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Preface

This book was written as a textbook for an undergraduate, senior-level course
on random processes for Statistics majors. The presentation is meant to be
light yet sufficiently mathematical, with good, interesting, scientific applica-
tions. More advanced topics, such as sigma algebras, martingales, general
renewal processes, Levy processes, and stochastic calculus, are deliberately
avoided. The knowledge of statistics is limited to a linear regression, good-
ness of fit test, and point estimation.

There are nine chapters in this book, covering Markov chain, random
walk, Poisson processes (homogeneous, nonhomogeneous, compound, and
conditional), birth-and-death process, branching process, and Brownian mo-
tion. Each chapter gives just enough theory in the form of definitions, propo-
sitions, remarks, and examples, followed by a section on simulation of tra-
jectories. Finally, applications of processes are presented. At the end of each
chapter, a collection of exercises is included. Some of the exercises are theo-
retical whereas some others require calculation and simulation.

The R software is used throughout. Complete codes and relevant outputs
are given in the text. The website that accompanies this book

https://home.csulb.edu/~okoroste/stochprocesses.html

contains complete R codes for all examples and applications, and the data
sets in .csv format that are used in applications and/or required for certain
exercises. A complete solutions manual is also available to instructors upon
request.

Last but not least, I would like to thank John Peach who helped me
to simulate a trajectory of a branching process by means of self-referencing
functions.

Respectfully,
The author.
October, 2021






Chapter 1

Stochastic Process. Discrete-time
Markov Chain.

1.1 Definition of Stochastic Process

A stochastic process {X (t), t € T'} is a collection of random variables indexed
by a parameter ¢ that belongs to a set T'. The parameter ¢ is often referred
to as time, and the value X (t) is the state of the process at time t. The set
T is called the index set of the process.

The state space S of a stochastic process is the set of all possible values of
X(t), forany t € T.

If T is a countable set, the stochastic process is termed a discrete-time process
(or, simply, a discrete process). Otherwise, it is called a continuous-time
process.

1.2 Discrete-time Markov Chain

A discrete-time Markov chain' is a discrete-time stochastic process {X,,, n =
0,1,2, etec.} which state space S is finite or countably infinite and such that

]P)(Xn+1 :j’X():?:(), X1 :il, ey Xn:Z) :]P)(XnJrl :j‘Xn:Z) :Pij7
(1.1)

ntroduced in Markov, A. A. (1913). “An example of statistical investigation of the text
Eugene Onegin concerning the connection of samples in chains.” (In Russian.) Bulletin of
the Imperial Academy of Sciences of St. Petersburg, 7(3): 153 — 162.
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that is, the conditional probability of the process being in state j at time
n + 1 given all the previous states depends only on the last-known position
(state ¢ at time n). This property is called the Markovian property (or the
Markov property). The probability P,; is called the one-step transition prob-
ability of the Markov chain. Note that it is constant for given states ¢ and j.

In Markov chains, one-step transition probabilities are typically aggregated
into a one-step transition probability matriz

Poo Por Poz

Py P P
P=

Py Py B

ExampLE 1.1. Consider a Markov chain with the state space S = {1,2,3}
and transition probability matrix

1 2 3
1 10.7 01 0.2

P= 2 [o.o 0.6 0.4].
3 105 0.2 0.3

(a) Starting in state 1, the Markov chain returns to it in one step with proba-
bility 0.7, or transitions to state 2 with probability 0.1, or transitions to state
3 with probability 0.2. From state 2, the chain cannot transition to state 1
in a single step since the probability of this event is 0. It can, however, re-
turn to state 2 or move to state 3 with probabilities 0.6 and 0.4, respectively.
If the chain is in state 3, it will transition to states 1 or 2 with respective
probabilities 0.5 and 0.2 or will loop back to state 3 with a probability of 0.3.
Note that since the chain must transition to some state, the probabilities in
each row necessarily sum up to 1.

(b) Conditional probabilities can be computed using the Markov property.
For example, P(Xg, = 1|X0 = 1,X1 = 2,X2 = 3) = P(Xg = 1|X2 = 3) =
Py, = 0.5.

(c) Joint probabilities can be computed by conditioning and using the Markov
property. For example, we want to compute the probability that a Markov
chain starts in state 1 at time 0, then transitions into state 2, and then into
state 3. We obtain ]P)(XO = 1,X1 = 2,X2 = 3) = ]P)(XQ = 3|X0 = 1,X1 =
Q)P Xo=1,X1=2)=P(Xe =3|X; =2)P(X; =2|Xo=1)P(Xo=1) =
Py - Py -P(Xo=1)=(0.4)(0.1)(1) =0.04. O

8



1.3 Chapman-Kolmogorov Equations

Consider a Markov chain with finite or countably infinite state space S =
{0,1,2, ... }. For fixed states i and j, the n-step transition probability Pj; is
the probability that a process that is currently in state ¢ will be in state j
after n transitions, that is, for any time m > 0, P} = P(X, 1, = j| Xy = 7).

Denote the n-step transition probability matriz by P™. As a special case
with n =1, PO = P.

Next, we will show that P = P", which indicates that finding the n-step
transition probability matrix is tantamount to multiplying the one-step tran-
sition probability matrix by itself n times.

The proof is based on the Chapman-Kolmogorov equations which assert that
for all positive integers n and m, P™+t™ = P® . P or equivalently,
Pl-’frm = o0 Pl By, for any states ¢ and j. Indeed, by the definition of
conditional probability,

P(Xn+m =7 Xo = 2)

]DiTJL'+m = ]P(Xn-i-m = ]lXO = Z) =

Next, we fix state k in which trajectory of the Markov chain is located after
n transitions and sum up the probabilities with respect to k, obtaining:

P(Xpim = j, Xp = k, Xo = 1)
prtm — ! ’
IS

which by the definition of conditional probability is equal to

L P( X = J| X0 =k, Xo = )P(X, = k, Xy = 1)

2 P(XO - Z) ’

[e=]

and, applying the definition of conditional probability again, we get

P(Xpim = j|Xn =k, Xo = 1)P(X,, = k| Xo = 7).

oo

k

o

Finally, applying the Markov property, we can omit from the history all but
the latest known state that we condition on, and deduce that

p;;+m:z P(Xoim =J| Xn=k)P(X, =k|Xy=1) :Z B Py
k=0 k=0



This completes the proof. Now, as a corollary of the Chapman-Kolmogorov
equations, we will show that P = P™  Applying the method of mathe-
matical induction, we first check that the statement is true for small values
of n: P@ = pi+) = p). P = P.P = P2, and P® = P® .P = P3,
Assuming further that the statement holds for n — 1, we prove it for n. We
write, P = P~ . p =P 1. P = P".

ExAMPLE 1.2. In Example 1.1, we considered a Markov chain with the
one-step transition probability matrix

0.7 0.1 0.2
P=1(00 06 04
0.5 0.2 0.3

(a) Suppose we would like to find a three-step transition probability matrix.
We can compute

0.7 0.1 0.2 0.7 0.1 0.2 0.7 0.1 0.2]
P® —=P3 =100 0.6 0.4|-]00 06 04| -100 06 04
0.5 0.2 0.3 0.5 0.2 0.3 0.5 0.2 0.3]

0.59 0.17 0.24 0.7 0.1 0.2 0.533 0.209 0.258]
= (0.20 0.44 0.36| - (0.0 0.6 04| = [0.320 0.356 0.324] .
0.50 0.23 0.27 0.5 0.2 0.3 0.485 0.242 0.273

(b) Now we can compute probabilities that require the knowledge of the
three-step transition probability matrix. For instance, if P(X, = 1) = 1,
we can calculate P(Xy = 1,X; =2, X, =3) =P(Xy, =3|Xo=1,X; =
2Q)P(X; =2|Xy = D)P(Xp = 1) = P(Xy = 3|X; = 2)P(X; = 2| Xy =
DP(Xo=1) =P P, -P(X, =1) = (0.324)(0.1)(1) = 0.0324. O

Further, suppose we are given the distribution of the initial state p{ = P(X, =
i). Conditioning on this distribution, we can obtain the unconditional distri-
bution of the state at time n as

Py =P(X, =j) =Y P(X,=j|Xo=i)P(Xo=1) =) _ P}p).
i=0 1=0

In the matrix form, this equation becomes

(P, ph,...) = (p(l),pg, ) ..)P(”).
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EXAMPLE 1.3. Suppose that in Example 1.1 the initial states are equiprob-
able, that is, p; = ps = p3 = 1/3. Then, after three transitions, the prob-
ability that the chain ends up in state 1 is P(X3 = 1) = Yo, Pi(f’) pi =
(0.533)(1/3)+(0.320)(1/3)4(0.485)(1/3) = 0.446. Note that in these calcula-
tions, the three-step transition probabilities come from the first column of the
three-step transition probability matrix obtained in Example 1.2. Likewise,
the probability that after three steps the chain will be in state 2 can be found
as P(X3=2) = 322 | PY) p; = (0.209)(1/3) + (0.356)(1/3) + (0.242)(1/3) =
0.269. The unconditional probability of state 3 may be obtained by similar
calculations P(X3 = 3) = (0.258)(1/3) 4 (0.324)(1/3) + (0.273)(1/3) = 0.285,
or by subtraction from 1, P(X3 = 3) = 1 — 0.4646 — 0.269 = 0.285.

These calculations may be written in the matrix form as follows:

0.533 0.209 0.258
(1/3,1/3,1/3) 0.320 0.356 0.324| = (0.446,0.269,0.285). O
0.485 0.242 0.273

1.4 Classification of States

Consider a discrete-time Markov chain {X,,, n > 0}. We say that starting in
state 7, the chain ever enters state j if for some n > 0, X,, = 7, that is,

oo
{chain ever enters state j|it starts in state i} = U {X, =7|Xo=1i}.
n=0

A state j is called accessible from state ¢ if, starting in ¢, the chain will ever
enter state 7 with a positive probability. To denote that state j is accessible
from state 7, we write 1 — j.

Further, if two states are accessible from each other, we say that they com-
municate, and denote it as ¢ <» j. Communication property is an equivalence
relation. Indeed, (i) it is reflexive since any state communicates with itself in
0 steps, (ii) it is symmetric by definition: if state ¢ communicates with state
J, then state j communicates with state ¢, and (iii) it is transitive because if
state ¢ communicates with state 7, and state j communicates with state k,
then state ¢ communicates with state k.

Now, since communication is an equivalence relation, it means that com-
munication is a class property. all states that communicate with each other
belong to the same class, and the state space of a Markov chain may be par-
titioned into classes. If there is only one class, the chain is termed irreducible.

11



Next, a state is called recurrent if with probability 1 the chain ever reenters
that state. Otherwise, the state is called transient. Any state is either
recurrent or transient. Furthermore, at least one state of a finite-state Markov
chain must be recurrent because if all states are transient, after the chain
leaves all the states it has no state to go to. Similar to the communication
relation, recurrence and transience are class properties, and the entire class
is called recurrent or transient.

In addition, a state is called absorbing if the chain cannot leave it once it
enters it. An absorbing Markov chain has at least one absorbing state. A
state is termed refiecting if once the chain leaves it, it cannot return to it.

Finally, the period d of a state ¢ is the number such that, starting in 7, the
chain can return to ¢ only in the number of steps that are multiples of d. A
state with period d =1 is called aperiodic. Periodicity is a class property.

For a reflecting state, the period is infinite, since the chain never comes back
to this state. Absorbing states necessarily have loops and thus are aperiodic
states.

ExAMPLE 1.4. Referring back to Example 1.1, we first draw a diagram of
the Markov chain. The R code that produces the diagram will be displayed
in Example 1.8.

As seen in the diagram, state 2 can be reached from state 1 directly, and states
2 and 3 are directly accessible from each other. Also, state 1 is accessible

12



from state 2 through state 3. Therefore, all three states communicate, and
thus the chain has a single class and is irreducible. Since there is only one
class, it must be recurrent. Also, the chain has loops for every state, thus it
can return to every state in one step and is aperiodic. O

EXAMPLE 1.5. Consider a Markov chain with the state space {1,2,3,4,5,6}
and the one-step transition probability matrix

1 2 3 4 5 6

1703 07 0 0 0 0O
211 0 00 0 O
3106 0 0 0 0 05

41 0 0 06 0 0 04
500 0 0 0 01 09
6LO 0 0 0 07 0.3

The diagram for this chain is given below. The corresponding R code will be
presented in Example 1.9.

We can see that states 3 and 4 are reflecting and therefore transient. The
chain will transition out of both states and will enter the recurrent class
{1,2} or {5,6}. States 3 and 4 have infinite periods whereas both recurrent
classes are aperiodic due to the existence of the loops. O

13



1.5 Limiting Probabilities

In a Markov chain, the limiting probability 7; = lim,,, P;; doesn’t depend
on the initial state ¢ and can be interpreted as the long-run proportion of
time that the Markov chain spends in state j. Limiting probabilities are
also termed the limiting distribution or stationary distribution or steady-state
distribution. If the stationary distribution exists, it satisfies the system of
equations:

Ty = Zﬂ-ipij' (12)
=0

To see this, we condition on the state at time n and write P(X,, ., = j) =
Yoo P(Xpg1 = j1 X, = )P(X,, = 1) = Y2, PyP(X, = i). Letting n — oo,
and assuming that we can justify exchanging the limit and the summation
sign, we get (1.2).

If we combine the limiting probabilities into a row vector m = (my, 72, ...),
then the system of equations (1.2) has the matrix form 7 = 7 - P where P is
the one-step transition probability matrix. Since the rows of the transition
probability matrix add up to 1, the equations in the system are linearly de-
pendent. Nonetheless, we can find all limiting probabilities if we take into
account the fact that they must sum up to 1: m + m +--- = 1.

A Markov chain that has a unique stationary distribution is referred to as
ergodic.

EXAMPLE 1.6. The stationary distribution for the Markov chain considered
in Examples 1.1 — 1.4 solves

0.7 0.1 0.2
(71,9, m3) = (71, M, m3) [0.0 0.6 0.4|, and m + me + w3 = 1.
0.5 0.2 0.3
Or, equivalently,
T = 0.77T1 -+ 0.57’(’3 T3 = 0.67T1
g = 0.17T1 + 0.67’(’2 + 0.27'('3 s or o = 0.55771
T+ M +m3 =1, 2.15m =1,

resulting in the solution 7 = 0.4651, m, = 0.2558, and 73 = 0.2791. It means
that in a long run, the chain spends roughly 46.5% of the time in state 1,
25.6% of the time in state 2, and 27.9% of the time in state 3. Since the
stationary distribution is unique, it is an ergodic chain. O

14



EXAMPLE 1.7. As will be demonstrated in Example 1.9, for the Markov
chain in Example 1.5, the system of equations (1.2) has two solutions

(0.5882,0.4118,0,0,0,0) and (0,0,0,0,0.4375,0.5625).

This happens because the chain contains two recurrent classes, {1,2} and
{5,6}. Since there are two solutions, the chain is non-ergodic. Denote these
two vectors by 7y and 7, respectively. Then any linear combination of
the form am; + (1 — a)me where 0 < a < 1 is a solution, and therefore,
there actually exist infinitely many solutions. Any such solution is called an
invariant measure. Neither is considered to be the stationary distribution.
O

1.6 Computations in R

To mimic in R the analysis done in examples in the previous section, three
packages are required: “diagram” to plot the diagram, “expm” to exponenti-
ate matrices, and “markovchain” to determine recurrent and transient classes,
absorbing states, and the steady-state distribution. The script is as follows:

install.packages("diagram")
install.packages ("expm")
install.packages ("markovchain")

e First, an n x n transition probability matrix should be specified:

tm.name<- matrix(c(pii.value, pis.value, ..., pp,.value), nrow=n.value,
ncol=n.value, byrow=TRUE)

e To plot the diagram with the arrows pointing in the correct direction, the
transition matrix must be transposed. This can be done by typing

tr.tm.name<- t(tm.name)

The diagram is drawn using plotmat function. The graph depicts state
names inside boxes and directed lines connecting the boxes labeled by the
corresponding transition probabilities. The syntax is

library(diagram)

plotmat (¢r.tm.name, <arguments>)

15



The arguments in the above function are

o pos, a vector specifying the number of boxes in each row in the diagram.
For instance, in a three-state chain, pos=c(1,2) means that state 1 is de-
picted in the top row, and states 2 and 3 are in the next row. By default,
boxes are plotted in a circle.

oname=c ("statel.name", "state2.name", ... ), thelist of state names. By
default, natural numbers are used.

o arr.col, color of inside of all arrowheads (excluding the contours). Black
by default.

o arr.lcol, color of all arrow lines. Black by default.

o arr.length, length of all arrows.

o arr.pos, relative position of arrowheads on lines (excluding loops), a value
between 0 and 1. By default, arrows are positioned in the middle.

o arr.type, type of arrowhead, some options are curved, triangle, or
simple.

o arr.width, width of all arrows.

o box. cex, size of labels in boxes (i.e., state names). The magnitude is rela-
tive to the default value of character expansion.

o box.col, color of inside of all boxes (excluding contours). By default, the
color is white.

o box.1lcol, color of contours of all boxes. Black by default.

o box.1lwd, width of contours of all boxes.

o box.prop, ratio of length over width of all boxes. The ratio is equal to 1
by default.

o box.size, size of all boxes.

o box.type, type of all boxes, some options are rect, ellipse, round
(a rectangle with rounded edges), circle, diamond, hexa (a hexagonal
shape).

o cex.txt, size of labels next to arrows (i.e., values of respective probabili-
ties).

o 1col, color of all lines, contours of all arrows, and contours of all boxes.
Black by default.

o lwd, width of all arrow lines, excluding loops.

o self.cex, size of all loops (also termed “self-arrows”).

o self.arrpos, angle in radians of arrow positions on all loops relative to
the z-axis.

o self.lwd, width of all loops.

o self.shiftx, shift of all loops along the z-axis.

o self.shifty shift of all loops along the y-axis.

o txt.col, color of labels in boxes (i.e., state names).

16



e To compute an n-step transition probability matrix for a specific value of
n, use the following code:

library(expm)
nstepmatriz.name<- tm.name% A %n.value

e Given the initial distribution, the lines below calculate the unconditional
distribution after n steps.

init.p.name <- c(pl.nit.value, p2.init.value, .. .)
uncond.dist.name<- init.p.namelx%hnstepmatriz.name

e To determine recurrent and transient classes, absorbing states, and the
limiting distribution, a discrete-time Markov chain must be created as an
object. It can be done as follows:

library(markovchain)
dtme.name<- new("markovchain", transitionMatrix=im.name,
states=c("statel.name", "state2.name",...))

Then state characteristics may be obtained as

recurrentClasses (dtmc.name)
transientClasses (dtmc.name)
absorbingStates (dtmc.name)
steadyStates (dtmc.name)

Note that R doesn’t identify reflecting states.

In R, one can compute the period of an irreducible (a single-class) Markov
chain only. The syntax is period (ditmc.name).

ExXAMPLE 1.8. The results obtained for the Markov chain from Examples
1.1-1.4 and 1.6 can be produced in R as presented below.

17



#specifying transition probability matrix
tm<- matrix(c(0.7, 0.1, 0.2, 0.0, 0.6, 0.4, 0.5, 0.2, 0.3),
nrow=3, ncol=3, byrow=TRUE)

#transposing transition probability matrix
tm.tr<- t(tm)

#plotting diagram

library(diagram)

plotmat(tm.tr, pos=c(1,2), arr.length=0.3, arr.width=0.1,
box.col="light blue", box.lwd=1, box.prop=0.5, box.size=0.12,
box.type="circle", cex.txt=0.8, lwd=1, self.cex=0.6,

self .shiftx=0.17, self.shifty=-0.01)

#computing three-step transition probability matrix
library (expm)
print (tm3<- tm% A % 3)

[,11 [,2] [,3]
[1,] 0.533 0.209 0.258
[2,] 0.320 0.356 0.324
[3,]1 0.485 0.242 0.273

#computing unconditional distribution after three steps
init.p<- c(1/3, 1/3, 1/3)
init.p% * %tm3

(,11 [,21 [,3]
[1,] 0.446 0.269 0.285

18



#creating Markov chain object
library(markovchain)
mc<- new("markovchain", transitionMatrix=tm, states=c('"1", "2",

||3||))

#computing Markov chain characteristics
recurrentClasses (mc)

g o ngn

transientClasses (mc)
list O

absorbingStates (mc)

character(0)

period(mc)

1

round (steadyStates(mc), digits=4)

1 2 3
0.4651 0.2558 0.2791

O

ExaMPLE 1.9. Consider the Markov chain from Examples 1.5 and 1.7. We
run the following R code to produce the diagram, invariant vectors, and to
verify the state classification.

#specifying transition probability matrix

tm<- matrix(c(0.3,0.7,0,0,0,0,1,0,0,0,0,0,0.5,0,0,0,0,0.5,
0,0,0.6,0,0,0.4,0,0,0,0,0.1,0.9,0,0,0,0,0.7,0.3), nrow=6,
ncol=6, byrow=TRUE)

#transposing transition probability matrix
tm.tr<- t(tm)

#plotting diagram

library(diagram)

plotmat(tm.tr, arr.length=0.3, arr.width=0.1, box.col="light
blue", box.lwd=1, box.prop=0.5, box.size=0.09,
box.type="circle", cex.txt=0.8, lwd=1, self.cex=0.3,
self.arrpos=0.3, self.shiftx=0.09, self.shifty=-0.05)
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#creating Markov chain object

library(markovchain)

mc<- new("markovchain'", transitionMatrix=tm, states=c("1", "2",
||3|| ||4|| ||5|| ”6“))

#computing Markov chain characteristics
recurrentClasses (mc)

ll1|l II2II

II5|I II6II

transientClasses (mc)

ll3|l

II4II

#finding periods of irreducible Markov chains

tml2.ir<- matrix(c(0.3,0.7,1,0), nrow=2, ncol=2, byrow=TRUE)
mcl2.ir<- new("markovchain'", transitionMatrix=tmil2.ir,
states=c("1","2"))

period(mc12.ir)

tm56.ir<- matrix(c(0.1,0.9,0.7,0.3), nrow=2, ncol=2,
byrow=TRUE)

mch56.ir<- new("markovchain'", transitionMatrix=tmb6.ir,
states=c("5","6"))

period(mc56.ir)

#finding steady-state distribution
round (steadyStates(mc), digits=4)
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1 2 3 4 5 6
0.0000 0.0000 O O 0.4375 0.5625
0.5882 0.4118 0 O 0.0000 0.0000

O

1.7 Simulations in R

In R, to simulate simultaneously ntraj.value trajectories of a k-state Markov
chain over nsteps.name time-steps, the function rmarkovchain() in the li-
brary markovchain can be used. It keeps track of the step number and the
Markov chain state at that step. Each new state is chosen according to a
multinomial probability distribution with the probability mass function

P(x17'“ s Lky P1y - »pk):]P)(Xllef" 7Xk':$k)

n!
= ————pi" - Pk, where x4+ -+ 1 = n.
zyl - )
Given the initial vector of probabilities (pi,...,p;), the multivariate proba-

bility distribution is found recursively:

n

(pr, 5, ..., pr) = (pl_l,pg_l, o ,pZ_I)P, n=23,..., (1.3)

where P denotes the one-step transition probability matrix of the Markov
chain.

Assuming that the Markov chain object mc.name has already been created,
the syntax is as follows:

#specifying total number of trajectories
ntraj.name<- ntraj.value

#specifying total number of steps
nsteps.name<- mnsteps.value

#specifying initial probability
init.prob.name<- c(pl.value, p2.value, ..., pk.value)
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#specifying matrix containing states
states.matriz.name<- matrix (NA, nrow=nsteps.name, ncol=ntraj.name)

#specifying seed
set.seed (value)

#generating initial state
init.state.name<- sample(l:k, 1, prob=init.prob.name)

#simulating states

for (i in 1:ntraj.name)

states.matriz.namel,i]<- rmarkovchain(n=nsteps.name-1, object=mc.name,
t0=4nil.state.name, include.t0=TRUE)

e The value of the seed tells R where to start reading off in the table of
random digits. This is done for the reproducibility of results. If the code is
run again, it will produce the same trajectories.

e The function sample(1:k, 1, prob=init.prob.name) draws one state from
among the k states and the sampling is done according to the multinomial
distribution with the probability vector init.prob.name.

e The final product of the above code is a matrix with dimensions nsteps.value
by ntraj.value with columns containing state names for individual trajecto-
ries.

