-length(date)], fires[-
length(date)], date[-1]-0.07, fires[-
length(date)],

lwd=2, col="purple")
points(date, fires, pch=20, col="blue")
points(date[-1], fires[-length(date)], 
pch=1, col="purple")
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Presenter Notes
Presentation Notes
Here I plotted the data itself. The number of fires per day was 0.1796 and the wait time between fires was about 6 days or 5.56. I will show the code on how I got said values shortly in another slide.



Plotting Simulated 
Trajectory

# creating date-time variable
datetime<- as.POSIXct(as.Date(incidents$Date, "%m/%d/%Y"))
datetime

# computing lag
datetime.lag<- c(0,head(datetime, -1))

# computing inter arrival times (in hours) and removing 1st val
int.time<- (as.numeric(datetime)-as.numeric(datetime.lag))/(3600*24)
int<- int.time[-1]

#estimating mean for exponential distribution
mean.est<- mean(int)

lambda.est <- 1 / mean.est
t<- 10
nfires <- 20

#defining states
N<- 0:nfires

#setting time as vector
time<- c()

#setting initial value for time
time[1]<- 0

#specifying seed
set.seed(483650)

#simulating trajectory
for (i in 2:(nfires+1))

time[i]<- time[i-1]+round((-1/lambda)*log(runif(1)),2)

#plotting trajectory
plot(time, N, type="n", xlab="Days", ylab="Number of Fires", panel.first = 
grid())
segments(time[-length(time)], N[-length(time)], time[-1]-0.07, N[-length(time)],

lwd=2, col="brown")
points(time, N, pch=20, col="red")
points(time[-1], N[-length(time)], pch=1, col="red")
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Presenter Notes
Presentation Notes
Here we have the simulated trajectory using the first method for a Poisson process in the book, which is titled “Simulation 3.1 (Exponential Interarrivals).”



FURTHER RESULTS

Estimated Lambda
(fires per day)

Wait Between Fires
(days)

Next Fire

datetime<-
as.POSIXct(as.Date(incidents$Date, 
"%m/%d/%Y"))

datetime.lag<- c(0,head(datetime, -1))

int.time<- (as.numeric(datetime)-
as.numeric(datetime.lag))/(3600*24)
int<- int.time[-1]

mean.est<- mean(int)

lambda.est <- 1/mean.est

datetime<-
as.POSIXct(as.Date(incidents$Date, 
"%m/%d/%Y"))

datetime.lag<- c(0,head(datetime, -1))

int.time<- (as.numeric(datetime)-
as.numeric(datetime.lag))/(3600*24)
int<- int.time[-1]

mean.est<- mean(int)
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Presenter Notes
Presentation Notes
As stated before, our estimated lambda = 0.1796. And the wait time between fires was 5.56 days or ~ 6 days. Lastly, in order to get the date of the next fire I added the mean to the last date in the data set. The next fire was projected to be on November 6, 2019.
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