As an alternative to using the built-in function rmarkovchain(), one can
create a user-defined function that simulates trajectories. The syntax is

function.name<- function(itm.name, init.prob.name, nsteps.name) {
states.name<- numeric (nsteps.name)
states.namel[1]<- sample(1l:k, 1, prob=init.prob.name)

for(t in 2:msteps.name) {
prob.name<- tm.namelstates.namel[t-1],]
states.name[t]<- sample(l:k, 1, prob=prob.name)

}

return (states.name)

+

set.seed (value)
states.matriz.name<- matrix (NA, nrow=nsteps.name, ncol=ntraj.name)
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for (j in 1:niraj.name)
states.matriz.name<- function.name(tm.name, init.prob.name, nsteps.name)

Finally, the niraj.value trajectories can be overlayed on a single graph by
means of the matplot() function with the following syntax:

#plotting simulated trajectories
matplot (states.matriz.name, <arguments>)

where the arguments are: type="1" to connect the dots, 1ty=1 to draw
a solid line, 1wd=2 to make the lines appear thicker, col=a:b to choose a
sequential subset a to b of niraj.name colors from this cyclic list {1=black,
2=red, 3=green, 4=dark blue, 5=sky blue, 6=pink, 7=yellow, 8=gray, 9=black,
10=red, 11=green, etc.}, xlim=c (z.lower.value, z.upper.value) to limit the
x-axis, if needed, ylim=c (y.lower.value, y.upper.value) to limit the y-axis, if
needed, xlab="step.name" and ylab="state.name" to display step.name on
the xz-axis and state.name on the y-axis. Colors can also be specified as an ex-
plicit list: col=c("red", '"green", "blue"), for example. To add grid lines
to the coordinate system on the plot, the argument panel.first=grid() is
used.

To change tick marks on either axis and to modify labels for ticks, one can re-
move axes by including in matplot () the arguments xaxt="n" and yaxt="n",
and then specify the new axes as axis(side=number, at=range for ticks),
where side=1 is for z-axis, and side=2 is for y-axis.

To enhance the clarity of what states the depicted trajectories are at, dots can
be added at every step. To do so, use points (z values, y values, pch=16),
where the argument pch=16 identifies the plotting character for the points
as a filled circle.

Additionally, to visualize convergence of unconditional probabilities p,,, com-
puted recursively in accordance with (1.3), the following R syntax can be
implemented. We assume that there are k states in the Markov chain, and
the transition probability matrix has been defined as tm.name object.

#specifying total number of steps
nsteps.name<- mnsteps.value

#specifying matrix containing probabilities
probs.matriz.name<- matrix(NA, nrow=nsteps.name, ncol=k)
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#specifying initial probability
wnit.prob.name<- c(pl.value, p2.value, ..., pk.value)

#computing unconditional probabilities
probs.matriz.namel1,] <- wnit.prob.name

for(n in 2:nsteps.name)

probs.matriz.namel[n,1<- probs.matriz.nameln-1,1%*%tm.name

#plotting probabilities against steps by state
matplot (probs.matriz.name, type="1", 1lty=1, col=a:b,
ylim=c (lower.value, upper.value) , ylab="probability", xlab="step")

In addition, a legend should be added to match the lines with states’ numbers.

legend(legend.position, c("state 1", "state 2",..., "state k"),
1ty=1, col=a:b)

e The choices for legend.position on the graph are: "topright", "right",
"bottomright", "top", 'center", "bottom", "topleft", "left", and
"bottomleft".

SIMULATION 1.1. Consider the Markov chain discussed in Examples 1.1-
1.4, 1.6, and 1.8. Recall that the transition probability matrix for this chain
is specified as

0.7 0.1 0.2
0.0 0.6 0.4
0.5 0.2 0.3

Below we simulate two trajectories of this chain with the initial state cho-
sen at random, that is, with the probability vector (1/3,1/3,1/3). First, we
demonstrate how to utilize the built-in function rmarkovchain().
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#specifying transition probability matrix
tm<- matrix(c(0.7, 0.1, 0.2, 0.0, 0.6, 0.4, 0.5, 0.2, 0.3),
nrow=3, ncol=3, byrow=TRUE)

#creating Markov chain object
library(markovchain)
mc<- new("markovchain'", transitionMatrix=tm, states=c("1", "2",

||3||))

#specifying total number of steps
nsteps<- 25

#specifying initial probability
pO<- c(1/3, 1/3, 1/3)

#specifying matrix containing states
MC.states<- matrix(NA, nrow=nsteps, ncol=2)

#specifying seed
set.seed(2443927)

#simulating trajectories

for (i in 1:2) {

state0<- sample(1:3, 1, prob=p0)

MC.states[,il<- rmarkovchain(n=nsteps-1, object=mc, tO=stateO,
include.t0=TRUE)

+

#plotting simulated trajectories

matplot (MC.states, type="1", 1lty=1, lwd=2, col=3:4,
xaxt="n", yaxt="n", ylim=c(1,3), xlab="Step", ylab="State",
panel.first=grid())

axis(side=1, at=c(1,5,10,15,20,25))
axis(side=2, at=1:3)

points(l:nsteps, MC.states[,1], pch=16, col=3)
points(l:nsteps, MC.states[,2], pch=16, col=4)
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Now we present the code with a user-defined function that simulates trajec-
tories, bypassing the built-in rmarkovchain() function. We use the same
seed as above and obtain the same trajectories. The code and graph follow.
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#creating user-defined function
MC<- function(tm, p0, nsteps) {
states<- numeric(nsteps)

states[1]<- sample(l,1,prob=p0)

for(t in 2:nsteps) {
p<- tm[states[t-1],]
states[t]<- sample(1l,1,prob=p)

return(states)

#specifying seed
set.seed(2443927)

#simulating trajectories

MC.states2<- matrix(NA, nrow=nsteps, ncol=2)
for (j in 1:2)

MC.states2[,j]<- MC(tm, pO, nsteps)

#plotting simulated trajectories

matplot (MC.states2, type="1", 1lty=1, 1lwd=2, co0l=3:4, xaxt="n",
yaxt="n", ylim=c(1,3), xlab="Step", ylab="State", panel.first=
grid())

axis(side=1, at=c(1,5,10,15,20,25))
axis(side=2, at=c(1,2,3))

points(1l:nsteps, MC.states2[,1], pch=16, col=3)
points(1l:nsteps, MC.states2[,2], pch=16, col=4)
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Now we compute iteratively probability vectors and plot them against the
step number. The code and plot are given below.

#specifying matrix containing probabilities
probs<- matrix(NA, nrow=nsteps, ncol=3)

#specifying total number of steps
nsteps<- 15

#computing probabilities p_n
probs[1,] <- pO

for(n in 2:nsteps)
probs[n,]<- probs[n-1,]1%x%tm

#plotting probabilities against steps by state
matplot(probs, type="1", 1lty=1, lwd=2, col=2:4,
ylim=c(0.2,0.5), xlab="Step ", ylab="Probability",
panel.first=grid())

legend("right", c("State 1 ", "State 2", "State 3"), lty=1,
lwd=2, col=2:4)
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We also output the values of the probabilities to see that they converge to
the steady state (0.4651,0.2558,0.2791) on step 14.

> probs

[,1] [,2] [,3]
<lines omitted>
[13,] 0.4650353 0.2558698 0.2790949
[14,] 0.4650721 0.2558444 0.2790835

SIMULATION 1.2.  We return to the Markov chain studied in Examples 1.5,
1.7, and 1.9. First, we use the already-created object mc to generate three
trajectories that start at a randomly chosen state. In the code that follows,
we apply the rmarkovchain() function to simulate the trajectories.
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#specifying total number of steps
nsteps<- 20

#specifying initial probability
po<- c(1/6, 1/6, 1/6, 1/6, 1/6, 1/6)

#specifying matrix containing states
MC.states<- matrix(NA, nrow=nsteps, ncol=3)

#specifying seed
set.seed(765881)

#simulating trajectories

for (i in 1:3) {

state0<- sample(1:6, 1, prob=p0)

MC.states[,i]<- rmarkovchain(n=nsteps-1, object=mc,
t0=state0, include.tO0=TRUE)

+

#plotting simulated trajectories
matplot (MC.states, type="1", 1lty=1, lwd=2, col=2:4, xaxt="n",
ylim=c(1,6), xlab="Step", ylab="State", panel.first=grid())

axis(side=1, at=c(1,5,10,15,20))
points(1l:nsteps, MC.states[,1], pch=16, col=2)

points(l:nsteps, MC.states[,2], pch=16, co0l=3)
points(l:nsteps, MC.states[,3], pch=16, col=4)
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Next, we compute and plot the unconditional probabilities p, against n. As
n increases, these probabilities converge to an invariant probability measure,
which heavily depends on the initial state of the Markov chain. These limiting
values will be the same for states 1 and 2 since they belong to the same class,
for states 5 and 6 for the same reason, and separately for state 3, and for state
4. From the theoretical viewpoint, the invariant measure for states 1 and 2 is
(0.5882,0.4118,0,0,0,0). For states 5 and 6, it is (0,0,0,0,0.4375, 0.5625).
From state 3 the chain is equally likely to enter either {1,2} or {5,6},
therefore, the invariant measure is found as (0.5)(0.5882,0.4118,0,0,0,0) +
(0.5)(0,0,0,0,0.4375,0.5625) = (0.2941,0.2059, 0, 0,0.21875, 0.28125). From
state 4, the chain will enter the class {5,6} directly with probability 0.4, or
through state 3, with probability (0.6)(0.5) = 0.3, hence, it enters class {5,6}
with the total probability 0.4+0.3 = 0.7, and enters class {1, 2} only through
state 3 with the probability (0.6)(0.5) = 0.3. As a result, the invariant mea-
sure for state 4 is (0.3)(0.5882,0.4118,0,0,0,0)+(0.7)(0, 0,0, 0, 0.4375,0.5625)
= (0.17646,0.12354, 0,0, 0.30625, 0.39375).

We run the code below six times, every time choosing a different initial state.
As the output, we present the graphs for each initial state, and print the vec-

tor of probabilities for steps 28 through 30.
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#specifying total number of steps
nsteps<- 30

#specifying initial state distribution (state 1)
p0<- ¢(1,0,0,0,0,0)

#(state 2) p0<- ¢(0,1,0,0,0,0), (state 3) p0<- ¢(0,0,1,0,0,0),
#(state 4) pO<- ¢(0,0,0,1,0,0), (state 5) p0<- ¢(0,0,0,0,1,0),
#(state 6) p0<- c(0,0,0,0,0,1)

#specifying matrix containing probabilities
probs<- matrix(NA, nrow=nsteps, ncol=6)

#computing probabilities p_n
probs[1,] <- pO

for(n in 2:nsteps)
probs[n,]<- probs[n-1,]1%*)tm

#plotting probabilities vs. step by state

matplot(probs, main="Initial State 1", type="1", lty=1, 1lwd=2,
col=1:6, ylim=c(-0.05, 1.1), xlab="Step", ylab="Probability",
panel.first = grid())

legend("topright", c("State 1", "State 2", "State 3", "State
4", "State 5", "State 6"), 1lty=1, lwd=2, col=1:6)
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Step

probs

[,1] (,21 (,3] [,4] [,5] [,6]

<lines omitted>
[28,] 0.5882082 0.4117918 0 0 0 0
[29,] 0.5882542 0.4117458 0 0 0 0
[30,]1 0.5882220 0.4117780 0 0 0 0

33



Initial State 2

1.0

Frobakility

00 02 04 06 08

State 1
State 2
State 3
State 4
State 5
State 6

[, 1]

[28,] 0.5882739
[29,] 0.5882082
[30,]1 0.5882542

10

[,2] [,3] [,4] [,5] [,6]

15

Step

<lines omitted>

0.4117261
0.4117918
0.4117458
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Initial State 3
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Step

[,1] [,21 [,3] [,4] [,5] [,6]

<lines omitted>
[28,] 0.2941370 0.2058630 0 0 0.2187496 0.2812504
[29,]1 0.2941041 0.2058959 0 0 0.2187502 0.2812498
[30,]1 0.2941271 0.2058729 0 0 0.2187499 0.2812501
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[,1] [,2] [,3] [,4] [,5] [,6]

<lines omitted>
[28,] 0.1764540 0.1235460 0 0 0.3062501 0.3937499
[29,]1 0.1764822 0.1235178 0 0 0.3062500 0.3937500
[30,]1 0.1764625 0.1235375 0 0 0.3062500 0.3937500
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Initial State 5

— State 1
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Frobability
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Step

[,11 [,2] [,3] [,4] [,5] [,6]
<lines omitted>

[28,] 0 0 0 0 0.4374994 0.5625006

[29,] 0 0 0 0 0.4375003 0.5624997

[30,] 0 0 0 0 0.4374998 0.5625002
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Initial State 6

— State 1
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State 3
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Step

[,11 [,2] [,3] [,4] [,5] [,6]
<lines omitted>

[28,] 0 0 0 0 0.4374994 0.5625006

[29,] 0 0 0 0 0.4375003 0.5624997

[30,] 0 0 0 0 0.4374998 0.5625002

1.8 Applications of Markov Chain

APPLICATION 1.1. In 1913, A. A. Markov (1856-1922), a Russian mathe-
matician after whom Markov chains are named, published an article where
he analyzed sequences of vowels and consonants among the first 20,000 let-
ters of “Bugene Onegin” by A. S. Pushkin.? Two silent letters in the Russian
language that are indicators of the softness of a preceding sound and are
neither vowels nor consonants were ignored. He cleverly argued that the ap-
pearance of vowels and consonants are remarkably dependent in such a way

Markov, A. A. (1913). “An example of statistical investigation of the text Eugene
Onegin concerning the connection of samples in chains.” (In Russian). Bulletin of the
Imperial Academy of Sciences of St. Petersburg, 7(3): 153 — 162.
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that this literary work may be approximated by what we now call a Markov
chain. He went ahead and computed the one-step transition probability ma-
trix for this chain with the state space S = {vowel (v), consonant (c)}. He
calculated that there are 8,638 vowels in the text (respectively, 11,362 con-
sonants) and 1,104 vowel-vowel sequences. It is also important to notice
that the text starts with a consonant and ends with a vowel, meaning that
nothing transitions into the first consonant and the total number of transi-
tions into vowels adds up to the total number of vowels. Thus, there must be
8,638 — 1,104 = 7,534 consonant-vowel sequences, 11,362 — 7,534 = 3,828
consonant-consonant sequences, and 11,361 —3, 828 = 7, 533 vowel-consonant
sequences. The transition probability matrix can then be computed as

v C
1104 7533
8637 01278 8637 087
P
7534 3828
2T - 0.6631 —— =0,
11362 0063 11362 0-3369

Now, out of curiosity, we compute the limiting probabilities, which, theoret-
ically speaking, represent proportions of vowels and consonants in the text.
Since we know the exact numbers, we compute m, = % = 0.4319, and
m. =1 —0.4319 = 0.5681. Now, resorting to R, we obtain the same values:

#specifying the transition probability matrix
tm<- matrix(c(0.1278, 0.8722, 0.6631, 0.3369), nrow=2, ncol=2,
byrow=TRUE)

#creating Markov chain object

library(markovchain)

mc<- new("markovchain", transitionMatrix=tm, states=c("v",
”C"))

#computing limiting probabilities

steadyStates (mc)

v c
0.4319026 0.5680974

To verify how accurate A. A. Markov was with his estimation of the one-step
transition probability matrix, we ran the same analysis on the entire novel.
First, we precleaned the text, removing everything besides the Cyrillic letters
of the pre-1918 reform Russian alphabet. Then we ran the code presented
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below that changes the capitalization to lowercase, then removes blanks, line
breaks, punctuation marks, and the soft and hard signs of the Russian al-
phabet, leaving all the cleaned analysis-ready string containing a total of
106, 508 characters. To compute the combinations vv, cv, vc, and cc, we
shift the string to the left by one position, by inserting a blank in the front
and deleting the last letter to preserve the length of the string. When we line
up the lagged string x; with the original string zs, we obtain the preceding
and following letters in the string. After that, we apply simple Boolean logic
to calculate the number of vowels and consonants and the number of combi-
nations of all four types. The code and output follow.

library("tidyverse")
text<- read_file("./Onegin.txt")

#text cleaning

#gsub() = global substitution function=replaces all instances
lowercase<- tolower (text)

no.blanks<- gsub("","", 6 lowercase)

no.line.breaks<- gsub("\r\n", "", no.blanks)
no.punctuation<- gsub("[[:punct:]]","",no.line.breaks)
no.soft.signs<- gsub("s", "", no.punctuation)

#removing all hard signs
clean.string<- gsub("s","", no.soft.signs)
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#splitting single string into characters
x2<- strsplit(clean.string, "")

#shifting string by one position

no.last<- substr(clean.string, 1, nchar(clean.string)-1)
first.blank<- str_c("", no.last)

x1<- strsplit(first.blank,"")

#Note: 1In pre-1918 Russian language "i#" was considered a vowel
VOWGlS<—C("a", Heﬂ, Hén’ "H”, HiH’ Hﬁu’ ”O”, UyH’ “H“, HEH’
”3“, Hmﬂ, “ﬂ“

Consonants<_ C("6”, "B”, HrH’ ”E”: ”X”, ”3", ”K", "H”, "M",
”H", ”H“, HpH’ “C“, “T”, H@H’ ”X”, ”H”: HqH’ HmH’ Hmﬂ’ HeH)
#computing number of vowels, consonants, and four combinations
for (counter in 1:nchar(x2)){

v<- ifelse(x2[[counter]] %in% vowels,1,0)
c<- ifelse(x2[[counter]] %in% consonants,1,0)

vv<- ifelse(xl1[[counter]] %in’% vowels & x2[[counter]] %in%
vowels,1,0)

ve<- ifelse(x1[[counter]] %in’% vowels & x2[[counter]] %in%
consonants,1,0)

cv<- ifelse(x1[[counter]] %in%, consonants & x2[[counter]] %in%
vowels,1,0)

cc<- ifelse(x1[[counter]] %in% consonants & x2[[counter]] %in%
consonants,1,0)

b

sum(v)
46475
sum(c)
60033
sum(vv)
6368
sum(ve)
40107

sum(cv)
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40107
sum(cc)
19925

Note that all these numbers add up perfectly. The total number of vow-
els and consonants is 46,475 + 60,033 = 106,508. Since the text starts
and ends with consonants, all vowels have leading and trailing letters and
therefore, we must have sum(v)=sum(vv)+sum(vc)=sum(vv)+sum(cv). In-
deed, sum(vc)=sum(cv)=40,107 and sum(vv)+sum(vc) = 6,368 4+ 40, 107 =
46,475

=sum(v). Also, all consonants but the first one have leading letters and
all consonants but the last one have trailing letters. Hence, we must have
sum(c) -1=sum(cv)+sum(cc)=sum(vc)+sum(cc), which indeed holds since
40,107 + 19,925 = 60, 032 = 60,033 — 1.

Turning these numbers into the one-step transition probability matrix, we
obtain

Y C
6368 40107
9P 01 200 o,
b_ |64 01370 J5i75 = 0-8630
40107 19925
200 06681 —o22 —0.331
¢ Lgongz — V0081 ooz = V3319

Note that A. A. Markov used about one-fifth of the text and obtained pretty
accurate estimates. O

APPLICATION 1.2. It is important to understand that it is virtually impos-
sible to show that a given process is a Markov chain because we would need
to show that the Markovian property (1.1) holds for all tuples: pairs, triples,
quadruples, quintuples, etc. of successive observations. In his 1913 article
(see the previous application), A. A. Markov went only as deep as looking
at triples, and thus he could only conclude that the process is approximately
Markovian (put in modern terms).

On the other hand, showing that a given process is non-Markovian is much
easier because it suffices to show that the definition (1.1) fails for some tu-

A~

ple. For instance, if we can show that for some fixed 1,9, and i3, P(X3 =
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is| X1 =11, Xo =1i9) # ]fD(Xg = i3| Xy = i), it would be enough to prove
that the process is not a Markov chain. Below we give an example of such a
process.

Staying on the topic of literature, recall that in the famous 1980 movie “Shin-
ing,” the main character Jack Torrance (played by Jack Nicholson) repeatedly
typed on a typewriter the sentence “All work and no play makes Jack a dull
boy.” Suppose he typed it up k times, where k is a very large number. If
we turn this “composition” into a sequence of vowels (v) (a, e, i, o, u), and
consonants (c) (the remaining 21 letters), we will get a truly deterministic
sequence with a repeating pattern:

allworkandnoplaymakesjackadullboy|allworkandnoplay. . .
VCCCVCCVCCCVCCVCCVCVCCVCCVCVCCCVE |vecevecvecevecve. . .

We want to show that the Markovian property doesn’t hold, for instance, for
the triples {ccc} and thus this chain is non-Markov. In the entire “composi-
tion” there are 33k letters, of which 11k are vowels and 22k are consonants.
Also, pattern {ccc} occurs 3k times, {ccv} occurs 8k times, {vcc} occurs
8k times, and {vcv} occurs 2k + k — 1 = 3k — 1 times because two such
triples lie inside each sentence and one appears at each seam. Thus, we find

I@(Xl =c, Xo=¢c, X3= c)
@(Xl =c, Xo= C)
]IAD(Xl =c, Xo=¢c, X3= c)
B I/PS(Xlzc, X, =c, ngv) —l—@(Xl:c, Xy =c, ngc)
P(ccc) 3k 3
P(cev) 4 P(cec) C8k+3k 11

On the other hand, we estimate

ﬁ(XgZC‘XQZC, X1:C):

I/P\)<X2 = C, X3 = C)

@(XQ = C)
B P(ccc) + P(vee) B 3k + 8k
P(cce) + P(cev) + P(vee) + P(vev) 3k + 8k + 8k + 3k — 1
11k 1
= ok 1 ~ 2 for large k.
Since 2 %, this chain doesn’t satisfy the definition (1.1), and hence we

have shown that this process is not a Markov chain. O
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APPLICATION 1.3. According to the Mendelian model of gene inheritance in
humans, named after Gregor Johann Mendel (1822-1884), a specific genetic
trait is determined by a pair of genes, that can be of three types: AA, Aa,
or aa. During reproduction, an offspring inherits one gene of the pair from
each parent, and genes are selected at random, independently of each other.

Suppose gene a is a mutant gene or a person possessing this gene is a carrier
of a disease. Consider the genotype of the offspring in successive generations
if the second parent always has genotype AA. This can be presented as a
Markov chain with the state space S = {AA, Aa, aa} and transition proba-
bility matrix

AA Aa aa
AA 1 0 O

P= A4 |05 05 O] .
aa 0 1 0

Indeed, if parents have genes (AA, AA), then their offspring are bound to
have genes AA with probability 1. If parents have genes (Aa, AA), they
are equally likely to spit into AA or Aa, and finally, if parents have genes
(aa, AA), their offspring with certainty will have genes Aa. The diagram for
this model is

#specifying the transition probability matrix
tm<- matrix(c(1, 0, 0, 0.5, 0.5, 0, 0, 1, 0), nrow=3, ncol=3,
byrow=TRUE)

#transposing the transition probability matrix
tm.tr<- t(tm)

#plotting the diagram for the Markov chain

library(diagram)

plotmat (tm.tr, pos=c(1,2), name=c("AA", "Aa", "aa"),
arr.length=0.3, arr.width=0.1, box.col="light blue", box.lwd=1,
box.prop=0.5, box.size=0.12, box.type="circle", cex.txt=0.8,
lwd=1, self.cex=0.6, self.shiftx=0.17, self.shifty=-0.01)
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Note that states Aa and aa are transient states, and AA is the absorbing
state. It means that in a long run, the gene a will disappear from the popu-
lation. To convince ourselves, we compute the stationary distribution.

#creating Markov chain object
library(markovchain)

mc<- new("markovchain'", transitionMatrix=tm,
states=c("AA", "Aa", "aa"))

#computing stationary distribution
steadyStates (mc)

AA Aa aa
1 0 O

Let’s assume that initially the gene a is present in the 1% of the population
in the combination aa, that is, paa = 0.99,p4, = 0, and p,, = 0.01. We
run the R code below to see how the population genetic composition changes
from generation to generation by computing recursively p, 1 = p, - P,n =
1,2, 3, etc., with the initial condition p; = (0.99,0,0.01).

library (expm)

geni<- ¢(0.99, 0, 0.01)
gen<- genly*)tm

for (n in 2:10) {

print(n)

print (round(gen, digits=10))
gen<- geny*Jtm

by
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n Paa PAa Paa

1 099 0 0.01
2 099 0.01 0
3 0.995 0.005 0
4 0.9975 0.0025 0
5 0.99875 0.00125 0
6 0.999375 0.000625 0
7 0.9996875 0.0003125 0
8 0.9998438 0.00015625 0
9 0.999921875  0.000078125 O
10 0.9999609375 0.0000390625 0O

Note that already in the second generation the gene type aa disappears,
and is transformed into the hybrid type Aa, and that after as many as ten
generations, the gene a is still lingering on in the population. O

APPLICATION 1.4. In this application, we present yet another chain that
is not Markov. It has to do with weather conditions. On an intuitive level,
weather tomorrow depends not just on today’s weather but on the weather
for several past days, if not the entire history of weather conditions in the
region. To support this intuitive supposition numerically, we downloaded
from kaggle.com an open-access historical hourly weather data for 2012-2017
(file “weather _description.csv”), focused only on the column for Los Angeles,
and clumped the weather conditions into the four categories

S = {s="sunny", c="cloudy", f="foggy",r="rainy"}.

We then found empirically the conditional probability of sunny weather to-
morrow, given sunny weather yesterday and today,

. P
P(Xs=s|Xo=s, X;=8) = = _ Plsss) -
P(sss) +P(ssc) + P(ssf) + P(ssr)

and the conditional probability of sunny weather tomorrow, given sunny
weather today,

= 0.9477,

EA»(X | X, —s) = ]IAD(SSS) + @(css) + fD(fSS) +@('r’ss)
3 2 @(sss) + @(633) +---+ @(Tsr)

= 0.9318.
Since these two estimates are not the same, we concluded that hourly weather

conditions don’t form a Markov chain. The complete R code and output fol-
low.
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weather.data<- read.csv("./weather_description.csv",
header=TRUE, sep=",")

LA<- weather.data$Los.Angeles

X3<- ifelse(LA=="sky is clear", "sunny", ifelse(LA %in%
c("broken clouds", '"few clouds", "overcast clouds", '"scattered
clouds"), "cloudy", ifelse(LA %in) c("light intensity drizzle",
"dust", "fog", "haze", "mist", "smoke", "drizzle"), "foggy",
"rainy")))

library(Hmisc) #Harrell Miscellaneous packages
X2<- Lag(X3,shift=1)
X1<- Lag(X3,shift=2)

sss<- ifelse(X1=="sunny"& X2=="sunny"& X3=="sunny",1,0)
css<- ifelse(X1=="cloudy"& X2=="sunny"& X3=="sunny",1,0)
fss<- ifelse(X1=="foggy"& X2=="sunny"& X3=="sunny",1,0)
rss<- ifelse(X1=="rainy"& X2=="sunny"& X3=="sunny",1,0)
ssc<- ifelse(X1=="sunny"& X2=="sunny"& X3=="cloudy",1,0)
csc<- ifelse(X1=="cloudy"& X2=="sunny"& X3=="cloudy",1,0)
fsc<- ifelse(X1=="foggy"& X2=="sunny"& X3=='"cloudy",1,0)
rsc<- ifelse(X1=="rainny"& X2=="sunny"& X3=='"cloudy",1,0)
ssf<- ifelse(X1=="sunny"& X2=="sunny"& X3=="foggy",1,0)
csf<- ifelse(X1=="cloudy"& X2=="sunny"& X3=="foggy",1,0)
fsf<- ifelse(X1=="foggy"& X2=="sunny"& X3=="foggy",1,0)
rsf<- ifelse(X1=="rainy"& X2=="sunny"& X3=="foggy",1,0)
ssr<- ifelse(X1=="sunny"& X2=="sunny"& X3=="rainy",1,0)
csr<- ifelse(X1=="cloudy"& X2=="sunny"& X3=="rainy",1,0)
fsr<- ifelse(X1=="foggy"& X2=="sunny"& X3=="rainy",1,0)
rsr<- ifelse(X1=="rainy"& X2=="sunny"& X3=="rainy",1,0)

#computing P(X3=s|X2=s,X1=s)
sum(sss)/sum(sss+ssc+ssf+ssr)

0.9476645

#computing P(X3=s|X2=s)
sum(sss+css+fss+rss)/sum(sss+css+fss+rss+ssctcsc+fsctrsc+sst
+csf+fsf+rsf+ssr+csr+fsr+rsr)

0.931833

O
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Exercises for Chapter 1

EXERCISE 1.1. A Markov chain has a one-step transition probability matrix

1 2 3
1703 04 0.3
2 [OQ 0.3 0.5]'
3 10.8 0.1 0.1

Compute the following probabilities:

(a) P(X;;:Q’onl, X1:2, X2:3)

(b) P(Xy=3|Xo=2, X3 =1)

(C) ]P)(XO = 1, X1 = 2, Xg = 3, X3 = 1) Assume ]P(XO = 1) = 1.
d) P(Xo=1,X1=2,X5=3, X5=1). Assume P(Xy=1) = 1.

EXERCISE 1.2. Consider a Markov chain with the transition probability
matrix

1 2 3 4 5
1.0 0.0 0.0 0.0 0.0
0.5 0.0 00 00 0.5
0.2 00 00 00 08}
0.0 00 1.0 0.0 0.0
0.0 00 00 1.0 0.0

T W N =

(a) Plot a diagram of the Markov chain.

(b) Identify all transient and recurrent classes. Identify all absorbing and
reflective states. Find the period of each state.

(c) Simulate three trajectories of the chain that start at a randomly chosen
state. Comment on what you see.

(d) Find the steady-state probabilities and interpret them. Is it an ergodic
chain?

(e) Plot the unconditional probabilities at time n against the time and com-
ment on how fast the probabilities converge to the steady-state distribution.

EXERCISE 1.3. Consider a Markov chain with the one-step transition prob-
ability matrix
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1 2 3 4 > 6 7
1r o0 10 0 0 0 07
2 1 0 0 0O 0 0 0
3 0 0 0 04 02 02 02
4 0 0 O 0 02 04 04]
5103 0 0 0.1 03 01 0.2
6 0 0 0 02 02 03 03
7LO O O 05 02 02 0.1

(a) Plot a diagram of the Markov chain.

(b) Identify all recurrent and transient classes. Find their periods. Are there
any absorbing and reflecting states?

(c) Simulate two trajectories of the chain that start at a randomly selected
state. Discuss what you see in the plot.

(d) Calculate the limiting probabilities and interpret them. Is the chain er-
godic?

(e) Plot the unconditional probability vectors p,, against n and comment on
the speed of convergence to the limiting distribution.

EXERCISE 1.4. Consider a Markov chain with the one-step transition prob-
ability matrix

1 2 3 4 5

1101 02 0.3 0 04
2 0 05 0.5 0 0
3 0 1 0 0 O0f
41 0 0 0 0 1
) 0 0 0 06 04

(a) Plot the diagram of the Markov chain.

(b) Find all recurrent and transient classes and their periods. Are there any
absorbing or reflecting states?

(c) Simulate several trajectories of the Markov chain and discuss the pat-
terns that you see.

(d) Show that the chain is non-ergodic because there are two invariant prob-
ability measures. Which one of them is the stationary distribution?

(e) Plot the graphs of unconditional probabilities against time, assuming suc-
cessively that the chain starts in states 1, 2, 3, 4, and 5. Interpret each graph.

EXERCISE 1.5. In a box there are two red (R), four blue (B), and eight
green (G) balls. One ball is drawn at a time and its color is noted. Consider
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the stochastic process {X,,, n = 1,2,...} with the state space S = {R, B, G}.
(a) Show that this process is not a Markov chain, if the drawing is done with-
out replacement. Hint: Show, for instance, that P(X3 = G| X; = R, Xy =
B) #P(X; = G| X, = G, X, = B).

(b) Show that this process is a Markov chain, if the drawing is done with
replacement.

EXERCISE 1.6. Consider a sequence of heads and tails obtained by a series
of independent flips of a fair coin. Show that it can be modeled by a Markov
chain with the state space S = {H,T}. Find the transition probability ma-
trix and the limiting distribution.

EXERCISE 1.7. Assume that the usage of vowels and consonants in “Moby
Dick” by Herman Melville can be modeled by a Markov chain.

(a) Find the transition probability matrix for Chapter 1 of this novel. Cal-
culate the limiting probabilities and verify that they are equal to the overall
proportions of vowels and consonants in the text.

(b) Do states in Chapter 2 follow the same transition probability matrix as
those in Chapter 17

EXERCISE 1.8. A student at a secretarial school typed the sentence “The
quick brown fox jumped over the lazy dog” 500 times. Show that the result-
ing text cannot be modeled as a Markov chain.

EXERCISE 1.9. Consider the Mendelian gene inheritance model introduced
in Application 1.3. Suppose that the second parent is chosen randomly from
the gene pool with all types AA, Aa, or aa.

(a) Show that the genotype of the offspring follows a Markov chain with the
state space S = {(AA, AA), (AA, Aa), (AA, aa), (Aa, AA), (Aa, Aa), (Aa, aa),
(aa, AA), (aa, Aa), (aa,aa)} and the transition probability matrix

(AA, AA) (AA, Aa) (AA, aa) (Aa, AA) (Aa, Aa) (Aa, aa) (aa, AA) (aa, Aa) (aa,
(AA, AA) 1/3 1/3 1/3 0 0 0 0 0
(AA, Aa) 1/6 1/6 1/6 1/6 1/6 1/6 0 0
(AA, aa) 0 0 0 1/3 1/3 1/3 0 0
(Aa, AA) 1/6 1/6 1/6 1/6 1/6 1/6 0 0

(Aa, Aa) 1/12 1/12 1/12 1/6 1/6 1/6 1/12 1/12 1
(Aa, aa) 0 0 0 1/6 1/6 1/6 1/6 1/6
(aa, AA) 0 0 0 1/3 1/3 1/3 0 0
(aa, Aa) 0 0 0 1/6 1/6 1/6 1/6 1/6
(aa, aa) 0 0 0 0 0 0 1/3 1/3
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(b) Determine the transient and recurrent classes of the Markov chain.

(c) Find the stationary distribution. What is the steady-state genetic com-
position for both parents?

(d) Which initial state achieves the stationary distribution in the smallest
number of generations? Which in the largest? Assume the precision of four
correct decimals after rounding.

EXERCISE 1.10. Refer to Application 1.4. Consider the data in the file
“weather description.csv.” Choose a city other than Los Angeles and con-
duct the analysis similar to the one given the application.

EXERCISE 1.11. On an intuitive level, pollution level for a region doesn’t
follow a Markov chain as the pollution level tomorrow depends on pre-history
and not just on today’s level. But suppose that for some areas, air quality
status (good/unhealthy /hazardous) depends only on those in the previous
two days, and not in earlier days. Show that in this case, we can look at two
days at a time and model data as a Markov chain.

EXERCISE 1.12. Consider a simplified monopoly game with only five squares
and respective incomes of $200, $0, -$75, $105, and -$130. A player starts
at the first square, rolls a fair die once, and moves forward as many steps as
the die shows.

(a) Argue that this game can be modeled as a Markov chain and find its
transition probability matrix.

(b) Compute the steady-state probability of each square, and find the long-
run winning of the player.

EXERCISE 1.13. Suppose that road traffic conditions can be modeled as a
Markov chain with the state space S = {light, heavy, jammed}, and suppose
that traffic conditions change every 20 minutes. Assume that between 1PM

04 04 0.2
and 4PM, the transition probability matrix is |0.3 0.5 0.2]|, whereas be-
0 05 05
0.1 0.5 0.4
tween 4PM and 6PM it changes to (0.1 0.3 0.6].
0 0.1 09

(a) If the traffic starts with the 1ight state at 1PM, what is the distribution
of the states at 6PM?
(b) Simulate 10,000 trajectories to verify the result of part (a).
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EXERCISE 1.14. A certain species of shrubs has four states: state 1 if it is
sustainable, state 2 if it is threatened, state 3 if it is endangered, and state 4
if it is extinct. Plant assessment surveys are done at regular time intervals.
Transitions between states are modeled by a Markov chain with the transi-
tion probability matrix

1 2 3 4
0.6 02 0.1 0.1
0.7 02 0.1 0.0
0.1 03 04 02|
0.0 0.0 0.0 1.0

=W N

(a) Assuming that a shrub is initially sustainable, simulate several trajecto-
ries of the Markov chain.

(b) Find the probability that initially sustainable shrub will eventually be-
come extinct.

EXERCISE 1.15. A music instrument store is open every day of the week
except Monday. During that day, if the inventory count is below 3, more in-
struments are ordered, so that by Tuesday morning there are 7 instruments
in stock. If 3 or more instruments are in stock, then no action is taken. The
number of instruments sold during the business days is a Poisson random
variable with a mean of 4. Any demand that cannot be satisfied is lost.
(a) Argue that the inventory each Tuesday morning can be modeled as a
Markov chain. Find its state space and the one-step transition probability
matrix.

(b) Generate inventory trajectories, assuming that the initial inventory size
is randomly chosen.

(¢) Suppose one week there are 7 instruments in stock on Tuesday morning.
Compute the probability that there will be 7 instruments in stock also on
each of the three subsequent Tuesday mornings.

(d) The weekly storage cost is $5 per instrument that is in the store on Tues-
day morning. Compute the long-run expected weekly storage cost.
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Chapter 2

Random Walk

2.1 Definition of Random Walk

Consider a random process which state space comprises all integers on a
real line. The process starts at zero and transitions either one step to the
right with probability p or one step to the left with probability 1 — p. This
process is called a simple random walk. It is called symmetric if p = 1/2 and
asymmetric, otherwise. It is also termed infinite because it is defined on an
infinite set of integers. If a random walk occurs on a finite subset of integers,
it is termed a finite-state random walk or a random walk on a finite grid or
a bordered random walk.

In this chapter, we also consider some variations of a random walk, such
as two-, three-, and higher-dimensional random walks, and random walks on
graphs. Note that in general, random walks don’t have to start at the origin.
They can start at any randomly chosen starting point. Below we give formal
definitions of all these processes.

A simple (asymmelric, one-dimensional, infinite) random walk' is a
special case of a Markov chain which state space consists of integers S =
{0,£1,42,...}, and the transition probabilities are of the form p;;11 =
IEI)(‘Xn—&-l =1+ 1|Xn = Z) = p and Dbii—1 = ]P)(Xn-i-l =1— 1|Xn = Z) =
1—p, ©=0,£1,42,.... The transition probability matrix for a random

!The term was first used in Pearson K. (1905). “The Problem of the Random Walk”.
Nature, 72: 294.
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walk is

—2 —1 0 1 2
-2 0 P 0 0 0
—1 1—p 0 P 0 0
0 0 1—p 0 p O
1 0 0 1—p 0 p
2 0 0 1—p O

A symmetric random walk in two dimensions is defined as a random walk on
an integer lattice that moves right or left or up or down with a probability of
1/4. Likewise, a symmetric random walk in d dimensions is a random walk
on the d-dimensional integer lattice, with equiprobable moves in 2d directions
(with probability 1/(2d)).

Some variations of a simple random walk include a random walk with loops
(or delays), in the sense that the allowed moves are to the right with prob-
ability p, to the left with probability ¢, and remaining in the same state
with probability 1 — p — ¢. Also, in two dimensions, it might be allowed
to move diagonally as well as to stay in the same place, so each move has
a probability of 1/9. Or a finite-state random walk might be defined on a
finite integer grid with the boundary (or border, or barrier) states being
either reflecting or absorbing. In addition, it is possible to define a ran-
dom walk on a graph, where at every state, the process chooses among all
neighboring states with equal probability. Below we consider some examples.

EXAMPLE 2.1. A gambler either wins $5 with probability 0.55 or loses $5
with probability 0.45. He starts playing with $50 and plays until he either
goes broke or doubles his original amount. This is an example of a finite
one-dimensional random walk with absorbing barriers, since, once entered,
the states $0 and $100 are never left. The transition probability matrix is
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$0
5
$10
545
$50
55
595
$100

—_

0.45

o

)

$5 $10 ... $45 350 $55 $95 $100
0 0 ... 0 0 0 0 07
0 055 ... 0 0 0 0 0
0.45 0 0 0 0 0 0
0 0 0 0.55 0 0 0
0 0 0.45 0 0.55 0 0
0 0 0 045 0 0 0
0 0 0 0 0 0 0.55
0 0 0 0 0 0 14

If, for example, a gambler who goes broke can take a credit that brings him
back to the $50 fortune, the state $0 is no longer an absorbing state, but is,
in fact, a reflecting state. On the other end of his wealth spectrum, once the
gambler reaches the $100 fortune, he returns the credit (with, say, 10% in-
terest) and is bounced to $45, and thus the $100 state is reflecting as well. O

EXAMPLE 2.2.
A, B,C, D, and FE, and two exits (see the illustration by Shayan Khatri). The
mouse runs along the passages, and in any given room, it decides randomly
which passage to take.

Suppose that a mouse is running through a maze with rooms

This motion can be modeled as a random walk on a graph. Ewxit is an ab-
sorbing state.

State A has four neighboring states: FEuxit, B, C, and FE,
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and thus the mouse can go to either one of them with a probability of 1/4.
State B has two neighboring states, A and C, and the mouse goes to either
one with a probability of 1/2. State C' has connections to all the other four
states, giving the mouse a probability of 1/4 to choose the direction. State
D connects to three states, C', E, and Exit, so the mouse selects the state
to go to next with a probability of 1/3. Finally, from state E the mouse
can reach three states, A, C, or D, with probability 1/3 each. The one-step
transition matrix summarizes these probabilities.

Exit A B C D E
Ezitp 1 0 0 0 0 0
/4 0 1/4 1/4 0 1/4
0 1/2 0 1/2 0 0

0 1/4 1/4 0 1/4 1/4|
/3 0 0 1/3 0 1/3
L 0 1/3 0 1/3 1/3 0.

HT QW

2.2 Must-Know Facts About Random Walk

Denote by {X,,n = 0,1,2,...} an asymmetric one-dimensional random
walk that moves in the positive direction with probability p. Assume that
the random walk starts at zero, that is, Xy = 0. We formulate some inter-
esting results and present them as propositions.

PROPOSITION 2.1. (MEAN AND VARIANCE OF A RANDOM WALK). The
mean and variance of a random walk at time n are E(X,) = (2p — 1)n and
Var(X,) = 4p(1 — p)n.

PrROOF: We can write X,, = Z; + --- + Z,, where Z,;’s are independent ran-
dom variables with the binary distribution:

7 = {1, with probability p, i=1....n

—1, with probability 1 — p,
Note that E(Z;) = (1)(p) + (=1)(1 —p) = 2p — 1, and Var(Z;) = (1)%(p) +
(-D)*1-p) —2p-12=1- ( 2p — 1) = 4p — 4p® = 4p(1 — p). Thus,
we compute E(X,,) = E(Z;) +--- + E(Z,) = (2p — 1)n, and Var(X,) =
Var(Z)) + -+ +Var(Z,) =4p(1 —p)n. O
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Note that for a symmetric random walk, p = 1/2, and hence, E(X,,) = 0 and
Var(X,) = n, and after n steps, a typical distance from the origin is on the
order of \/n.

PROPOSITION 2.2. (PROBABILITY OF A RETURN). The probability that a
one-dimensional random walk returns to the starting point in exactly n steps

is ( 72) p/2(1 — p)"/? if n is even, and zero, otherwise.
n

PROOF: First of all, note that the random walk can return to the starting
point only in an even number of steps, half of which it should be moving to
the right (with probability p), and half, to the left (with probability 1 — p).

n
There are < paths with this property, hence:

n/2
" P21 — )%, if nis even,
n/2 :
0, if n is odd

Note that the random walk can cross the starting point several times before
ending there in exactly n steps. O

P(X, =0]|X,=0) =

The proofs of the next two propositions are omitted as they lie beyond the
scope of this book.

PROPOSITION 2.3. (RECURRENCE VS. TRANSIENCE OF 1D RANDOM
WALK). A one-dimensional random walk will come back to the origin in-
finitely many times with probability one if and only if p = 1/2. This means
that a symmetric one-dimensional random walk is recurrent, while an asym-
metric one-dimensional random walk is transient. It will, with a positive
probability, come back only a finite number of times and will eventually
wander away.

PROPOSITION 2.4. (RECURRENCE VS. TRANSIENCE OF d-DIM RANDOM
WALK). A two-dimensional random walk is recurrent if and only if it is sym-
metric (i.e., it goes up or down or left or right with probability 1/4). Any
random walk (symmetric or not) in 3D or a higher dimension is transient. It
will eventually wander away from the origin with a positive probability.

Thence, a bug crawling randomly along a railroad track will visit every inch
of it infinitely many times. Likewise, a King moving randomly on an infi-
nite chessboard will visit every square infinitely many times, whereas, say,
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a drone performing a random walk in the sky will eventually go into outer
space, never to be seen again.

2.3 Simulations in R

SIMULATION 2.1. Below we simulate three trajectories of a one-dimensional
random walk. We assume the walk starts at zero, and specify p as 0.6 and
the number of steps as 25.

#specifying parameters
ntraj<- 3

p<- 0.6

nsteps<- 25

#specifying seed
set.seed(45568223)

#defining walk as matrix
walk<- matrix(NA, nrow=nsteps, ncol=ntraj)

#simulating trajectories

for (j in 1:ntraj) {

walk[1,j]<- 0

for (i in 2:nsteps)

walk[i,jl<- ifelse(runif(1)<p, walk[i-1,jl+1, walk[i-1,j]-1)
}

#plotting trajectories

matplot(walk, type="1", lty=1, lwd=2, col=2:4,
ylim=c(range(walk)), xlab="Step", ylab="Position",
panel.first=grid())

points(1l:nsteps, walk[,1], pch=16, col=2)
points(1l:nsteps, walk[,2], pch=16, col=3)
points(1l:nsteps, walk[,3], pch=16, col=4)
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SIMULATION 2.2. The code below simulates and plots a two-dimensional
random walk with a total of 10,000 steps, emanating from the origin.
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#specifying number of steps
nsteps<- 10000

#specifying seed
set.seed(607335)

#defining walk as matrix
walk<- matrix(NA, nrow=nsteps, ncol=2)

#setting starting point
walk[1,]1<- c(0,0)

#definiting random steps
rstep<- matrix(c(1, 0, -1, 0, 0, 1, 0, -1), nrow=4, ncol=2,
byrow=TRUE)

#simulating trajectories
for (i in 2:nsteps)
walk[i,]<- walk[i-1,] + rsteplsample(l:4, size=1),]

#plotting trajectories

plot (x=walk[,1], y=walk[,2], type="1", col="blue",
xlim=range (walk[,1]), ylim=range(walk[,2]), xlab="x",
ylab="y", panel.first=grid())

#adding starting point
points(cbind(walk[1,1], walk[1,2]), pch=16, col="green", cex=2)

#adding ending point

points(cbind(walk[nsteps,1],walk[nsteps,2]), pch=16, col="red",
cex=2)
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SIMULATION 2.3. The following code simulates and plots a three-dimensional
random walk with 5,000 steps.
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#specifying number of steps
nsteps<- 5000

#specifying seed
set.seed(830126)

#defining walk as matrix
walk<- matrix(NA, nrow=nsteps, ncol=3)

#setting starting point
walk[1,]<- c¢(0,0,0)

#defining random steps
rstep<- matrix(c(1,0,0,-1,0,0,0,1,0,0,-1,0,0,0,1,0,0,-1),
nrow=6, ncol=3, byrow=TRUE)

#simulating trajectories
for (i in 2:nsteps)
walk[i,]<- walk[i-1,]+rstep[sample(1:6, size=1),]

#plotting trajectories
library (plot3D)

lines3D(walk[,1], walk[,2], walk[,3], col="blue",

xlim=range (walk[,1]), ylim=range(walkl[,2]),

zlim=range (walk[,3]), xlab="x", ylab="y", zlab="z", bty="b2",
ticktype="detailed")

#adding starting point
points3D(x=walk[1,1], y=walk[1,2], z=walk[1,3], add=TRUE,
pch=16, col="green", cex=2)

#adding ending point

points3D(walk[nsteps,1], walk[nsteps,2], walk[nsteps,3],
add=TRUE, pch=16, col="red", cex=2)

62



2.4 Applications of Random Walk

APPLICATION 2.1. (GAMBLER’S RUIN PROBLEM). Gambling is perhaps the
oldest area of application of random walks. And the most famous is the
Gambler’s Ruin Problem. A version of the gambler’s ruin problem has been
formulated as early as 1656, in correspondence between Blaise Pascal and
Pierre de Fermat.

Suppose a gambler starts with a fortune of $; and will move up $1 with
probability p or down $1 with probability ¢ = 1 — p until he is either broke
or reaches the fortune of $/N. What is the probability that he goes broke?

To answer this question, we will compute the complementary probability
of reaching the fortune of $N. Denote by P; the probability of winning
$N if a gambler starts with $j. Conditioning on the outcome of the first
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move, we can write the recurrence relation: P; = ¢P,_; + pP;; with the
boundary conditions Py, = 0 and Py = 1. We can write this relation as
pP;+qP; = qP;_1 +pP;;1 and rewrite as P, — P; = %(Pj — Pj_l). From
here, we see that PQ — P1 = %(Pl — P()) = %Pl, P3 — PQ = %(PQ — Pl) =
(%)QPl, P —P, = (%)2_1 P,. Summing up the identities, we obtain

P,—P, = [2 + (Q)Q 4ot (%)i_l] P,. From here,

p p

Py, if ¢/p=1.

To find Py, we use the boundary condition Py = 1. It yields

Tk, ifq/p# 1,
1/N, if ¢/p=1.

Consequently, if gambling is modeled as a symmetric random walk (with
p = q = 1/2), the probability of reaching the fortune $NV is i/N, and thus,
the probability of ruin is (N —4)/N. If the model is an asymmetric random
walk, the probability of reaching $N is P; = M,
| 1—(a/p)"
_p,_ W) — (/)"

1—(q/p)V

Also, it can be shown (see Exercise 2.7) that the expected number of games
that the gambler plays until he reaches $/N or goes bankrupt is

N (@/p)—(a/p)Y  N—i _ i-NP;
— g 1-(g/p)¥ ¢—p —  q-p if g/p #1,
i(N =), if q/p = 1.

and hence, the

probability of ruin is 1

2

Let us see how it plays out with some specific values. In Example 2.1, the

gambler started with $50, goes up $5 with probability 0.55, or goes down $5

with probability 0.45. He would end up with either $100 or $0. Since the

increment is $5, in our notation this translates into ¢ = 10, N = 20, and

p = 0.55. The probability of reaching $100 is L~ (045/0.55)" = 0.8815 and
1 —(0.45/0.55)%0 '

the probability of ruin is, respectively, 1 — 0.8815 = 0.1185.

10 — (2 .881
As for the expected number of games, we compute E; = 0 0 i50)<8 ii ) -

76.3. That is, the gambler plays, on average, 76.3 games.

We can verify these probabilities and the expected number of games empir-
ically, by running the following R code that simulates 100,000 trajectories
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and counts how many of them ended in 20, how many ended in 0, and keeps
track of the total number of games played until the end is reached. These
values are then averaged over the total number of trajectories.
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#specifying parameters

p<- 0.55
i<- 10
N<- 20

ntraj<- 100000

#defining walk as vector
walk<- c()

#setting counters
nNs<- 0

nzeros<- 0
ngames<- 0

#setting seed number
set.seed(30112443)

#simulating trajectories until hitting N or O

for (j in 1:ntraj) {

walk[1]<- i

k<- 2

repeat {

walk[k]<- ifelse(runif(1)<p, walk[k-1]+1, walk[k-1]-1)
ngames<- ngames + 1

if (walk[k]==N) {
nNs<- nNs+1
break

}

else if(walk[k]==0) {
nzeros<- nzeros+1

break
+

k<- k+1

+

+

print (prob.Ns<- nNs/ntraj)
0.88279

print (prob.zeros <- nzeros/ntraj)
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0.11721

print (mean.ngames<- ngames/ntraj)

76.18866

Next, we can plot the graph of the probabilities as a function of p, for our
specific values of « = 10 and N = 20. The syntax and the graph follow
The green curve depicts the probability of reaching N, whereas the red one
displays the probability of ruin.

p<- seq(0.35,0.65,0.001)

i<- 10

N<- 20

qQ<- 1-p

p.ruin<- ifelse(p==0.5, (N-i)/N, ((q/p)"i-(q/p)"'N)/(1-(q/p) "N))

#ploting the graphs
plot(p, p.ruin, type = "1", 1lwd=2, col = "red", xlab="p",
ylab="Probability", panel.first = grid())

lines(p, 1-p.ruin, 1lwd=2, col = '"green")

legend("right", c("Probability of $0", "Probability of $N"),
1ty=1, col=2:3)
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Note from the graph that the probability p doesn’t have to be very small for
the ruin to happen almost certainly. For p ranging between 0.4 and 0.6, the
probability of ruin goes down from almost 1 to almost 0. Respectively, the
probability of reaching N increases from almost 0 to almost 1.

Finally, we plot the graph of the expected number of games against p. The
code and the output are presented below.

p<- seq(0.01,1,0.01)

i<- 10
N<- 20
qQ<- 1-p
E.ngames<-

ifelse(p==0.5,i*(N-1), (i-N*x(1-(q/p)"i)/(1-(q/p) "N))/(1-2xp))

plot(p, E.ngames, type="1", 1lwd=2, col="green", xlab="p",
ylab="Expected number of games", panel.first=grid())
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Note that the maximum of this function is achieved at p = 1/2 and the max-
imum value is i(N —4) = (10)(20 — 10) = 100. Also, the graph is symmetric
due to the starting point being right in the middle, i.e., i = N/2. O

APPLICATION 2.2. (RANDOM WALK ON A GRAPH). Consider the random
walk through the maze introduced in Example 2.2. Suppose the mouse starts
in room C' and spends one second on each transition from room to room (or
Exit). We want to calculate how many seconds, on average, the mouse
spends in the maze before exiting. We argue as follows. The mouse will
spend exactly k seconds in the magze if it exits in exactly k transitions. So,
we need to find the probability to transition from room C' to an Ewit in ex-
actly k steps. Let P denote the one-step transition probability matrix. Then

(0,0,0,1,0,0)P*(1,0,0,0,0,0)"

gives the probability to transition from vertex C' to Exit in k or fewer steps,
and thus,

(0,0,0,1,0,0) (P’“ _ P’H) (1,0,0,0,0,0)"

is the probability to transition from C' to Fxit in exactly k steps. Conse-
quently, the formula for the expected time that the mouse spends in the maze
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before it reaches an Fxit is
E(time to exit) = (0,0,0,1,0,0) ((1)P +(2)(P? — P)

+(3)(P® — P?) + (4)(P* — P%) + .. ) (1,0,0,0,0,0)".

We run an R code to estimate this expected value. Convergence to the six
decimal places that R outputs is achieved with the first 172 terms. Adding
more terms doesn’t change the output.

#specifying transition probability matrix

tm<- matrix(c(1,0,0,0,0,0,1/4,0,1/4,1/4,0,1/4,0,1/2,0,
1/2,0,0,0,1/4,1/4,0,1/4,1/4,1/3,0,0,1/3,0,1/3,0,1/3,0,1/3,1/3,0),
nrow=6, ncol=6, byrow=TRUE)

#setting counter
nsec<- 0

#estimating expected number of seconds
p<- matrix(NA, nrow=172, ncol=6)
pl1,]<- c(0, 0, 0, 1, 0, 0)

for (i in 2:172) {
pli,1<- pli-1,]1%*%tm
nsec<- nsec+(i-1)*(p[i,1]-pli-1,11)
}

print(nsec)
9.967213

Hence, the mouse spends, on average, 9.967213 seconds in the maze, making
that many transitions between the states (and an Ezit). O

Exercises for Chapter 2

EXERCISE 2.1. Consider a one-dimensional random walk with the transi-
tion probability p = 0.3. Simulate 10,000 trajectories of length 50 steps and
calculate empirical mean and variance. Are the estimates close to the theo-
retical values?

EXERCISE 2.2. Consider a symmetric one-dimensional random walk that
originates at 0.
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(a) Simulate 10,000 trajectories with 1,000 steps each. How many of the
trajectories are at point 0 on the 1,000th step?

(b) Find the theoretical probability of returning to 0 on the 1,000th step.
Compare to the empirical value.

EXERCISE 2.3. Simulate 10,000 trajectories of 1D, 2D, and 3D symmetric
random walks that start at the origin and continue for at most 1,000 steps.
(a) Compute how many of them returned to the origin at least once. Com-
pare the results for different dimensions. Hint: Terminate a trajectory when
it returns to the origin.

(b) Consider only the trajectories that returned to the origin within the
1,000 steps. Compute the average number of steps it took those trajectories
to return to the origin. Compare the results for different dimensions.

EXERCISE 2.4. Simulate 10,000 trajectories of a two-dimensional symmet-
ric random walk that starts at the origin and continues for a maximum of
1,000 steps.

(a) Estimate the probability of a trajectory ever hitting the vertical barrier
x = 30.

(b) Estimate the average number of steps it takes a trajectory to hit the
barrier, provided it did hit the barrier within the 1,000 steps.

(c) Estimate the expected value of the y-coordinate at the time when the
random walk hits the barrier. What should this value be from the theoretical
point of view? Hint: deduce from a symmetry argument.

EXERCISE 2.5. Simulate 100 trajectories of a two-dimensional symmetric
random walk that starts at the origin and continues for 1,000 steps or until
it hits a barrier. The value of the barrier varies between x = 1 and x = 50.
Plot the empirical probability of hitting the barrier against the barrier value.
Discuss the pattern you see.

EXERCISE 2.6. Simulate 1,000 trajectories of a two-dimensional symmetric
random walk that starts at the origin and continues until it hits a side of a
square centered at the origin and having a side length of 20. Estimate the
average number of steps that it takes the random walk to reach the square.

EXERCISE 2.7. Suppose a gambler starts with a fortune of $7 and will move
up $1 with probability p or down $1 with probability ¢ = 1 — p until he either
reaches the fortune of $B or is down to $A.
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(a) Prove that the probability that he reaches $B before $A is

é__ép ifQ/p: L.

(a/p)=(a/p)"
P, = {(g/p)A—(q/p)B’ if ¢/p # 1,

Hint: Show that P; solves the recurrence relation P; = pP;1 + ¢P;_1, with
the border constraints P4 = 0 and Pg = 1. Look for the solution in the
form P; = c(q/p)' +d, if q/p#1,and P; =ci +d if q/p = 1.

(b) Show that the expected number of games the gambler plays until he
reaches $B or $A is

B—A (¢/p)'—(a/p)®  B—i .
E, ={ «» (ap)? =/ q¢»p’ it ¢/p # 1,
(B —i)(i = A), if ¢/p=1.

Hint: Show that E; satisfies the recurrence relation E; = pE; . + ¢E; 1 + 1
with the boundary conditions E4 = Eg = 0. Look for solutions in the form
E; =c(q/p)i+d+i/(q—p),if ¢/p# 1, and E; = ci +d — 2, if ¢/p = 1.

(c) Suppose a gambler comes to a casino with $40 and plays a rigged game
with p = 0.47 until he doubles the amount or is down to $10 (to pay for a
taxi). Calculate the probability that he walks out of the casino with $80.
How many games, on average, will he play? Simulate 10,000 trajectories and
estimate the probability and the expected length of play.

EXERCISE 2.8. A student visits an Ancient History museum that is open
between 9AM and 6PM. He enters the museum at 9AM and wanders the
rooms in a random-walk fashion, spending 30 minutes in each room, and
then choosing a door at random. The museum floor plan is given in the
picture. How long will the student spend in the museum, on average? Does
he expect to leave the museum before it closes for the day? Write down the
formula and use R to calculate the result.
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Chapter 3

Poisson Process

3.1 Definition and Must-Know Facts About Pois-
son Process

A stochastic process {N(t), t > 0} is called a counting process if N(t) gives
the total number of events occurring by time t.

A counting process {N(t), t > 0} is said to have independent increments if
the number of events that occur in non-overlapping time intervals are inde-
pendent. For example, N(5)— N(0), the number of events occurring between
times 0 and 5, is independent of N(10) — N(5), the number of events occur-
ring between times 5 and 10.

A counting process {N(t), t > 0} is said to have stationary increments
if the distribution of the number of events that occur in any time interval
depends only on the length of the interval. In other words, N(¢) — N(0) and
N(t+ s) — N(s) have the same distribution that depends only on ¢ and not
on s.

A counting process {N(t), t > 0} is called a Poisson process' with rate
A, if: (i) no events occur at time 0, i.e., N(0) = 0, (ii) it has indepen-
dent increments, (iii) it has stationary increments, and (iv) P(N(t) = n) =
QU =Mt =0,1,2,.... Note that E(N(t)) = Var(N(t)) = At.

Since the rate A\ of a Poisson process is a constant not depending on time £,
the process is sometimes referred to as a homogeneous (or stationary) Poisson
process.

I The reference to a Poisson process first appeared in two independent publications in
1940. The first was the article by Feller, W. (1940). “On the integro-differential equations
of purely discontinuous Markov processes.” Trans. Am. Math. Society, 48(3): 488 — 515.
The second was the Ph.D. dissertation by Lundberg, O. (1940). “On random processes
and their application to sickness and accident statistics.” Uppsala: Almqvist & Wiksell.
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An interarrival time is the time between two consecutive occurrences of
events. The interarrival time between (n — 1)st and nth occurrences will
be denoted by T,,, n = 2,3,.... The time of the first occurrence will be
denoted by T7.

The waiting time until the nth event (or event time), S,, = T1 +To+---+ 1T,
is the time when the nth event occurs.

PROPOSITION 3.1. Interarrival times 7,,, n = 1,2,..., are independent ex-
ponentially distributed random variables with the density function fr, () =
Ae Mot >0.

PROOF: Note that P(T; > t) = P(N(t) = 0) = e *. Therefore, T} ~

Exp(X\). Next, conditioning on the value of the first occurrence, and using
independence and stationarity of increments, we write

P(Ty > t) :/OO P(Ty > t|T) = s) Ae **ds
:/OO P(N(t+s)— N(s)=0|N(s)=1) e *ds

:/ P(N(t)zo)/\e_)‘st:e_)‘t/ Ne ™o ds = e,
0 0

that is, 7o ~ Exp(\). More generally, conditioning on the time of the nth
event occurrence and again using independence and stationarity of incre-
ments, we obtain

P(Th1 >1t) = /00 P(T,i1 > t] S, =5) fs,(s)ds
:/000 P(N(t+s)— N(s)=0|N(s) =n) fs,(s) ds

= /000 P(N(t) = 0) fs,(s) ds = e /000 fs.(s)ds=e?'. O

REMARK 3.1. Recall that exponential is the only continuous distribution
that possesses the memoryless property, P(T' >t +s|T >t) =P(T > s). In
a Poisson process, the increments are independent and stationary and that
implies that the process renews itself every moment. Therefore, on an in-
tuitive level, the interarrival times should possess the memoryless property
and thus be distributed exponentially. Also, if, say, on average, there are two
occurrences per hour (A = 2 per hour), the average waiting time between
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two occurrences is half an hour (mean= 1/X = 1/2 hour).

PROPOSITION 3.2. The waiting time S, has Gamma(n, \) distribution.
Thus, E(S,) = n/\ and Var(S,) = n/X?. The density function is of the

form fg, (s) = ’\(Zs_nl;; e s> 0.

PROOF: We can write S, as the sum of interarrival times, i.e., S, = T} +
To+---+7T,. It is a general fact in the theory of probability that the sum of
n independent exponentially distributed random variables with parameter \
has a gamma distribution with parameters n and A\. The quickest proof of
this fact is through the moment generating functions. O

REMARK 3.2. Let’s look at a Poisson process as a special case of a Markov
chain. The state space of a Poisson process is S = {0, 1,2,...}. The process
jumps from initial state 0 to state 1 with probability 1, then to state 2 with
probability 1, etc. The jumps are always of size 1, and transitions between
states are allowed only in the direction of increase. Moreover, a Poisson
process includes the time component, so it matters how long the process halts
between jumps. In fact, we know that it halts an exponentially distributed
time. This type of Markov chain is called a continuous-time Markov chain.

REMARK 3.3. It is essential to understand that Poisson arrivals occur one
at a time. The probability of two simultaneous arrivals is zero since the
interarrival time is exponentially distributed and thus the probability of an
interarrival time being equal to zero is zero. It means that in situations when,
say, people can potentially arrive in groups, one needs to count not arrivals
of individual people, but count the arrival of a group as a single event. For
example, if we model the process of people joining a ticket line in a movie
theater, we would be likely to see an entire party joining the line, so we would
count the party as one arrival.

ExXAMPLE 3.1. A Poisson process is used to model occurrences of rare
events. Here are some instances of Poisson processes: the number of people
who enter a store or a bank or a restaurant or a gym or a National Park,
the number of cars that pass a certain intersection, the number of auto ac-
cidents on a certain stretch of a freeway, the number of births in a hospital,
the number of meteors in the night sky, or the number of phone calls to a
credit card customer service. Typically, natural disasters occur according to
a Poisson process: earthquakes, volcano eruptions, wildfires, etc. Of course,
in all the above examples, the considered time period should be short enough
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for the rate of occurrence to be constant.

Some examples of processes that clearly are not governed by a Poisson law are
events that happen according to a schedule, for example, the arrival of buses
along a certain route, road closures due to construction work, quarry blasts,
building demolitions. Also, events that happen in a competing market, where
two rival companies might be scheduling two events at the same time. For
instance, two pharmaceutical companies might simultaneously bring to the
market two cardiac medications, or two production companies might release
two movies on the same day. In addition, some periodic (or seasonal) natural
phenomena cannot be modeled as a Poisson process, i.e., eruptions of Old
Faithful geyser in Yellowstone National Park, ocean tides, the appearance of
sunspots, etc. O

EXAMPLE 3.2. Tour buses arrive at a roadside mall with restaurants, bring-
ing 50 tourists each. The times that elapse between consecutive arrivals are
independent and exponentially distributed with mean of 15 minutes.

(a) On average, buses arrive every 15 minutes, so, for instance, the expected
waiting time for the fifth bus to arrive is (15)(5) = 75 minutes, or 1 hour and
15 minutes. Now we put it in our theoretical framework. The rate of arrival
of the buses is A = 4 per hour. Denote by S5 the time until the 5th bus
arrives. We know that S5 has a gamma distribution with parameters n =5
and A\ = 4. Therefore, E(S5) = 5/4 = 1.25 hours, or 1 hour and 15 minutes.
We can also compute the variance of Sy as Var(Ss) = 5/4% = 0.3125 hours
squared, and the standard deviation as \/Var(Sg)) = 1/0.3125 = 0.559 hours.

(b) The total expected number of tourists who are served lunch at the restau-
rants between, say, 11AM and 1:30PM is found as follows. Within the two
and a half hours, we expect 10 bus arrivals, each carrying 50 tourists. There-
fore, we expect a total of (10)(50) = 500 tourists. To write it formally,
let N(t) denote the number of buses that arrive by time ¢t. We know that
N(t) ~ Poisson(4t). We are given that ¢t = 2.5 hours, and therefore, the
expected total number of tourists is (50)E(N(2.5)) = (50)(4)(2.5) = 500. O

ExAMPLE 3.3. Independence and stationarity of increments in a Poisson
process allow elegant computations of conditional probabilities. For exam-
ple, consider a Poisson process with rate A = 2.2.

(a) Suppose we want to find the conditional probability that there will be
8 arrivals by time 5 given that there was 1 arrival by time 2. We can ar-
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gue that since at time 2 the process renews itself, we need to compute the
probability that within the next 3 time periods there will be 7 more arrivals.
We write P(N(5) = 8| N(2) = 1) = P(N(B) — N(2) = 7|N(2) = 1) =
{independence} = P(N(5) — N(2) = 7) = {stationarity} = P(N(5 —2) =
7) = P(N(3) = 7) = (220G ~22() — (.147243.

(b) Similarly, conditional expectations can be computed if we utilize inde-
pendence and stationarity of increments. E[N(9)|N(7) = 10] = E[N(9) —
N(7T)|N(7) = 10|+ E[N(7) | N(7) = 10] = E[N(9) — N(7)]+ 10 = E[N(2)] +
10 = (2.2)(2) + 10 = 14.4.

(c) Let Sy denote the time of occurrence of the 30th event. Independence
and stationarity of increments helps us again to compute, for instance, the
conditional expectation of S35y given that 8 events occurred in the first 12 time
periods. We write E[S3 | N(12) = 8] = 12 4 E[time until 22 more events] =
12+ E[Syp] =12+22/22=12+10=22. O

PROPOSITION 3.3. Suppose that in a Poisson process {N(t), t > 0} with
rate A, an event can be either of category 1 with probability p, or of cat-
egory 2 with probability 1 — p. Denote by N;(t) and Ny(¢) the number of
events of category 1 and 2 that occur by time ¢, respectively. Note that
N(t) = Ni(t) + Na(t). Then, {Ny(t), t > 0} and {Ny(t), t > 0} are indepen-
dent Poisson processes with respective rates Ap and A (1 — p).

PROOF: Note that by definition, for an observed value of N(t), N;(t) has a
binomial distribution with parameters N(t) and p. Respectively, No(t) has a
binomial distribution with parameters N(¢) and 1 — p. Therefore, the joint
probability distribution of Ny(¢) and Na(t) can be derived as

]P)(Nl(t) =N, Ng(t) = TLQ)
= ]P)(Nl(t) =Ny, Ng(t) = TNy | N(t) =n; + ng) ]P)(N(t) =ny + ’I’LQ)

ni+n " o (At)ymtnz
:<1 2)pl(l—p)Q—<) e

ny (ng + no)!
_ (Apt)™ ot (A(1 = p)t)™ o A(1-p)t
711! TLQ! .

Hence, Ni(t) and Ny(t) are independent Poisson random variables with rates
Ap and A(1 — p), respectively. Independence and stationarity of increments
are inherited from those of the process {N(t),¢>0}. O
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REMARK. In the above proposition, the Poisson process {N(t), t > 0} is
called the superposition of Poisson processes {Ni(t), t > 0} and {Ny(t), t >
0}. In turn, {Ny(t), t > 0} and {Ny(t), t > 0} are called thinned (or splitted)
Poisson processes.

EXAMPLE 3.4. Suppose phone calls to a customer service department in
a credit card company arrive as a Poisson process with rate 3 per minute.
Thirty percent of the calling customers experience technical difficulties when
using their credit cards.

(a) The probability that during the next 15 minutes there will be 12 phone
calls from customers who experience technical difficulties is computed as
follows. We focus only on the customers who experience technical diffi-
culties. Call this process {Ny(t), t > 0}. We know that it is a Poisson
process with the rate Ap = (3)(0.30) = 0.9 per minute. So, we can write

P(N;(15) = 12) = (COUIZ -09)05) — (10488,

(b) Suppose now we want to calculate the probability that during the next 15
minutes there will be 40 phone calls from customers, half of whom experience
technical difficulties. We denote by {Ny(t), t > 0} the Poisson process that
counts only the callers who don’t experience technical difficulties. TIts rate
is A(1 —p) = (3)(0.7) = 2.1. We know that the processes {Ny(t), ¢t > 0}
and {Ny(t),t > 0} behave independently. Hence, we write P(N;(15) =
20, Na(15) = 20) = P(N;(15) = 20) P(Ny(15) = 20) = (CAUNT —(09)05) .

(DA o~ D05) = (0.0228)(0.00794) = 0.000181. O

3.2 Simulations in R

We will present two simulation methods of a trajectory of a Poisson process.

SIMULATION 3.1. (EXPONENTIAL INTERARRIVALS). When simulating a
trajectory of a Poisson process, we need first to simulate exponentially dis-
tributed interarrival times. We base our simulations on standard uniform
random variables and use the inversion of the cumulative distribution func-
tion method to obtain exponentially distributed random variables: if u ~
Unif(0,1), then —+ In(1—w) is exponential with mean 1/X. Note that since
1 —w is also Unif(0,1), we can simplify the expression for the exponential

random variables to —% In w.
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To plot the simulated trajectory, we use the segment () function which takes
as arguments vectors of left and right endpoints. Below we present the code
and graph of a trajectory of a Poisson process with rate 2 that stops when
it makes the 20th jump.

#specifying parameters
lambda<- 2
njumps<- 20

#defining states
N<- O0:njumps

#setting time as vector
time<- c()

#setting initial value for time
time[1]<- O

#specifying seed
set.seed(333422)

#simulating trajectory
for (i in 2:(njumps+1))
time[i]<- time[i-1]+round((-1/lambda)*log(runif(1)),2)

#plotting trajectory

# type="n" draws empty frame with no graph

plot(time, N, type="n", xlab="Time", ylab="State", panel.first
= grid())

segments (time[-length(time)], N[-length(time)], time[-1]-0.07,
N[-length(time)], 1lwd=2, col="blue")

points(time, N, pch=20, col="blue")
points(time[-1], N[-length(time)], pch=1, col="blue")
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SIMULATION 3.2. (UNIFORM ORDER STATISTICS). First we need to prove
the theoretical result. Consider a Poisson process {N(¢), t > 0}. Given
that n events occurred by time ¢, the times at which the events occurred are
distributed as the order statistics of a uniform distribution on (0,?).

To show this result, we derive the conditional density of n waiting times
S1,59,...,5,, using independence and exponential distribution of the inter-
arrival times 11,715, ...,T,. We write

fS1,SQ,...,Sn (817 52,...,98n ’ N<t) - n)

_ In(s)fn(sa—s1) - fr(sn = $n-1)P(Tha >t — sn)
P(N(t) = n)
Ne st )\ e As2—s1) ... A e AMsn=sn-1) p—A(t—sn) n!
- QA" o —xt BT

n!

This gives us the following algorithm to generate trajectories:

Step 1. Fix ¢t and generate N(t) ~ Poi(At).
Step 2. Generate N(t) standard uniform random variables Uy, ..., Un.
Step 3. Order Uj,...,Un() in increasing order, obtaining the ordered set
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Uay, - Uvay-

Step 4. Multiply the order statistics by t to obtain the set of event times

S1=1tUny, ..., Snw = t U

Step 5. Define the states of the Poisson process as N(0) = 0, N(S;)

Step 6. Plot the states against time.

The sample code and plot follow.

#specifying parameters
t<- 10
lambda<- 2

#specifying seed
set.seed(32114)

#generating N(t)
njumps<- rpois(1,lambda*t)

#defining states
N<- O:njumps

#generating N(t) standard uniforms
u<- c()

ul1l<- 0

for(i in 2:(njumps+1))
ulil<- runif (1)

#computing event times
time<- txsort(u)

#plotting trajectory

plot(time, N, type="n", xlab="Time", ylab="State", panel.first

= grid())

segments (time[-length(time)], N[-length(time)], time[-1]-0.07,

N[-length(time)], 1lwd=2, col="blue")

points(time, N, pch=20, col="blue")
points(time[-1], N[-length(time)], pch=1, col="blue")
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3.3 Applications of Poisson Process

APPLICATION 3.1. In seismology, occurrence of earthquakes is often mod-
eled according to a Poisson process. We obtain the data from the Southern
California Earthquake Data Center’s website https://service.scede. caltech. edu,/
eq-catalogs/date_mag_loc.php. The data are on earthquakes in Southern Cal-
ifornia with a minimum magnitude of 3.0 that occurred between 2012 and
2018. We compute the lengths of the interarrival times and remove those
earthquakes that were registered within three hours of their predecessors
(possibly aftershocks). Finally, we conducted a chi-squared goodness-of-fit
test to see if these times follow an exponential distribution. The R code and
output follow.
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eq.data<- read.csv(file="./earthquakedata2012-2018.csv",
header=TRUE, sep=",")

#creating date-time variable
datetime<- as.POSIXct(paste(as.Date(eq.data$DATE), eq.data$TIME))

#computing lag
datetime.lag<- c(0,head(datetime, -1))

#computing interarrival times (in hours)
int.time<- (as.numeric(datetime)-as.numeric(datetime.lag))/3600

#removing first value
int.time<- int.time[-1]

#removing immediate aftershocks (within 3 hours)
int<- int.time[int.time>3]

#plotting histogram
hist(int, main="", col="dark magenta", xlab="Interarrival Time")
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#binning interarrival times

binned.int<- as.factor(ifelse(int<40,"1",

ifelse(int>=40 & int<80,"2",ifelse(int>=80 & int<120,3",
ifelse(int>=120 & int<160,"4",ifelse(int>=160 & int<200,"5",
ifelse(int>=200 & int<240,"6","7")))))))

#computing observed frequencies
obs<- table(binned.int)

#estimating mean for exponential distribution
mean.est<- mean(int)

#computing expected frequencies

exp<- c(1:7)

exp[1]<- length(int)*(l-exp(-40/mean.est))

exp[2]1<- length(int)* (exp(-40/mean.est)-exp(-80/mean.est))
exp[3]<- length(int)*(exp(-80/mean.est)-exp(-120/mean.est))
exp[4]1<- length(int)*(exp(-120/mean.est)-exp(-160/mean.est))
exp[6]<- length(int)*(exp(-160/mean.est)-exp(-200/mean.est))
exp[6]<- length(int)*(exp(-200/mean.est)-exp(-240/mean.est))
exp[7]1<- length(int)*exp(-240/mean.est)

obs

1 2 3 4 565 6 7
342 178 117 49 39 24 42

round (exp,1)

319.8 190.5 113.5 67.6 40.3 24.0 35.4

#computing chi-squared statistic
print(chi.sq<- sum((obs-exp)'2/exp))

8.883823

#computing p-value
print (p.value<- 1-pchisq(chi.sq, df=5))

0.1137888

The number of degrees of freedom in this test is calculated as the number of
bins minus 1 and minus the number of parameters that have to be estimated
(in this case one mean), so we get that df = 7—1—1 = 5. The p-value
is larger than 0.05, indicating that the earthquakes in the given time frame
occurred according to a Poisson process. O
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APPLICATION 3.2. In sports analytics, a Poisson process is used to model
the process of goal scoring in a game. Consider a team game where players
score only one point at a time, for instance, ice hockey. Suppose the points
scored by team A follow a Poisson process {N4(t), t > 0} with rate A4, and
points scored by team B are governed by a Poisson process {Ng(t), t > 0}
with parameter A\g. Assuming the two processes are independent, we can
derive some interesting results.

(a) The sum of the two independent Poisson processes N(t) = Na(t)+ Np(t)
is the superposition Poisson process with rate A4+ Ag. It represents the pro-
cess of scoring by either team A or B. If on average, fans wait for time 1/\4
for team A to score, respectively, 1/\p for team B to score, then the officials
wait, on average, for a shorter period of time 1/(A4 4+ Ap) for either team to
score.

To see how it works with numbers, suppose team A scores, on average, every
10 minutes, and team B scores every 12 minutes, on average. Then the ex-
pected waiting time until any team scores is 1/(1/10+1/12) = 120/22 = 5.45
minutes.

(b) We can find the probability that one team scores ahead of the other team.
Denote by T4 and T’z the respective interarrival times. We know that T4 and
Ty are independent and exponentially distributed with means E(74) = 1/A4
and E(Tg) = 1/Ag. We write

P(team A scores before team B) = P(Ty < Tg)

= [ P(Ip>t)fa(t)dt = e Mt = ————.
| B o pad= [T e .
Now switching A4 and \g, we get
AB
P(team B scores before team A) = P(Tp < Ty) = ———.
A+ Ap
With our numbers, P(team A scores before B) = ——1% _ — 12/92 = 0.545,

1/10+1/12
and P(team B scores before A) =1 — 0.545 = 0.455.

(c) We can find the probability of a tie at the end of the game, and also the
probability that team A (team B) wins.

Let T denote the length of the game. Using independence of the two pro-
cesses, {Na(t), t > 0} and {Ng(t), t > 0}, and expressions for the probability
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mass functions, we write

P(game ties) = Y~ P(NA(T) =n, Np(T) =n) = >  P(Na(T) = n) P(N5(T) = n)

n=0 k=1
0o 00 oo 00 n+k n
=323 FONAD) = ntHRD) = m) = 33 D eonar Qe oaar

and, switching A4 and \g, we get

AT = (Mg T)*
P(team B wins) = e~(Aa+2s)T E [(— : E ]
|
n=0 w k=1 ( ’
The duration of the playing time in an ice hockey game is 7' = 60 minutes.
Therefore, we obtain

>, ((1/10)(1/12)(60)2)" > 30m
P(game tieS) — 6—(1/10+1/12)(60) E (( / )(( /')2>( ) ) — 6_11 E ( ')2 = 0.1166.
n: n!
n=0

We calculated the sum numerically in R. The sum converges after 15 terms.

sum<- 0
for(n in 0:15)
sum<- sum+30”n/(factorial(n))”2

sum*exp(-11)
0.1165575

Further,

o0

P(team A wins) = ¢~ !! i [3%1 > (ni—kk)'] — 0.5590.
=1

n—=

R code given below computes this double sum numerically.
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sum.n<- 0
for (n in 0:15) {
sum.k<-0
for (k in 1:15)
sum.k<- sum.k+6"k/factorial (n+k)
sum.n<- sum.n + 30"n/factorial(n)*sum.k

}

sum.n*exp(-11)

0.5589743
Finally,
P(team B wins) = e ! i [ﬁ . i 5—]9} = (.3244
I R T COR B | R

as the R code below computes.

sum.n<- 0O
for (n in 0:15) {
sum.k<-0
for (k in 1:15)
sum.k<- sum.k+5"k/factorial (n+k)
sum.n<- sum.n + 30"n/factorial(n)*sum.k

}
sum.n*exp(-11)
0.3244495

Note that the three probabilities add up to 1, as they should be. O

APPLICATION 3.3. One famous application of a Poisson process is that of
a pedestrian versus traffic flow. A pedestrian needs to get to the other side
of a road. Assume that cars pass according to a Poisson process with rate A.

(a) If it takes the pedestrian time 7 to cross the road, how long, on average,
will it take the person to get to the other side?

Note that the person has to wait for a gap in traffic of length at least 7

before he/she can cross. Denote by T" the total time (waiting plus crossing).
Suppose the person just approached the road. The Poisson process renews
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itself at this moment, and thus, the person has to wait an exponential time
with a mean 1/\ for the next car. Call this time 7;. If T3 > 7, then the
person can safely cross the road and T" = 7. If, however, T} < 7, the person
has to wait for 717 for the first car to pass, and then the process renews itself
and the pedestrian would have to wait for an additional time 7 that has the
same distribution at 7". Thus, 7" can be written as

. T, ilezT,
T+ T, T <7,

where T} is an exponentially distributed random variable with mean 1/\.
Consequently,

E(T)=7P(Ty > 1) + /T txeMdt + E(T)P(T) < 7).

This can be rewritten as

E(T)P(T) > 7) = 7 P(T} > 7) + / theMdt
0

T 1
=71 —T1e 4 / e Mdt = = (1 — e_)‘T).
0 A

From here,

1—e? 1
E(T) = S—=— =57 - 1)
Suppose, on average, a car passes every 20 seconds (that is, A = 1/20 = 0.05
cars per second), and the pedestrian needs 7 = 30 seconds to cross the road.
Thus, on average, it takes the person E(T) = o (e*06% — 1) = 69.63

0.05

seconds to cross the road.

(b) How many cars, on average, will pass by before the pedestrian can cross?

Let N be the number of cars that pass by before the person can cross. Then

N > n, if and only if the first n interarrival times are all less than 7. Hence,

P(N >n)= (1 — e*7)". We can compute the probability of N = n as
P(N=n)=P(N >n)—P(N>n+1)= (1 — e?7)" = (1 — 7)™,

Let a =1 — e 7. The expected value of N can then be computed as

E(N)=) nP(N=n)=> n(a"—a""")=a-d*+(2)(a’ - a’)
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‘ 1
+(3)(CL3—CL4)—|—"':CL+CL2—|—CL3+"':1——1:6)\T — 1.
—a
Note that E(7") = (1/A\)E(NV). It is intuitively so, because the person has
to wait until an average of E(IN) cars pass, and the average waiting time
between these cars is 1/\ seconds. In our numeric example, A = 0.05 and

7 =30. So, E(N) = 00960 _ 1 =348 cars. O

Exercises for Chapter 3

EXERCISE 3.1. Let {N(t),t > 0} be a Poisson process with rate A\. Find
the joint probability distribution P(N(s) = m, N(t) = n), for any t > s > 0,
and n > m > 0.

EXERCISE 3.2. Show that for a Poisson process {N(t), t > 0} with rate A,
the covariance between N (s) and N(t) is equal to A min(s, t), for any s,¢ > 0.

EXERCISE 3.3. An insurance agent handles policyholders’ claims. Claims
are submitted on weekdays according to a Poisson process with a rate A =5
per day.

(a) If there were two claims submitted on Monday and three on Tuesday,
what is the probability that by the end of the day on Friday there will be a
total of 16 claims submitted that week?

(b) In the new calendar year, the agent opens for business on Monday, Jan-
uary 2. On what day does he expect to see the 100th claim?

EXERCISE 3.4. A salesperson contacts customers over the phone and offers
his product. Assume that the times that pass between consecutive phone
calls (that includes the call and the break in-between) are independent and
exponentially distributed with mean of 5 minutes. He estimates that 15% of
all the customers he calls actually buy his product.

(a) Calculate the expected number of successful sales in the next 2 hours.
(b) Compute the probability that within 1 hour he places 15 calls, 5 of which
result in a sale.

(c) Find the conditional probability that he makes 10 sales in 4 hours, given
that he has made 3 sales the first hour.

EXERCISE 3.5. People contract a disease according to a Poisson process
with an unknown rate \. Suppose the incubation period until symptoms of
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the disease show is a random variable with a known cumulative distribution
function F. Let Ny(t) denote the number of individuals who have shown
symptoms by time ¢, and let Ny(¢) be the number of individuals who have
not yet shown any symptoms by time t.

(a) Argue that {Ny(t), t > 0} and {Ny(t), t > 0} are independent Poisson
processes with means

E(N(£)) = A /O F(u)du and E(Ny(t)) = A /0 (1— F(u)) du.

(b) For a known time ¢ and observed number of individuals showing symp-
toms E(Ny(t)), prove that the estimated number of individuals infected but
not yet showing symptoms is

B(Na(t)) = E(M(t)f)tf F(<1>_ Pl

(¢) Suppose the incubation period until symptoms show is an exponentially
distributed random variable with a mean of 2 days. If 1,000 individuals show
symptoms of a disease by day 10, estimate the number of individuals who
are also infected but haven’t shown the symptoms yet.

EXERCISE 3.6. Areas of high road surface distress (potholes or cracks) that
need an immediate attention of road maintenance operators are distributed
according to a Poisson law with a rate of 2.8 per mile.

(a) What is the average number of distressed road surface areas on a 10-mile
stretch of a freeway?

(b) Simulate locations of 30 distressed surface areas. What is the total length
of the road in your simulation?

(c) Suppose there are 30 distressed surface areas on a 10-mile stretch of a
freeway. Simulate locations of those areas.

EXERCISE 3.7. The National Geophysical Data Center’s website
hitps:/ /www.ngdc.noaa.gov/hazel /view/hazards /volcano /event-search/

provides access to the Global Significant Volcanic Eruptions Database. Verify
that those volcanic eruptions in the past 100 years can be modeled as a
Poisson process.

EXERCISE 3.8. Two teams are playing basketball. Team A opportunities
to score appear as a Poisson process with a rate of 0.5 per minute. Suppose
that 25% bring one point, 40% bring two points, 20% bring the team three
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points, and the others result in missed shots. For team B, the opportunities
come as a Poisson process with a rate of 0.4 per minute, of which 25% result
in a 1-pointer, 50% result in a 2-pointer, 15% result in a 3-pointer, and the
rest are missed.

(a) How long, on average, does the stadium have to wait until a team scores?
(b) How long, on average, will the fans wait until team A scores? Team B
scores?

(c) What is the probability that team A scores before team B? Team B
scores before team A?

(d) What is the probability that at the end of the 48-minute game, teams
A and B will score the same number of 1-pointers, the same number of 2-
pointers, and the same number of 3-pointers?

EXERCISE 3.9. In a popular nursery rhyme,

Itsy bitsy spider went up the water spout.

Down came the rain and washed the spider out.
Out came the sun and dried up all the rain,

And the itsy bitsy spider went up the spout again.

Assume that the length of the downspout is 30 feet, and the spider climbs
with a constant speed of 1 foot per minute. The rain comes down as a Pois-
son process with a rate of 2 per hour.

(a) Find the expected time it takes the spider to reach the top.

(b) Find the expected number of times the spider will be washed down be-
fore it reaches the top.
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Chapter 4

Nonhomogeneous Poisson Process

4.1 Definition of Nonhomogeneous Poisson Pro-
cess

The Poisson process considered in the previous chapter has a constant rate
A. In some situations, it is difficult to assume that the rate doesn’t change
over a large period of time. In this case, we can make A\ depend on time
t and define a Poisson process with rate A(t). The rate is now called the
intensity rate or intensity function. The process still starts at zero at time
zero, and its increments are still independent, but now the increments are
non-stationary.

A counting process {N(t),t > 0} is called a nonhomogeneous (or non-
stationary, or time-dependent) Poisson process® if: (i) N(0) = 0, (ii) in-
crements are independent, and (iii) for all s,¢ > 0,

P(N(t+s) — N(s) = n) = (L if'u) ) e‘(fs”s ““)d“>, n>0.

t
Define the function A(t) = / A(u) du. Tt is called the integrated intensity
0

rate function or the mean value function. The probability mass function of
a nonhomogeneous Poisson process can be written in terms of A(t) as

P(N(t +5)— N(s) = n) _ [A<t + 531'_ A(S)]n e~ [A(t—&-s)—A(S)L n > 0.

!Introduced by a prominent statistician Sir David Roxbee Cox in his 1955 paper “Some
Statistical Methods Connected with Series of Events.” Journal of the Royal Statistical
Society. Series B (Methodological), 17(2): 129 — 164.
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Note that for s,t > 0, E(N(t 4+ s) — N(s)) = A(t + s) — A(s).

REMARK 4.1. Here we formulate an alternative definition of a nonhomoge-
neous Poisson process. It can be shown that the two definitions are equiva-
lent. We will need this definition to justify the method we use in Simulation
4.3. A counting process {N(t), t > 0} is termed a nonhomogeneous Poisson
process with the intensity rate A(t), ¢ > 0, if: (i) N(0) = 0, (ii) increments
are independent and stationary, (iii) for any fixed ¢ > 0 and any small posi-
tive increment At, P(no events happen in [¢,¢ + At]) = 1 — A(At) + o(At),
and (iv) P(one event happens in [t,¢ + At]) = A(At) 4 o(At), where o(At)
(pronounced “little oh of delta t”) denotes any function of At that goes to

zero faster than At. That is, o(At) = { f(At) : limaso f(AAtt) =0}. O

ExaMPLE 4.1. Throughout the day, arrivals of phone calls to a doctor’s of-
fice can be modeled as a nonhomogeneous Poisson process with the intensity
rate

10, if 9AM < ¢ < 10:30AM,
5, if 10:30AM < ¢ < 12PM,
8, if 12PM <t < 1PM,
4, if IPM <t < 5PM.

A(t) =

(a) To calculate the integrated rate function A(t), we need to define the
time variable as ranging between 0 and 8 hours of the workday. We can
rewrite the intensity rate as

10, if0<t<1.5,
5 if1h<t<3
NOEE Sa =
8, if3<t<A4,
4, f4<t<8.

The integrated rate function is then computed as

3 10du = 10¢, if0<t<15,
154 [{. 5du=15+5(t—1.5), if1.5<t<3,
22.5+ [, 8du=22.5+8(t—3), if3<t<4,
30.5+ [, 4du=30.5+4(t—4), ifd4<t<8.

t

A(t) :/ Au) du =
0

(b) Below we plot both functions. The R codes are provided.
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#plotting intensity rate

t=c(0,1.5,3,4,8)

lambda=c (10, 10,5,8,4)

plot(t, lambda, type="n", col="blue ", x1lim=c(0,8),
ylim=c(0,12), xlab="Time", ylab="Intensity rate")

segments (t[-5]+0.07, lambdal-1], t[-1], lambdal[-1], lwd=2,
col="blue")

points(t, lambda, cex=1.2, pch=19, col="blue")
points(t[-5], lambda[-1], cex=1.2, pch=1, col="blue")

12

10

Intensity rate

Time

#plotting integrated rate function

t<- ¢(0, 1.5, 3, 4, 8)

Lambda<- c(0, 15, 22.5, 30.5, 46.5)

plot(t,Lambda, type="1", 1lwd=2, col="blue", x1im=c(0,8),
ylim=c(0,50), xlab="time", ylab="integrated rate function")
points(t, Lambda, cex=1.2, pch=16, col="blue")
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(c) Suppose we want to compute the probability that there will be 15 phone
calls between 11AM and 2PM. The time 11AM corresponds to 2 hours and
2PM corresponds to 5 hours after the office opens. We write

[A(5) — A2)] 7
15!

15
(30.5+4(5 —4) — (15 + 5(2 — 1.5))) - (30.5+4(5-4)—(15+5(2-1.5)))
15!
1 15
_ a7 e 17 =0.011468.
15!
(d) Finally, we want to compute the average number of phone calls per day.

We compute

P(N(5) — N(2) =15) = e [26)-20)]

E(N(8) — N(0)) = A(8) — A(0) = 30.5+4(8 —4) — 0 =465 calls. O

4.2 Simulations in R
Recall that in Section 3.2 we discussed two simulation methods for trajecto-

ries of a homogeneous Poisson process. In the present section, we generalize
these methods to the case of a nonhomogeneous Poisson process.
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SIMULATION 4.1. (EXPONENTIAL INTERARRIVALS). In this method, we
simulate interarrival times. In the nonhomogeneous case, the distributions
of interarrival times are not independent. They are obtained as follows.

The first interarrival time has the cumulative distribution function Fr, (t) =
1-— e_A(t), t > 0. For a fixed time of the first event occurrence S| =T = s1,
the cumulative distribution function of 75 is

Frys, (ts1) =1 — 6_(A(t+sl)_A(sl)), t>0.

In general, for a given waiting time for the nth event S,, = s, the conditional
distribution of the interarrival time 7}, is

Fr (s, (t]s,) =1 — e )

As an example, here we give the code that simulates a trajectory of a
nonhomogeneous Poisson process with the integrated rate function A(t) =
t +0.05t2, t > 0. In the code we first generate standard uniform random
variables U;,7 = 1,...,n, and then compute event times by inverting the
cumulative distribution function. We write 1 — e~ (5110.055%) — Uy, which
solution is S; = /100 — 20 In(1 — U;) — 10. It can be simplified by replacing
1 — Uy by Uj since both are standard uniform random variables. Thus we
have S; = /100 — 20 In(U;) — 10.

. _ 2_ 2 .
The second event time S solves 1 — e [S2+0'05 52 —(51+005 Sl)] = Us, or equiv-

alently, (So+10)2— (S;+10)? = —201n(1 —Uy). The solution is (with 1 — Uy
replaced by Us) Sy = /(51 + 10)2 — 20 In(Us) — 10. The general recurrence
formula is Sy,+1 = 1/(Sn + 10)2 — 20 In(U,,+1) — 10. We continue generating
the event times according to this formula until we reach a pre-specified num-
ber of events of the process. The code and graph are given below.
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#specifying parameters
njumps<- 20

#defining states
N<- O:njumps

#defining times as vectors
time<- c()

#specifying seed
set.seed(76855)

#generating standard uniforms
u<- cQ)

for(i in 1:njumps)

ulil<- runif(1)

#computing event times
time[1]<- 0
time[2]<- sqrt(100-20*log(ul1]))-10

for(i in 3:(njumps+1)) {
time[i]<- sqrt((time[i-1]+10)"2-20*1log(uli-1]))-10
+

#plotting trajectory
plot(time, N, type="n", xlab="Time", ylab="State",
panel.first=grid())

segments (time[-length(time)], N[-length(time)], time[-1]-0.07,
N[-length(time)], 1lwd=2, col="blue")

points(time, N, pch=20, col="blue")
points(time[-1], N[-length(time)], pch=1, col="blue")
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SIMULATION 4.2. (UNIFORM ORDER STATISTICS). Let {N(t), t > 0} de-
note a nonhomogeneous Poisson process with the intensity rate A(¢), ¢t > 0,
and integrated rate function A(t), ¢ > 0. Given that n events occurred by
time ¢, the conditional joint density of n waiting times S, Sy, ...,S,, is de-
rived as

fS1,SQ,...,Sn (817 52,...,5n | N(t> - n)

_ fn(s)fr(s2—s1) ----- 1, (sn = 80 1)P(Tns1 > T — sn)
P(N(t) =n)
)\(Sl) eiA(Sl) )\(52 — Sl) ef(A(SZ)fA(Sl)) ..... )\(Sn — Sn—l) ef(A(Sn)fA(Snfl)) ef(A(t)fA(sn))

B (A(t!))" e—A(t)

n

A(s1) A(sg — s1)+ -+ (s, — Sn—l).

= nl

This means that the event times are order statistics from the distribution

A
with density fs(s) = F;, 0 < s <t, and the cumulative distribution func-
A(s)

tion Fg(s) = m, 0<s<t.
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In our example with A(t) = ¢ + 0.05¢% ¢ > 0, to generate a trajectory, we
proceed as follows.

Step 1. Fix ¢t and generate N(t) ~ Poi(A(t)). For instance, for ¢t = 1
A(10) = 10 + (0.05)(10%) = 15, and so, we would generate N (t) ~ Poi(15)
Step 2. Generate N(t) standard uniform random variables Uy, ..., Un.
Step 3. Order Uj,...,Un() in increasing order, obtaining the ordered set
U, - - Uvay-

0,

Step 4. Compute waiting times Sy, ..., Sy() that are positive solutions of
A(S; .
the equations A((t)> = Uy, or S; +0.0557 = 15U;. That is, S; =

10,/1 —|—3U(Z-) — 10.
Step 5. Define the states of the Poisson process as N(0) = 0,N(S;) =
Step 6. Plot the states against time.

The code and plot follow.
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#specifying parameters
t<- 10
Lambda<- t+0.05%t"2

#specifying seed
set.seed(997755)

#generating N(t)
njumps<- rpois(1,Lambda)

#defining states
N<- O0:njumps

#generating N(t) standard uniforms
u<- c()
ul1]<- 0

for(i in 2:(njumps+1))
ulil<- runif(1)

#computing event times
time<- 10*sqrt(1+3*sort(u))-10

#plotting trajectory
plot(time, N, type="n", xlab="Time", ylab="State",
panel.first=grid())

segments (time[-length(time)], N[-length(time)], time[-1]-0.07,
N[-length(time)], lwd=2, col="blue")

points(time, N, pch=20, col="blue")
points(time[-1], N[-length(time)], pch=1, col="blue")
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Below we introduce a third method of simulating a trajectory of a nonhomo-
geneous Poisson process. In the case of a homogeneous Poisson process, this
method becomes trivial and hence not useful.

SIMULATION 4.3. (THINNING). Let {N(¢), ¢ > 0} denote a nonhomoge-
neous Poisson process with the intensity rate A(t), ¢ > 0, and suppose its in-
tegrated rate function doesn’t have an explicit form or is not easily invertible,
so the previous two simulation methods won’t work for this process. Here
we introduce another method, called the thinning method. In this method,
first we generate a nonhomogeneous process { N*(t), ¢ > 0} with intensity
rate A*(t), ¢t > 0, that uniformly dominates A(¢). That is, A(t) < A*(¢) for all
t > 0. The process is selected in such a way that its integrated rate function
is invertible, and so N*(¢) can be generated by either of the previous two
methods. Sometimes A*(¢) may be chosen to be a constant, resulting in a
homogeneous Poisson process, which is even simpler to generate (Section 3.2).
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Further, once the event times sj, ..., s} for the process {N*(t), t > 0} are
generated, they are “thinned” according to the following acceptance-rejection
rule: if a standard uniform random variable is less than or equal to the ratio
A(sT) /N (sF), the time s} is accepted, otherwise, rejected.

The accepted times are the event times for the process {N(t), ¢t > 0}. To
show this, we use the alternative definition of a nonhomogeneous Poisson pro-
cess given in Remark 4.1 and argue as follows. The process {N*(t), t > 0}
starts at zero and has independent and stationary increments. These prop-
erties are inherited by {N(¢), ¢ > 0}. Further, in an infinitesimally small
interval of length At, there are zero occurrences of the process {N(t), t > 0}
if there are no occurrences of the process { N*(t), t > 0} or there is one occur-
rence but it is rejected. There is one occurrence of the process {N(t), t > 0}
if there is one occurrence of the process {N*(t), t > 0} and it is accepted.
Denoting by T™ an interarrival time, and by U a standard uniform random
variable, we write

P(N(At) =0) = P(N*(At) = 0) + P(N*(At) = 1) P(U ” AA*<(AA?)>

=P(T* > At) + P(T" < At) P<U ~ ;((AA?))

Y Y A(At)
_ =M (A oy (1
=e + (1 e )(1 A*(At))

=1 — X(At) + o(At) + (X (AL) + o(At)) (1 it >

=1— AAt) + o(At), for small At,

and

P(N(AF) = 1) = B(N*(A1) = 1) B(U < jj@%)

= (1- ) ;((AA?)

AAt
—P(1" < At P(U < A*((AEQ
A(At)
A*(At)
The above derivation shows that N(¢) is a nonhomogeneous Poisson process
with the intensity rate function A(¢).

= (X*(At) + o(At))

= MAt) + o(At), for small At.

Below we present the code that simulates a trajectory of a nonhomogeneous
Poisson process with the intensity rate A\(t) = 20420sin(7t), ¢ > 0. For this

105



process, the integrated intensity rate function A(t) = 20t—27r—0 cos(wt)—i-%? t >
0, is not readily invertible. However, A(t) < 40, and so we simulate event
times for a Poisson process with rate A*(¢f) = 40, and then accept an event
time s if U < A(s)/A*(s) = 20(1 + sin(7s))/40 = 0.5(1 + sin(7s)), and reject
otherwise.
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#specifying parameters

lambda<- function(t) { 20+20*sin(pix*t) }
lambda.star<- function(t) 40
Lambda.star<- function(t) 40x*t

#specifying seed
set.seed(2866514)

#generating N(10)
njumps<- rpois(1l, Lambda.star(10))

#generating N(10) standard uniforms
u<- c()
ul1]<- 0

for(i in 2:(njumps+1))
ulil<- runif (1)

#computing event times
time.star<- 10*sort(u)

#thinning event times
accepted<- c()

time<- c()
accepted[1]<- 1
time[1]<- 0

for (i in 2:(njumps+1)) {

if (runif(1)<= lambda(time.star[i])/lambda.star(time.star[i]))
accepted[i]=1 else accepted[i]=0

}

time<- time.star[-which(accepted==0)]
N<- 0:(length(time)-1)

#plotting trajectory
plot(time, N, type="n", xlab="Time", ylab="State", panel.first
= grid())

segments (time[-length(time)],N[-length(time)], time[-1]-0.07,
N[-length(time)], lwd=2, col="blue")

points(time, N, ylim=c(0,120), pch=20, col="blue")
points(time[-l],N[-length(timié%,pch=1, col="blue")
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4.3 Applications of Nonhomogeneous Poisson
Process

APPLICATION 4.1. In Application 3.1, we modeled the occurrence of earth-
quakes in Southern California between 2012 and 2018 via a Poisson model
and concluded that it fits the data well. Now we will try to fit a nonhomo-
geneous Poisson process to a larger data set covering the time span between
2010 and 2020. In this larger time interval, the event rate doesn’t stay con-
stant.

First, we estimate the intensity rate function. The code below calculates A
as the ratio of the number of earthquakes per month over the number of
days in that month, producing the estimated daily rate for each of the 120
months. One outlying value is removed (for July of 2019), leaving us with 119
values. As the time variable, we compute the accrued number of days from
09/02/2010 to the median day for each of the 119 months. Next, we plot
the estimated A against time and fit a fourth-degree polynomial regression.
We then define the intensity rate function A(t) as the fourth-degree polyno-
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mial with the estimated coefficients. After that, we subdivide the timeline
between 09/02/2010 and 08/28/2020 into 9 bins of size 400 days and calcu-
late the observed number of earthquakes in each bin. Then we compute the
expected number of occurrences in each bin as the integral of A(¢) between
the lower and upper values of time in this bin. Finally, we compute the chi-

squared statistic for the goodness-of-fit test and output the p-value.

The code and all the necessary outputs follow.

eq.data<- read.csv(file="./earthquakedata2010-2020.csv",
header=TRUE, sep=",")

#creating date-time variable
eq.data$datetime<- as.POSIXct(paste(as.Date(eq.data$DATE)
eq.data$TIME))

#computing lag

eq.data$datetime.lag<- c(0,head(eq.data$datetime, -1))
#removing first row

eq.data<-eq.datal-1,]

#computing interarrival times (in hours)
eq.data$elapsed.time<- (as.numeric(eq.data$datetime)

-as.numeric(eq.data$datetime.lag)) /3600

#removing immediate aftershocks (within 1 hour)
eq.data<- eq.dataleq.data$elapsed.time>1,]

#creating year-month variable

eq.data$year.month<- format(as.Date(eq.data$DATE), "%Y-%m"

#creating unique year-month and number of earthquakes per month

freq.month<- data.frame(table(eq.data$year.month))
year .month.unique<-freq.month[,1]

neq.month<- freq.month[,2]

neq.month

(11 37 43 29 35 29 19 19 26 18 23 24 11 12

[17] 10 15 10 16 19 12 20 27 14 12 8 10 9
[33] 20 14 7 14 14 12 7 12 8 8 17 9 7
[49] 10 14 5 9 565 10 7 7 14 9 4 2 2
[656] 10 13 7 8 4 13 6 10 17 11 3 10 6
[81] 9 10 10 8 8 8 6 9 9 5 6 11 9
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(97] 11 10 9 7 14 11 3 9 5 18 126 35 20 11 25 21
[113] 15 12 12 16 19 30 10 15

#removing outlier (July, 2019, 107th entry)
year .month.unique<- year.month.unique[-107]
neq.month<- neq.month[-107]

#computing number of days per month

library(lubridate)

dayl.month <- ymd(paste(year.month.unique,"01", sep="-") )
library(Hmisc)

ndays.month<- monthDays(as.Date(dayl.month, "%4Y-%m-%d"))

#estimating intensity rate of earthquakes per day
lambda<- neq.month/ndays.month

#computing cumulative number of days until median day of each
month

median.time<- c()

ndays.total<- c()

median.time[1]<- ndays.month[1]/2

ndays.total[1]<- ndays.month[1]

for (i in 2:length(ndays.month)) {

median.time[i]<- ndays.total[i-1] + ndays.month[i]/2
ndays.total[i]<- ndays.total[i-1] + ndays.month[i]

}

#plotting lambda against median time
plot(median.time, lambda)
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median.time

#regressing lambda on time

median.time.re<- median.time/1000

median.time.sq<- median.time.re"2

median.time.cu<- median.time.re"3

median.time.qd<- median.time.re"4

glm(lambda ~ median.time.re + median.time.sq + median.time.cu +
median.time.qd)

Coefficients:
(Intercept) median.time.re median.time.sq median.time.cu
1.11674 -1.75263 1.41060 -0.49950

median.time.qd
0.06504

#adding fitted line
lambda.fn<- function(t) { 1.11674-1.75263*(t/1000)+1.41060*(t/1000)"2
-0.49950% (t/1000)"3+0.06504* (t/1000)"4 }

lines(median.time, lambda.fn(median.time), 1lwd=2, col="blue")
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#conducting goodness-of-fit test

#binning times

time.binned<- as.factor(ifelse(as.Date(eq.data$DATE)<"2011/10/07","1",
ifelse(as.Date(eq.data$DATE)>="2011/10/07"& as.Date(eq.data$DATE)
<"2012/11/10","2", ifelse(as.Date(eq.data$DATE)>="2012/11/10"

& as.Date(eq.data$DATE)<"2013/12/15","3", ifelse(as.Date(eq.data$DATE)
>="2013/12/15"& as.Date(eq.data$DATE)<"2015/01/19","4",
ifelse(as.Date(eq.data$DATE)>="2015/01/19"& as.Date(eq.data$DATE)
<"2016/02/23","5", ifelse(as.Date(eq.data$DATE)>="2016/02/23"&
as.Date(eq.data$DATE)<"2017/03/29","6", ifelse(as.Date(eq.data$DATE)
>="2017/03/29"& as.Date(eq.data$DATE)<"2018/05/03","7",
ifelse(as.Date(eq.data$DATE)>="2018/05/03"& as.Date(eq.data$DATE)
<"2019/06/07", "8", "9")))))))))

#computing observed frequencies
obs<- table((time.binned))
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#computing expected frequencies

exp<- ¢()

exp[1]<- integrate(lambda.fn, 0, 400)$value
exp[2]<- integrate(lambda.fn, 400, 800)$value
exp[3]<- integrate(lambda.fn, 800, 1200)$value
exp[4]<- integrate(lambda.fn, 1200, 1600)$value
exp[5]<- integrate(lambda.fn, 1600, 2000)$value
exp[6]<- integrate(lambda.fn, 2000, 2400)$value
exp[7]<- integrate(lambda.fn, 2400, 2800)$value
exp[8]<- integrate(lambda.fn, 2800, 3200)$value
exp[9]<- sum(obs)-sum(exp)

obs

1 2 3 4 65 6 7 8 9
326 198 139 141 108 112 113 121 376

round (exp, 1)

333.5 192.9 137.7 123.2 120.7 117.3 116.2 136.7 35b.7

#computing chi-squared statistic
print (chi.sq<- sum((obs-exp)”2/exp))

7.494979

#computing p-value
print (p.value<- 1-pchisq(chi.sq, df=3))

0.05768759

Note that we estimated five parameters in the polynomial regression, there-
fore, we needed to pick at least seven bins to have a non-degenerate number
of degrees of freedom for the test. The total time span in the data set is
3,647 days (without the outlier), so it was reasonable to divide the range
into 9 bins of size 400 days each (the last bin has 447 days). Nine bins result
in 3 degrees of freedom, (df =9—1—-5=3).

Looking at the chi-squared statistic and the corresponding p-value, we can
conclude at the 5% level of significance that the mean values in this process

are well modeled by the fitted integrated intensity rate function.

It remains to show that the interarrival times have an exponential distribu-
tion. It is not possible to do it rigorously because of the nonhomogeneous
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nature of the process, but at least we can construct histograms for the inter-
arrival times in each of the nine bins to see that they have the shape of an
exponential density. As an illustration, below we present the histograms for
the first and the last bins.

int1<- eq.data$elapsed.time[as.Date(eq.data$DATE)<"2011/10/07"]
hist(intl, main="", xlab="", ylab="", col="white")
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int9<- eq.data$elapsed.time[as.Date(eq.data$DATE)>="2019/06/07"]
hist(int9, main="", xlab="", ylab="", col="white")

150 250
| |

50
!

o L

[ T T T T T 1
0 50 100 150 200 250 300

APPLICATION 4.2. Reliability engineers are concerned with the ability of
manufactured systems or components to function without failure. Once
failed, the item is repaired (in a repairable system) or replaced (in a non-
repairable system). A stochastic model of the number of failures that has
been widely used in practice by reliability engineers is a nonhomogeneous
Poisson process with the power-law intensity rate (or repair rate) A(t) =
aBt?~!, a,B >0, t > 0. This function is very flexible because it models
increasing rates if § > 1, or decreasing rates if 0 < g < 1. If § = 2, the
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failure rate function degenerates into A(t) = 2a't, which corresponds to the
homogeneous Poisson process.

(a) Let us study this model. Denote by {N(t), ¢ > 0} the number of fail-
ures by time ¢. The integrated intensity function is A(t) = fot afuf~tdu =
at?, a,B > 0,t > 0. The probability mass function of N(¢) has the form

(a - 'a sﬂ)n o—alt?—s)
n!

An important question in reliability analysis is how to estimate o and 5 from
the data. We address this question here. Two methods are commonly used
to estimate the parameters. The first uses the linear regression approach,
whereas the second one produces the maximum likelihood estimator.

METHOD 1 (LINEAR REGRESSION). Since E(N (1)) = atP, we can state the
empirical analog N (t) = at®, or, equivalently, In(N(¢)) = Ina+f Int. Thus,

In(N(t)) can be regressed linearly on Int¢ to obtain the estimated intercept
In & and slope 5.

To look at a numeric example, assume that Sy, £ = 1,2,...,30, the times
to failure (in weeks) of certain auto parts during the pilot testing period, are
as given in the table below. The second variable is N(Si) = k, the total
number of failures up to and including time Sj.

time nfailures | time nfailures | time nfailures
2.36 1 10.16 11 19.70 21
2.96 2 10.87 12 20.99 22
4.71 3 11.32 13 21.56 23
5.23 4 13.36 14 22.57 24
6.16 5 14.52 15 22.79 25
7.15 6 16.19 16 24.02 26
7.33 7 16.84 17 25.8 27
8.20 8 17.19 18 26.49 28
8.45 9 18.18 19 27.13 29
9.31 10 18.72 20 28.05 30

Now we regress In(N(S;,)) = In(k) on In(S;) to obtain & = e85 = (.5039,
and 8 = 1.2570. The code and output are below.

115



reliability.data<- read.csv(file="./reliabilitydata.csv",
header=TRUE, sep=",")

x<- log(reliability.data$time)
y<- log(reliability.data$nfailures)

glm(y ~x)
Coefficients:
(Intercept) X
-0.6854 1.2570

plot(x,y, xlab="1n(time)", ylab="ln(nfailures)")
lines(x, -0.6854+1.2570%x)
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Using the known formulas for the estimators of the slope and intercept in
linear regression, we write the explicit expressions for § and a. Here N is
the total observed number of failures. In our example, N = 30. We have

Sy (k) m(s)] = [In(ND/N] [ S ()|
S [(so)” — (/) [0 ()]

3=

’
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and

& = exp {(1/N) [In(N) = 33 In(S))] }

k=1

We can verify in R that these expressions give us the same results as above.
Indeed,

print(betal.hat<- (sum(x*y)-log(factorial(N))*mean(x))/(sum(x"2)
-N* (mean(x)) "2))

1.256956

print(alphal.hat<- exp(log(factorial(N))/N-betal.hat*mean(x)))

0.5038849

Before we go to the second method of estimation, we need to define the dis-
tribution of the failure times S,k = 1,2,.... Given that the kth failure
occurred at time sg, the distribution of Si,; is Weibull with the scale pa-
rameter « and the shape parameter 8. The density is

1 —a(1PsP
fSk+1|Sk(t‘8k> :aﬁtﬁ te (t k), t > Sk,

and the cumulative distribution function is

Fsk+1|Sk(t|8k) =1- eia(

METHOD 2 (MAXIMUM LIKELIHOOD ESTIMATOR). Suppose we observed
N failures at times S7 = sq1,..., S5y = sy. We write the likelihood function as

L(Oé,ﬁ ‘ S1y - - '73N) = fSN|SN71(SN ‘ SNfl) fSN71|SN72<SN*1 ‘ SN*Q)' co 'fS2|S1(52 ’ 51) f51<31)

— a/B Szﬁvile_a (S?V_S?V—l) . Oéﬁ Sﬁ:1 o (S?V—I_S?V—Z) « e e a/B ngle—a (sg—sf) . @/8 Sfileiasll?

= () (J] )" " e

Next, we find the expression for the log-likelihood function. We have

N
In(L) =Nlha+Nng+(8-1) Z In(sg) — s,
k=1
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Differentiating the log-likelihood function with respect to o and S and set-
ting the expressions equal to 0, we obtain
dln(L) N 4

— 0
O a N ’

and

N
+ Z In(sg) — s In(sy) = 0.
k=1

oln(L) N
op 8]

From the first equation, ozsjﬁV = N, and thus, the second equation can be

rewritten as

N N
52 (s = asly In(sw) = N In(s).
k=1
From here,
~ N _ T N | . AU ;
B = Nln(sy) — Z]kvzl In(sy) - [( / ); Il(SN/Sk)] , and a = N/s%.

Going back to our numeric example, we write syntax in R, utilizing the vari-
able x that contains the logs of failure times.

print (beta2.hat<- N/ (N*x[N]-sum(x)))
1.236357

print (alpha2.hat<- N/exp(x[N]*beta2.hat))
0.4863609

(b) Another essential question in reliability analysis concerns the prediction
of the next failure time. Suppose we have observed N failure times and the
last one was at sy. We can estimate Sy, by its conditional mean value. We
write

E(SN+1 | SN = SN) = / Ozﬂ tﬁ e (tﬁisl‘if) dt.

SN

Now we use the substitution v = at?, from where oS t? dt = t du = a=/# u'/? du.
So, we obtain

E(SN+1 | Sy = SN) — o B o5k / u'/? e du.

B
asly
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The integral can be calculated in R as an upper incomplete gamma function
[ u*t e7* du with the parameter a = 1/8 + 1, and the lower limit of inte-
gration r = CMS]BV. The following code computes the prediction. Tt uses the
maximum likelihood estimators of o and £.

library(pracma)
alpha2.hat” (-1/beta2.hat)*exp(alpha2.hat*exp(x[N]) "beta2.hat)*
gammainc (alpha2.hat*exp(x[N])”beta2.hat, 1/beta2.hat+1) [2]

28.80161

Thus, given that the 30th failure was observed at 28.05 weeks, we predict
that the 31st failure will occur at 28.8 weeks. O

Exercises for Chapter 4

EXERCISE 4.1. While still under the manufacturer’s warranty, calculators
break down during the first three years with the rate of 3 per year. Between
three and ten years, the rate increases linearly from 3 per year to 17 per year.
(a) What stochastic model can be used to model the number of broken cal-
culators? Specify all parameters.

(b) Find the probability that 50 calculators break down between year 4 and
year 8.

(c) Find the average number of calculators that will break down between
year 2 and year 10.

EXERCISE 4.2. Occurrence of wildfires in a certain area during a 120-day
fire season can be modeled as a nonhomogeneous Poisson process with the
intensity function A(f) = —0.000025¢* + 0.002t*+0.12¢, where 0 < ¢ < 120.
(a) Plot the intensity function. Discuss its behavior. When is the peak of
the intensity rate?

(b) Plot the integrated intensity function. Find the average number of wild-
fires per season.

(c) Find the average number of wildfires during the middle 50% of the season.

EXERCISE 4.3. Workers’ injuries at an industrial manufacturing plant oc-
cur according to a nonhomogeneous Poisson process with the rate function
At) = A/VE t>0.

(a) Given that 30 injuries happened, on average, during the first year of
plant’s operation, find the value of A.
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(b) Find the distribution of the times elapsing between two injuries. Simu-
late a trajectory of 100 injuries. What is the time range of the trajectory?
(c) Assuming that the 100th injury occurred 12 years and 3 months after
the plant was opened, simulate a trajectory.

EXERCISE 4.4. Road traffic or airport noise data are often modeled over
time as a nonhomogeneous Poisson process. It is assumed that noise pollu-
tion above a certain threshold has an intensity rate that allows cyclic behavior
of observations. For instance, suppose an environmental noise pollution has
the intensity rate A(t) = 10 % (1 + cos(27t)), t > 0. Use the thinning method
to simulate a trajectory on the interval of length 10.

EXERCISE 4.5. In the process of radioactive decay, photons are emitted ac-
cording to a nonhomogeneous Poisson process with the intensity rate A(t) =
100e7%%, ¢t > 0. Use each of the three simulation methods to generate a
trajectory. Fix parameters as 20 events for the first method, and the length
of the time interval as 0.25 in the other two methods.

EXERCISE 4.6. The National Weather Service website contains the data on
fatal lightning strikes in the United States. The file https://www.weather.gov/
media/hazstat/80years.pdf gives the counts of yearly lightning fatalities be-
tween 1940 and 2019.

(a) Plot the counts against year. Argue that the intensity rate function de-
cays exponentially. Provide a possible explanation for this decay.

(b) Details of US lightning deaths (in particular, the dates) are provided
on the same website https://www.weather.gov/safety/lightning-victims. The
data are given for 2006-2019. Use the data to support the statement that this
natural phenomenon is not governed by a nonhomogeneous Poisson process.
Hint: Are the interarrival times exponentially distributed?

EXERCISE 4.7. The capacity of cargo container ships and port terminals
are traditionally measured in twenty-foot equivalent units (TEUs), the num-
ber of 20-foot-long containers. Suppose that containership arrival to a port
can be modeled by a nonhomogeneous Poisson process with the power-law
intensity function \(t) = aBt°~1, «a,8 >0, t > 0. The data for 27 arrivals
(in units of 10,000 TEUs) are provided in the table below.
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Arrivals Days | Arrivals Days | Arrivals Days

1 3.72 10 21.16 19 41.23
5.45 11 23.33 20 43.03
8.65 12 25.26 21 45.43
10.33 13 26.77 22 48.13
12.54 14 30.19 23 49.82
14.83 15 32.74 24 52.27
15.82 16 35.75 25 53.32
18.04 17 37.51 26 55.91
9 19.05 18 38.85 27 59.10

CO ~1 O O i W N

(a) Estimate the parameters of the model using the regression approach.
(b) Estimate the parameters of the model using the maximum likelihood
approach.

(c) Predict when the next 10,000 TEUs arrive at the port. Use both esti-
mators from parts (a) and (b).
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Chapter 5

Compound Poisson Process

5.1 Definition of Compound Poisson Process

A stochastic process {X(t), t > 0} is called a compound Poisson process' if
N(t)
Z Y; where {N(t), t > 0} is a Poisson process with rate A, and Y;’s

are 1ndependent and identically distributed random variables which are also
independent of {N(t), t > 0}.

PROPOSITION 5.1. The mean and variance of a compound Poisson process
are E(X (t)) = Mt E(Y;) and Var(X(t)) = Mt E(Y?).

PROOF: The mean can be computed by conditioning on the value of N(t).
We write

N(t)
E(X(1)) = E[E(X ()| N(1)] = E[E(Y i N()]
=E[NHE(Y1)] = E(N () E(Y1) = M E(Y)).
Likewise, we compute the variance by conditioning on the value of N(¢). We
get Var(X(t)) = E[Var(X (1) | N(t))] + Var [E(X (£)| N (#))]
N(t)

= E[Var(3_ | N(1)] + Va5 zwv )] = E(N(t)Var(v1))

+Var (N(t)E(Y1)) = E(N(t))Var(Yy) + Var(N(t))(E(Y7))? = A tVar(Y;)

! The first treatment of the compound Poisson process is attributed to Filip Lundberg,
a pioneer of the actuarial collective risk theory. In 1903, he wrote his Ph.D. dissertation at
the University of Uppsala titled “Approximations of the Probability Function/Reinsurance
of Collective Risks” (in Swedish).
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FAL(E(V))? = M(E(Y2) — (E(V)?) + At (E(V:))? = AtE(Y2). O

EXAMPLE 5.1. Visitors walk into a casino in Las Vegas according to a Pois-
son process with a rate of 50 per hour. Ten percent of them will not gamble
at all, others will lose independently a random number of dollars which we
assume has a Uniform(0, $1, 500) distribution. We need to model the casino’s
gain.

To this end, we focus only on the gamblers who are entering the casino.
Their arrival can be modeled by a Poisson process {N(t), t > 0} with rate
(0.9)(50) = 45 per hour. Let Y; denote the amount each gambler loses. We
are given that Y;’s are independent and uniformly distributed with mean
$1,500/2 = $750 and variance ($1,500)2/12. Consider X () = SN v, the
total sum of money that the gamblers lose at the casino within ¢ hours. It is
driven by a compound Poisson process.

(a) The casino’s expected gain during a 12-hour period can be computed as
E(X(12)) = (45)(12)($750) = $405, 000.00.

(b) The standard deviation of the gain is

V' Var(X(12)) = ¢(45)(12)(($1,500)2/12 + ($750)?) = $20,124.61. O

EXAMPLE 5.2. Suppose the number of car accidents at a certain intersection
can be modeled by a Poisson process with rate A\ = 3 per month. Assume that
the number of people who are involved in each accident is a binomially dis-
tributed random variable with parameters n = 8 and p = 0.3. Then the total
number of people involved in car accidents on that intersection within a time
period of t months can be modeled by a compound Poisson process {X () =
Zi]i(lt) Y;, t > 0} where N(t) ~ Poisson(3t), and Y;, i = 1,2,..., N(¢), are
independent random variables with Bi(8,0.3) distribution, also independent
of N(t). The average number of people involved in car accidents on this
intersection within one year is E(X(12)) = Atnp = (3)(12)(8)(0.3) = 86.4
with the standard deviation

VVar(X(12)) = \/MEY?) = /At (Var(Vy) + (E(V1))?)

= VX (np(1— p) + n22) = 1/ (3)(12)((8)(0.3)(0.7) + (8)2(0.3)2) = 16.36582. ©
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EXAMPLE 5.3. Families enter a movie theater according to a Poisson pro-
cess with rate A = 15 per hour. The number of family members is distributed
according to a zero-truncated Poisson distribution with rate A = 3. We are
interested in modeling the total number of moviegoers who enter the movie
theater by time t.

Denote by {N(t), t > 0} the Poisson process that describes family arrivals,
and let Y;, i = 1,2,..., N(¢), be the size of the ith family entering. We are
given that N(t) ~ Poisson(15t) and is independent of Y;’s, which, in turn,

are independent and identically distributed with the probability mass func-
. e .
tion P(Y; = n) = T e = 1,2,.... The total number of movie goers
n!'1—e-
can be described by a compound Poisson process {X (t) = ZN(t Y;, t > 0}.
To find the mean and variance of this process, we first derive the expressions
for the mean and second moment of a zero-truncated Poisson distribution.

We write

1 = n\" A = At el
EY = = fry
(¥1) e)‘—lgn! e/\—lnz(n—l)! er—1
and
1 . nZ\n > nn—l . n\?
E(Y2) = ) - [E Y ]
AN +1) e
- _1[)\26’\+)\e] —(e’\—ie

Thus, the average number of people who enter the movie theater during a
t-hour period is

AAet

er—17

E(X(1)) = ME(1) =

with the standard deviation

- [AMAp+Dne
\/Var(X(t)):\/)\tE(Yl)—\/ P

For instance, during a 6-hour period, the movie theater can expect E(X (6)) =

1 3
(E’igﬁ# = 284.1468 visitors, with a standard deviation of \/Var(X(6)) =

\/(15)(6)(3)(3 e = 33.71331 visitors. O

ed —1
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5.2 Simulations in R

In this section, we use the setting of Example 5.1 and simulate trajectories of
the casino’s gain. First, we generate a Poisson process of gambler’s arrivals
and then generate the amounts lost by the gamblers, which are independent
random variables uniformly distributed on (0, $1,500). The sum of the loss
amounts up to time ¢ is the desired compound Poisson process. We generate
the Poisson arrivals by the two methods described in Chapter 3, by fixing the
number of arrivals at 20 gamblers and generating independent exponentially
distributed interarrival times, and by fixing the time interval at 20 minutes
and generating event times as the order statistics from the uniform distribu-
tion on [0,20]. The codes and graphs are given below.

SIMULATION 5.1. (EXPONENTIAL INTERARRIVALS).

#specifying parameters
lambda<- 0.75
narrivals<- 20

#defining casino gain and time as vectors gain<- c()
time<- c()

#setting initial values
gain[1]<- 0
time[1]<- 0

#specifying seed
set.seed(50094)

#simulating trajectory

for (i in 2:(narrivals+1)) {

time[i]l<- time[i-1] - 1/lambdaxlog(runif (1))
gain[il<- gain[i-1] + runif(1,0, 1500)

}

#plotting trajectory

plot(time, gain, type="n", ylim=c(0,14000), xlab="Time (min)",
ylab="Casino gain ($)", panel.first = grid())

segments (time[-length(time)], gain[-length(time)],

time[-1]1-0.15, gain[-length(time)], lwd=2, col="blue")
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points(time, gain, pch=20, col="blue"))
points(time[-1], gain[-length(time)], pch=1, col="blue"))
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Time (min)
time[length(time)]
22.561
gain[length(gain)]
13291.65

In this simulated trajectory, 20 gamblers walked into the casino (a pre-
determined number of arrivals). They all came within 22.561 minutes and
lost cumulatively $13,291.65. O
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SIMULATION 5.2. (UNIFORM ORDER STATISTICS).

#specifying parameters
t<- 20
lambda<- 0.75

#specifying seed
set.seed(41130)

#generating number of arrivals
narrivals<- rpois(1,lambdax*t)

#defining vectors

gain<- c()
time<- c()
u<- c()

#setting initial values
gain[1]<- 0
ul1]<- 0

#generating standard uniforms and gain
for(i in 2:(narrivals+1)) {

ulil<- runif (1)

gain[il<- gain[i-1] + runif(1,0, 1500)
}

#computing event times
time<- txsort(u)

#plotting trajectory
plot(time, gain, type="n", ylim=c(0,13000), xlab="Time (min)",
ylab="Casino gain ($)", panel.first = grid())

segments (time[-length(time)], gain[-length(time)],
time[-1]-0.15, gain[-length(time)], 1lwd=2, col="blue")

points(time, gain, pch=20, col="blue")
points(time[-1], gain[-length(time)], pch=1, col="blue")
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In this simulated trajectory, within a fixed time period of 20 minutes, 16
gamblers walked into the casino and lost a total of $12,504.86. O

5.3 Applications of Compound Poisson Process

APPLICATION 5.1. A compound Poisson collective risk model is a classical
model in the actuarial field. Tt assumes that claims are submitted according
to a Poisson distribution with rate A, and that the amount of claims have a

certain known distribution. Then the aggregate claim amount up to time t
N(t)

is a compound Poisson process { X (t) = Z Y;, t > 0} where N(t) denotes
i=1
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the number (or frequency) of claims, and Y; is the amount (or severity) of the
ith claim. As in any compound Poisson model, N(¢) and all Y;’s are assumed
independent. We know that E(X (¢)) = At E(Y;) and Var(X(t)) = Mt E(Y?).

The main question that actuaries have to answer is how much money should
be collected in premiums so that the company will be able to pay the claims.
Let L(t) = X (t)—ct be the insurer’s loss. It represents the difference between
the total benefit payments that the company has to make and the amount
of premiums collected over time with a constant rate c. It is customary to
consider ¢ of the form ¢ = (1 + 0) AE(Y;) where 0 is termed a security load-
ing. It means that up to time ¢, the company will collect in premiums the
amount ¢t = (1 4+ 0) MtE(Y:) = (14 6)E(X(¢)), which gives the company
some cushion above the expected aggregate claim amount E(X(¢)) in case
there are some unusually high claims. One of several ways to find the value of
the security loading € is to assume that the company wants to see a positive
loss at most, say, 5% of the time. Thus, 6 solves P(L(¢) > 0) = 0.05 or
P(X(t) — (1 +6)E(X(t)) > 0) =0.05. We can rewrite this identity as

<X(t)—1E(X(t)) g MEM) ):0.05.

SV (X)) NEQXD)
Now, assuming that A is large, we can use the Central Limit Theorem to
X(t) —E(X(1))
Var(X(t))
bution. Hence, 6 can be found as the solution of the equation

conclude that

has approximately a standard normal distri-

IP(Z > 9M> — 0.05.

E(Y?)
That is,

2
0 = 1.645 ﬂ
VALE(Y)
As an illustration, we consider data on storms downloaded from the National
Oceanic and Atmospheric Administration’s site (https://www.ncde.noaa.gov/
stormevents/). The data set contains dates, times, and amounts of damage
(in units of $1,000) in all counties in Texas from March to April of 2020.
The reported damage was done during a storm by hail, wind, tornado, flash
flood, or lightning. There are a total of 85 rows in this data set. Damages
range between $500 and $150,000, with two additional values of $500,000
and $800,000. Assuming that a single insurance company took care of all
the claims, below we evaluate the security loading that this company must
utilize when calculating premiums.
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storm.data<- read.csv(file="./stormdata.csv", header=TRUE,
sep=" , n)

#creating date-time variable
storm.data$datetime<- as.POSIXct(paste(as.Date(storm.data$Date),
storm.data$Time))

#estimating event rate
print (nevents<- nrow(storm.data))

85

print (ndays<- (as.numeric(storm.data$datetime[nevents])
-as.numeric(storm.data$datetime[1]))/(24%3600))

46.09028
print (lambda.hat<- nevents/ndays)
1.844207

Within 46.09 days, there were 85 storms with tangible damage (resulting in
the insurance claims). It means that the claims were submitted with a rate
of 1.844207 per day. Finally, we estimate 6, using the empirical values of the
first and second moments of the damage amounts.

#estimating security loading
print (theta<- 1.645*sqrt(mean(storm.data$Damage”2))/
(sqrt (lambda.hat*ndays) *mean (storm.data$Damage)))

0.5516492

It means that the company should collect about 155% of the mean claim
amount to hedge against large claims. O

Exercises for Chapter 5

EXERCISE 5.1. The producer of a television game show with cash prizes
wants to set a budget equal to the expected value plus one standard devi-
ation of the aggregate cash prizes. The number of cash prizes given is a
Poisson process with a rate of 1.5 per hour. Each episode lasts for 2 hours.
The distribution of prize amounts is as follows:

Prize Amount | $5,000 $2,000 $500 $100
Probability 0.15 0.35 02 03
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(a) Calculate the budget for 100 episodes of the game show.

(b) Simulate a trajectory of 100 games. For the trajectory, what is the
amount of the budget left after the 100th game? If the amount is negative,
during or after which episode did the producer run out of money?

EXERCISE 5.2. When a pharmacy bills the medical insurance company, the
claims arrive as a Poisson process with the rate A = 60 per day. The amounts
of claims are independent and uniformly distributed between $30 and $300.
It is also assumed that the amounts of the claims and the number of claims
are independent.

(a) What is the expected aggregate claim amount that the medical insurance
company receives within a 30-day period? What is the standard deviation
of this amount?

(b) Use the Central Limit Theorem to approximate the probability that the
aggregate claim amount will exceed $300,000 within a 30-day period.

EXERCISE 5.3. The photon detection process in X-ray computed tomog-
raphy can be modeled as a compound Poisson process. The X-ray photons
collide with a photon detector and then generate some number of light pho-
tons. The number of incident X-ray photons changes according to a Poisson
process with a rate of A per second. The number of light photons generated
by each X-ray photon that is detected is a Poisson random variable with a
rate of \ per second.

(a) Define the aggregate number of light photons that are generated up to ¢
seconds. Give the formula for the process, and the expressions for its mean
and standard deviation.

(b) Assuming that the average rate of X-ray photons is 50 per second and
the mean of light photons is 5, simulate 100 values of the aggregate number
of light photons generated within a 10-second period.

(¢) Construct a histogram for the 100 values generated in part (b). Is the
histogram approximately bell-shaped? Explain.

EXERCISE 5.4. An insurance company receives claims according to a Pois-
son process {N(t), t > 0} with rate A\. Assume that claim amounts X;, i =
1,2, ..., are independent and identically distributed, and are independent of
claim arrival times S;, ¢ = 1,2, .... The present-day (day of policy issue) value
of the amount of claim X; made at time S; is computed as X; e °“, where
0 is the force of interest. The present-day value of the total claim amount
P(t) = Zi]i(lt) X;e7%% changes according to a compound Poisson process.
Show that the mean of this process is E[P(t)] = E(X;)(A/6)(1 — e°").
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EXERCISE 5.5. In radiobiology, when cells are exposed to radiation, DNA
sometimes breaks, and the broken ends may abnormally rejoin resulting in
chromosome aberrations. The number of ions that traverse through a cell
nucleus by time ¢ is modeled as a Poisson process with rate \. Each traver-
sal independently causes Y; aberrations which have Poisson distribution with
rate . Let X(t) = Zi]i(lt) Y; denote the total number of chromosomal aber-
rations by time ¢.

(a) Show that the compound Poisson process X (t) has the Neyman type A
distribution with the probability function given by

P(X(t) =z) = P gt > weﬁ“.
n=0 :

(b) Show that the mean of X (¢) is At and the variance is A\t(8 + 5?).

(c) For a fixed t, denote the sample mean of X (¢) by E(X(t)), sample vari-
ance by Var(X(t)), and empirical probability of zero P(X(t) = 0) by P(0).

~  Var(X(t
Show that S and A may be estimated respectively by § = —iwn( () -
~ E(X(t))
and A = LP(O))
t(l — 6—5)

EXERCISE 5.6. Cars arrive at a gas station according to a Poisson process.
Each car driver buys gas independently of others for a dollar amount that
has a gamma distribution. The spent amounts and the number of cars are
independent. Data for times of car arrivals (in minutes) and dollar amounts
spent are presented in the table below.

Arrival Amount Arrival Amount Arrival Amount
Time Spent,in $ | Time Spent,in $ | Time Spent, in $

0.15 23.67 28.81 69.67 47.94 20.38
3.81 25.55 32.36 25.39 49.73 34.95
5.67 38.54 32.76 30.86 50.72 29.23
6.61 31.31 32.92 20.53 20.86 36.51

13.14 74.20 33.22 24.93 91.99 37.77
13.57 32.78 33.51 27.49 52.36 34.41
15.68 29.70 34.40 22.56 52.89 23.35
22.83 35.83 35.76 21.38 53.64 32.95
23.35 22.17 39.08 45.53 55.03 21.27
23.77 34.96 41.03 39.14 55.29 37.32
23.77 24.20 42.05 26.02 56.82 20.30
24.69 26.01 42.38 21.35 63.02 32.59
26.94 24.07 45.66 33.88
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(a) Argue that the total dollar amount that the gas station receives can be
modeled by a compound Poisson process. Write down the expression for the
process and describe all parameters.

(b) Estimate the parameters of the model using the method of moments.
Show that the estimators of o and [ of the gamma distribution are a =

_2 —

Y Y

. ”2 —_and f = =.
Yo Y —nY @

(c) Plot histograms for the interarrival times and the amount spent, with
fitted distribution curves.

(d) Write down the estimates of the mean and standard deviation of the
total dollar amount at 1 hour. Use the parameter estimates obtained in part

(b).
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Chapter 6

Conditional Poisson Process

6.1 Definition of Conditional Poisson Process

A counting process {N(t), t > 0} is called a conditional (or mized) Poisson
process! if N(t) has a Poisson distribution with rate A where A is a random
variable with a known distribution fy(A). The rate A is referred to as a
random intensily rate.

The probability mass function for the conditional Poisson process is specified
as a conditional probability

(AD)"

] e M t,s>0,n=0,1,2,....

P(N(t+s)— N(s) =n|A= ) =

The marginal distribution of N(¢) is found as

P(N(t+s)—N(s) =n) :/OO Me”\tf,\(k)dk, t,s>0,n=0,1,2,....
0

n!

REMARK 6.1. A conditional Poisson process has stationary increments. It
is reflected in the above formulas for conditional and marginal distributions
of N(t). The above expressions do not depend on s, the beginning of the
interval, only on t, the length of the interval. The increments are not inde-
pendent, though. It is easily seen if we write

P(N(s) = n, N(t—s) = m) = /OOO P(N(s) = n, N(t—s) = m|A = A) fa(A) dA

'ntroduced in Dubourdieu, J. (1938). “Remarques relatives a la théorie mathématique
de lassurance-accidents.” Bulletin Trimestriel de l’Institut des Actuaires Frangais, 49: 76
- 126.
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—/Ooo P(N(s) =n|A=A)P(N(t—s) =m|A=2) fa(\)dA

%/Ooo P(N(s) =n|A=A) fa(}) dA /OOO P(N(t—s) =m|A=2A) fa(X) dA

PROPOSITION 6.1.  The mean of N(t) is E(N(t)) = t E(A), and the variance
is Var(N(t)) = t*Var(A) + tE(A).

ProoOF: Conditioning on A, we write

E(N(t)) = E[E(N(1)| A)] = E(At) = tE(A),

and
Var(N(t)) = Var [E(N(t) | A)] + E[Var(N(t)|A)]

=Var[At] + E[At] =t*Var(A) + tE(A). O

EXAMPLE 6.1. Assume that A in a conditional Poisson process has the
probability mass function

P(A = )\0) = Do and ]P)(A = )\1) =1 — Po-
The marginal distribution of N () is

Ao t)"” A t)"
P<N(t) = n) = # e_AOtpo + # e_)\lt(l _pO)an = Oa 1727 tee
n! n!
This is a mixture of two Poisson processes with rates Ag and A; and the
mixture weights po and 1 — py. As a mixture of two Poisson processes, N (t)
has mean E(N(t)) = )\() tp() + /\1 t (]_ —po) =1 ()\Op() + )\1(1 — po)) = tE(A),
and variance

Var(N(t)) = po(ho t+ (Mo t)?)+(L—po) (A1 t+ (A 1)) — (Aot po + A t (1—po))”
=t (A\gpo+ AT (1 —po) — (Nopo + (1 —po))?) +t (Aopo + Ai(1 — po))
=t*Var(A) +tE(A). O
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EXAMPLE 6.2. Suppose that in a conditional Poisson process, A has an ex-
ponential distribution with mean A. The marginal probability mass function
of N(t) is

. o > <Ut>n futl —u/A
P(N(t)—n)—/o e e ™ du

n!

_ t" /OO u" (t + 1/)\)n+1 e—(t—l—l/)\)u du
t+ 1/ 0N J, nl
t" 1 ( 1 )n 0.1.2
— = _— n =
(t+1/A)"H N At+1 At+1/ 7 T

Therefore, the marginal distribution of N(t) is geometric. It represents the
number of failures until the first success. The success probability is p =

1—- 1-1/(At+1
1/(At+1). It is known that the mean is pp = 1/(§(t+—;) ) =\t =
1— 1-1/(At+1
tE(A), and variance is p2p: 1/(<§+$2):)\t()\t+1):t2/\2+t)\:
t*Var(A) + tE(A). O

6.2 Simulations in R

SIMULATION 6.1. (EXPONENTIAL INTERARRIVALS). Consider the setting
of Example 6.1. Suppose py = 0.3, \g = 4, and A\; = 0.5. Below we simulate
5 trajectories with 20 Poisson occurrences each, by generating exponential
interarrival times. We first choose the rate randomly from the given binary
distribution. Three of the trajectories have a rate of 4 and the other two
have a rate of 0.5.
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#specifying parameters
p<- ¢(0.3, 0.7)
lambda<- c(4, 0.5)
njumps<- 20

#specifying states and times as data frames
time<- data.frame()
N<- data.frame()

#specifying seed
set.seed(6335044)

#simulating trajectories
for(j in 1:5) {

#fixing the value for rate
Lambda<- lambda[sample(1:2, 1, prob=p)]

#setting initial values
time[1,j]<- 0
N[1,j1<- 0

#simulating trajectory
i<- 2

repeat {
time[i,jI<- time[i-1,jl+round((-1/Lambda)*log(l-runif(1)),3)-0.001
N[i,jl<- N[i-1,j]

if (i==2*njumps+2) break
else {
time[i+1,jl<- timel[i,j]1+0.001
N[i+1,j1<- N[i,jl+1
i<- i+2

+

#plotting trajectories

matplot(time, N, type="1", 1lty=1, 1lwd=2, col=c("blue", "green",
"red", "purple", "orange"), xlab="Time", ylab="State",
panel.first=grid())
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SIMULATION 6.2. (UNIFORM ORDER STATISTICS). Now we use the uni-
form order statistics method described in earlier chapters to simulate five
trajectories. We fix the end-time (say, ¢ = 30), and then pick the rate A
from the binary distribution. After that, we randomly choose the number of
events from the Poisson (At) distribution. Note that we expect trajectories
with A = 0.5 to have about (30)(0.5) = 15 occurrences, whereas trajectories
with A = 4 will have about (30)(4) = 120 occurrences. Below is the code
and the graph. Two trajectories happened to have a rate of 4 and the other
three have a rate of 0.5.

139



#specifying parameters
t<- 30

p<- ¢(0.3, 0.7)
lambda<- c(4, 0.5)

#specifying states and times as data frames
time<- data.frame()
N<- data.frame()

#specifying seed
set.seed(1902238)

#simulating trajectories
for(j in 1:5) {

#fixing the value for rate
Lambda<- lambda[sample(1:2, 1, prob=p)]

#setting initial values
time[1,j]<- 0
N[1,j1<- 0

#generating total number of jumps
njumps<- rpois(1l,Lambdax*t)

#generating standard uniforms
u<- c()

ul1]<- 0

for(i in 2:njumps)

ulil<- runif (1)

#computing event times
s<- txsort(u)

#generating jumps
for (i in seq(2, 2*njumps, 2)) {
time[i,jl<- s[i/2]-0.001
time[i+1,j]1<- s[i/2]
N[i,jl<- N[i-1,;j]
N[i+1,j1<- N[i-1,j]+1
}
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#plotting trajectories

matplot(time, N, type="1", 1lty=1, 1lwd=2, col=c("blue",

"green", '"red", "purple", "orange"), xlab="Time", ylab="State",
panel.first=grid())

State
40 &0 a0 100 120
| | |

20

Time

6.3 Applications of Conditional Poisson Pro-
cess

APPLICATION 6.1. Agronomists model the presence of Colorado potato bee-
tles as a conditional Poisson process. Suppose a plot of fertile soil is planted
with potatoes. The width of the plot is fixed, so the area is proportional to
the length. The number of egg clusters A that are located within a stretch
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of the plot of a certain length has a Poisson distribution with mean \y. Each
cluster contains between 10 and 30 eggs, but only several of them hatch.
Suppose the number of eggs within a cluster that hatch follows a Poisson
distribution with a rate r. Combining the results, we obtain that the total
number of hatched eggs N (¢) on a stretch of the plot of length ¢ has a Poisson
distribution with the rate r A, where A ~ Poisson(\o).

(a) The expected value of N(¢) is computed by conditioning on A. We
write E(N(0)) = E[E(N(¢) | A)] = E(rfA) = rAol. Likewise, the variance is
computed by conditioning on A. We have Var(N(¢)) = Var[E(N(¢) | A)] +
E[Var(N(€) |A)] = Var(rlA) + E(rlA) = (rl)*Xo + (rf)Ag = Xo(r)(rl + 1).

To illustrate these with a numeric example, assume r = 5,/ = 2, and \g = 3.
We evaluate E(N(¢)) = (5)(3)(2) = 30 and Var(N(¢)) = (3)(5)(2)((5)(2) +
1) = 330.

(b) The marginal distribution of N(¢) is

P(N(¢) = n) = E[P(N(£) = n| A)] = E[M v

M (=rl), n=0,1,2,...,

where M,(‘n)(—ré) is the nth derivative of the moment generating function of
A, Mp(t) = exp{ o (¢' — 1)}, computed at ¢t = —rf. These derivatives have
to be computed numerically. Below is the R code that calculates probabili-
ties for n =0, ..., 10.
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#specifying parameters
r<- 5

1<- 2

t<- -r*l

lambda0O<- 3

#computing probabilities

prob<- c()

M<- expression(exp(lambdaO*(exp(t)-1)))
prob[1]<- eval(M)

for (n in 2:11) {

M<— D(M, "t")

prob[n]<- (r*1)n/factorial(n)*eval (M)
}

prob

[1] 0.0497938498 0.0003390956 0.0011304726
[4] 0.0028269513 0.0056569821 0.0094385700
[7] 0.0135130114 0.0169646392 0.0190127388
[10] 0.0193392713 0.0181755410

APPLICATION 6.2. An auto insurance company models the number of claims
up to time t, N(t), as a Poisson process with random intensity rate A which
represents an accident-proneness index of a policyholder. The values of A are
distributed according to a gamma distribution with mean «/f5 and variance

a/B2

(a) The expectation and variance of N(t) are E(N(t)) = tE(A) = at/f3, and
Var(N(t)) = t*Var(A) + tE(A) = at?/5% + at/B.

To compute these quantities for some specific values of the parameters, let’s
assume that a = 0.3 and § = 1. The average total number of claims per
policyholder that the company has to deal with every 5 years is E(N(5)) =
(0.3)(5)/(1) = 1.5. The standard deviation is

V' Var(N(5)) = /(0.3)(5)2/(1)2 + (0.3)(5)/(1) = 3.
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(b) The marginal probability mass function of N(¢) has the form

P(N(t) = n) = /0 h Mnt!)n =y A;Oga

_t"T(n+a) B PN B s
Tl T(a) (t+5)n+a/ Thta) ¢ s
B m+a—-1)0y, B \@ B \n
ol (a—1)! <t+ﬁ> (1_t+ﬁ) '

Therefore, N(t) has a gamma—Poisson mizture distribution, which has the
algebraic form of a negative binomial distribution with parameters a and

e PN

p = m Since « assumes real values that are not restricted to integers,
this is not a true negative binomial distribution. The mean and variance of

this distribution are

a(l—p) _at/(t+p) _

ENO) === 3+p

at/p,

and

o(l—p) _at/(t+8) _atlt+p) _
R I PR

These coincide with the expressions derived in part (a).

Var(N(t)) = at?/B? + at/B.

(c) We can also compute the conditional probability that A, the accident-
proneness index of a policyholder, doesn’t exceed some particular value A,
provided that the policyholder has made n claims within ¢ years. We derive

A (ut)™  _ut u®TIB By
P(A <\ ’ N(t) —_ n) — ]P( ( ) n, )‘) _ fO n! e I'(«) € du
B P(N(t) = n) fooo (ui,)n e—ut uar_(;?a e Pudy

" du.

A nta—1,— u n+a— n
B f() unta—1 o=@+B)u gy, B //\ ynta—1 (t—i— 6) +a ()
0

Jo untelem(tHBu dy, I'(n+ a)

This is a gamma distribution with parameters n+« and t+ . The expected
value of A for a policyholder who is known to have made n claims within ¢
years is E(A | N(t) = n) = 3.

For a« = 0.3 and g = 1, the expected accident-proneness index for a poli-
cyholder who has made two claims in 5 years is E(A| N(5) = 2) = 293 =

5+1
0.3833. O
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Exercises for Chapter 6

EXERCISE 6.1. Let {N(¢), t > 0} be a conditional Poisson process with the
random intensity rate A. Show that for any ¢t > s > 0,

(a) Cov(N(s), N(t) — N(s)) = s(t — s) Var(A).

(b) Cov(N(s), N(t)) = stVar(A) + sE(A).

EXERCISE 6.2. Suppose {N(t), t > 0} is a conditional Poisson process and
the random intensity rate A has density fa(\), A > 0. Show that
(a) The conditional cumulative distribution function of A, given N(t) = n, is

fo)\ u e fa(u) du
fooo um et f(u)du
(b) The conditional density function of A, given N(t) = n, is

Fyxnve(An) =P(A < X N(t) =n) =

A" e—At fAO\)
J22 A et f(A) dA

(¢) The conditional expected value of A, given N(t) = n, is

fanay(An) =

foo pXan e—)\tf ()\) d\
E[A|N(t) =n] = jg"’ A e—’\th/(\)\) ar

EXERCISE 6.3. Suppose that 46% of all visitors of an amusement park are
teenagers, 24% are adults, and the rest are kids. Assume that the number
of visitors who come into the park during a busy hour can be modeled as a
Poisson process with the random intensity rate that varies depending on age
group: 4 per minute for teens, 2 per minute for adults, and 3 per minute for
kids.

(a) Write down the model and specify all parameters. Find the mean and
variance of the number of visitors within time t.

(b) Simulate five trajectories of the process with 200 visitors each.

(c) Simulate five trajectories of the process that depict arrivals within 1 hour.

EXERCISE 6.4. A credit union assigns to all its clients a rating value A in
such a way that a client defaults on a credit account according to a Poisson
process with rate A (per year). The distribution of A is uniform on [0, 2].
(a) Find the average number of defaults that a client has within a 5-year
period.

(b) Find the variance of the number of defaults within a 5-year period.

(c) Find the covariance between the number of defaults during the first 3
years and that during the subsequent 2 years. Hint: See Exercise 6.1(a).

145



(d) Find the covariance between the number of defaults during the first 3
years and that during the first 5 years. Hint: See Exercise 6.1(b).

(e) Find the probability that the client’s rating value is less than 0.5, given
that he has had two defaults within a 5-year period. Hint: See Exercise 6.2.

EXERCISE 6.5. Snow Water Equivalent (SWE) describes the amount of
water contained within a snowpack, measured in inches. It is an important
notion in environmental science, agriculture, and forestry. An annual SWE
is well modeled by a conditional Poisson process. The amount of SWE is a
Poisson process with rate A inches per year that is itself a Poisson random
variable with a rate of 24.3.

(a) Compute the average and standard deviation of SWE for a 1-year period.
For a 5-year period.

(b) Simulate five trajectories that reach 140 inches of SWE each.

(c) Simulate five trajectories spanning over a 7-year period.

EXERCISE 6.6. In the textile industry, a series issue is the number of de-
fects in fabric per linear footage. Suppose quality control engineers model the
number of defects as a conditional Poisson process with a random intensity
rate A per yard for the fabric of standard width. The random variable A has
a gamma distribution with a mean of 0.07 and a standard deviation of 0.01.
(a) Compute the expected number of defects in a 40-yard roll of fabric. Find
the standard deviation of the number of defects in the roll.

(b) Given that four defects were found in a 40-yard roll of fabric, find the
probability that A exceeds 0.08.
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Chapter 7

Birth-and-Death Process

7.1 Definition of Birth-and-Death Process

A continuous-time Markov chain {X(¢), t > 0} with state space S =
{0,1,2,...} is called a birth-and-death process' if, given that the chain is
in state n, the time to transition to state n + 1 is exponentially distributed
with mean 1/),, and the time to transition to state n — 1 is exponentially
distributed with mean 1/p,. The two waiting times are independent.

PROPOSITION 7.1. In a birth-and-death process, the transition probabilities

are Po1 =1, Pppi1 = A,LAfW and P, = /\n’j’:un. All the other transition

probabilities are 0’s. The one-step transition probability matrix has the form

0 1 2 3
0 0 1 0 0
1] A1
p 1 >\1+1,u1 1?2 A1+p1 ?
= 2 0 A2+p2 0 A2+p2
30 0 o
3+13

PRrROOF: Consider two independent exponential random variables Tz and T
with means 1/X and 1/p, respectively. The variable Tz represents the wait-
ing time until a “birth,” and Tp represents the waiting time until a “death.”
A “birth” occurs before a “death,” if T’y < T'p. The probability of this event is

!The first example of a birth-and-death process was described in 1939 by William
Feller, a renown Croatian-American mathematician, in “Die Grundlagen der Volterraschen
Theorie des Kampfes ums Dasein in wahrscheinlichkeitstheoretischer Behandlung.” Acta
Biotheoretica, 5: 11 — 40.
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o oo oo )\
P(Tg < T :/ / )\e”ue“ydydx:/ Ne APy =
(Ts D) 0 ). 0 A+

Analogously, a “death” occurs before a “birth” if Tp < Ty, which happens
with the complementary probability

A p

P(Tp < Tg)=1—-P1g < Tp)=1-— = .
(To 5) (Ts D) A4 A+p

PROPOSITION 7.2. Suppose a birth-and-death process is in state n. Then
the waiting time until a transition occurs is exponential with mean 1/(\, +

fin)-
PrROOF: Referring to the proof of the previous proposition, we see that a
transition occurs at time T or time Tp, whichever happens first. That is,
we need to find the distribution of min(7s,7Tp). We write

me (T, Tp) ) ]P)(TB < t TB < TD) ]P)(TD < t, TD < TB)

/ fry(2)P(Tp > ) dx + / fr, ()P(Tg > z)dx
0

t
:/ Ae” zez”clx—l—/ pe e dy
0 0
t
= / A+ p)e Mgy =1 — e OHmt,
0

which is an exponential distribution with mean 1/(A 4+ u). O

PROPOSITION 7.3.  Consider a birth-and-death process, and denote by P, ()
the probability that at time ¢ the process is in state n. The probabilities
P,(t), n=0,1,..., satisfy the system of the Kolmogorov forward equations:

Pn/(t) = )\n—l Pn—l(t) + Nn—i—l Pn+1(t) — (/\n -I— Mn) Pn(t), n = 1,2,...,
(7.1)

{Po/(t) = —Xo Po(t) + m Pi(t),

with the boundary condition P,,(0) = 1.

PrROOF: We will omit the rigorous derivation of these equations but will
explain their simple meaning. How can the process transition into state n?
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Only if there are n — 1 particles and one more is born, or there are n + 1
particles and one dies. That is, A\,_1 P,_1(t) + pns1 Poy1(t) represents the
rate of change with respect to time of probability to transition into state n.
By the same token, (A, + w,) P,(t) gives the rate of change over time of
probability to transition out of state n (one particle is born or dies). Thus,
the expression on the right is the difference between the in and out rates,
and so is the meaning of the derivative P, (t) on the left. O

REMARK 7.1. The mean and variance of {X(¢), t > 0}, a birth-and-death
process, are computed as

E(X(t) =Y nP(t), and Var(X(t)) =Y n®P.(t) — [E(X®)]". O

EXAMPLE 7.1. A Poisson process is an example of a birth-and-death process
with A, = A and u, =0, for n = 0,1,.... Because there are no “deaths,” it
is a pure birth process.

(a) We know that in this process, times until “births” are independent and
exponentially distributed with mean 1/A, = 1/A.

(b) The transition probabilities are Po; = 1, Popi1 = A\/(Mn + ) =
A(A+0)=1,and P, ,,-1 = ptn/(An + pn) = 0/(A +0) = 0, which we know
is true since only jumps of size +1 are admissible in a Poisson process.

(c) The probabilities P,(t), n = 0,1,..., satisfy the Kolmogorov forward
equations Py (1) = —A Py(t)and P, (t) = A P,_1(t) = AP, (t), forn = 1,2, ...,
with the boundary condition Py(0) = 1. The solution to these equations is
the Poisson probability mass function P, (t) = Q" e n=0,1,..., which

n!
can be verified by writing

’

Py(t) = (e™) = =Xe ™ = =\ Ry(t),

and for n > 1,

pn’(t) — <M e—,\t>/ _ g(nt”_l MY e M = A ((;L‘t_)nl_)!e—m




(d) Both the mean and variance of the Poisson process, as we know, are
equal to At.

EXAMPLE 7.2. A linear birth-and-death process {X(t), t > 0} is a birth-
and-death process with the parameters A\, = nA and p, = un, n=0,1,....
Note that in this process state 0 is an absorbing state. We assume that the
process starts in state 1.

(a) In this process, times until “births” and “deaths” are independent and
exponentially distributed with mean 1/, = 1/(n\) and 1/, = 1/(np), re-
spectively. Time until a transition (“birth” or “death”) are independent expo-
nentially distributed random variables with mean 1/(\,+ ) = 1/[n(A+p)].

(b) The transition probabilities are Py1 = 0, Popy1 = A/(An + pin) =
AN+ ), and Py poy = i/ (Ao + pn) = 1/ (A + p).

(¢) The Kolmogorov forward equations in this case assume the form: P, (t) =

pwPi(t)and forn=1,2,..., P,(t)=(n—DAP,_1(t) + (n+ D)pu P1(t) —
n(A + p) P,(t), with the initial condition P;(0) = 1. The solution of these
equations can be written as

(A=pt _
wne 2
and

A A \n1
Pn(t)_(l—Po)(l—;Po)(;Po) ., n=12....

This distribution is a mixture of a point mass at zero and a geometric dis-
tribution modeling the number of trials until the first success where the
probability of successisp=1 — ﬁPO.

(d) The mean of the process can be computed as

_1- 5 — e(A=m)t

E(X(1) = (1 — ) ]13 o

The variance is equal to

1— A
Var(X(t)) = (1 — FR) pzp = )\—'_—Ze(’\_“)t(e(k_”)t -1). O
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7.2 Simulations in R

SIMULATION 7.1. Below we simulate a 20-step trajectory of a linear birth-
and-death process with parameters A = 0.3 and p = 0.1 that starts at time 0
in state 1. We generate two independent exponential times with rates 1/(n\)
and 1/(np), and transition 1 unit up if a “birth” occurs before “death” or 1
unit down, otherwise.

#specifying parameters

lambda<- 0.3
mu<- 0.1
njumps<- 20

#setting state and time as vectors
N<- c()
time<- c()

#setting initial values
N[1]<- 1
time[1]<- 0

#specifying seed
set.seed(1022171)

#simulating trajectory
i<- 2

repeat {
time.birth<- (-1/(N[i-1]*lambda))*log(runif(1))
time.death<- (-1/(N[i-1]#*mu))*log(runif (1))

if(time.birth < time.death | N[i-1]==0) {
time[i]<- time[i-1]+time.birth-0.001
N[il<- N[i-1]

if (i==2*njumps+2) break
else {
time[i+1]<- time[i]+0.001
N[i+1]1<- N[il+1
i<- i+2

}
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if (time.death < time.birth & N[i-1]'=0) {
time[i]<- time[i-1]+time.death-0.001
N[i]<- N[i-1]
if (i==2*njumps+2) break
else {
time[i+1]<- time[i]+0.001
N[i+1]<- N[i]-1
i<- i+2

3

#plotting trajectory
plot(time, N, type="1", 1lty=1, 1lwd=2, col=4, xlab="Time",
ylab="State", panel.first=grid())

10

State

7.3 Applications of Birth-and-Death Process

APPLICATION 7.1.  An M/M/1 queueis a birth-and-death process { X (¢), ¢t >
0} with A\, = X and p,, = u. We assume A < pu. In this process, customers
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join a queue (representing “births”) at independent exponential times with
mean 1/), and leave the system (representing “deaths”) after going through
the service, which time is exponentially distributed with mean 1/pu. All cus-
tomers act independently. In the name of the process, the first “M” means
that the customer arrival process is Markovian, the second “M” refers to the
fact that the service time is Markovian, and the “1” stands for a single server.
An example of M/M/1 process is the number of customers in a bank with
a single bank teller: customers enter the bank and join the line to the bank
teller, then when it is their turn, they get a service from the teller and leave
the bank. Another example is the number of broken cars in a repair shop
with a single repairman: broken cars are added to the line to get a service
from the repairman, and leave the shop once they are repaired.

(a) The Kolmogorov forward equations for M/M/1 process are

Py(t) = =ARy(t) + nhi(t),
P/(t) = APy_1(t) + pPoyi(t) — N+ ) P(t), n=1,2,...,

with the boundary condition Py(0) = 1. The solution to these equations
exists but is rarely used in practice. Instead, the limiting (or steady-state)
probabilities are computed. They are defined as lim; ., P,(t) = P,, n > 0.
To find the limiting probabilities, we pass to the limit in the Kolmogorov
forward equations as ¢ tends to infinity. Replacing the left-hand side by 0
(since the derivative of a constant is 0), we obtain

0= _)\P0+,U/P17
0=AP, 1+ puPys — AN+ p)Py,n=12....

These can be rewritten in the form of what is known as the balance (or
equilibrium) equations:

/.LPl = )\Po,
(/\+M)Pn = )\Pn,1 +,upn+1, n:1,2,....

The expression on the left represents the mean rate of leaving the state n,
whereas the right-hand side gives the mean rate of entering state n. Thus,
the balance equations equate the mean departure rate and the mean entrance
rate.

To solve the balance equations, we notice that u P, —A Py = 0 and p P41 —

AP, = puP, — AP,y = ... = uP, — APy = 0. Therefore, P,.; =
A A An .

- P, = (—)QPn,l =... = (—) +1 Py, n=20,1,.... Since all the proba-
1 I I
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e ny—1
bilities must add up to 1, we conclude that Py = [Z (—> }

n=

A\ /A"
and so P, = (1 — —> (—) , n=20,1,2,.... This is a geometric distribution
1
modeling the number of failures before the first success, where the success

probability is p =1 — \/p.

A
1__a
)

(b) The average number of customers in the system, in the long run, is
computed as

1—p:1—(1—>\/u) A

tlggoE(X(t))_ P 1—XAp  p— X

(c) We will show that the amount of time 7" a customer spends in the sys-
tem is an exponential random variable with mean 1/(x— \). Indeed, suppose
when the customer arrives, there are already n customers in the system. If
n = 0, then T is the service time which is exponential with mean 1/u. If
n > 0, the customer will have to wait for one customer to complete the ser-
vice, and then for n additional customers (including himself) to go through
the service. Using the memoryless property of an exponential distribution,
we conclude that the waiting time, in this case, is the sum of n 4+ 1 inde-
pendent exponential with mean 1/p random variables, which is a random
variable having a gamma distribution with mean (n + 1)/u. We write

0 n Mn+1 L
fr(t) =E|fr(t|n customers)| = ——— e *' P,
[ ] ; I'(n+1)

_ = (/L t)n —ut A A\n _ —ut = ()\t)n _ —(u—=A)t
which is an exponential distribution with mean 1/(x — A). From here, we
can conclude that the probability that a customer spends more than time ¢

in the system is P(T > t) = e~ (#=V1,

n=0

(d) Consider an M/M/1 system in which arrivals occur with the rate A =1
per minute, and departures occur with the rate up = 1.5 per minute. The
steady-state probabilities are

P ) = ()R e

1

L—X 15-1
the system. The probability that in a long run, a customer will spend over 5
minutes in the system is P(T > 5) = e~(1:>"D0) = 0.082085. O

In the long run, there will be, on average, = 2 customers in
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Exercises for Chapter 7

EXERCISE 7.1. A Yule process® (or a linear birth process) {X(t), t > 0} is
a birth-and-death process with A\, = n\ and p, = 0, for all n > 0. In this
process, each particle gives birth to one particle, independently of others,
and never dies. It is a pure birth process.

(a) Suppose that initially the process is in state 1 (i.e., there is a single
particle in the system). Show that the Kolmogorov forward equations (7.1)
have the form P, (t) = =\ Py(t) and P, (t) = (n—1)A Po_1(t) = nA Pu(t), n =
2,3, ..., with the boundary condition P;(0) = 1.

(b) Verify that P,(t) = e (1 — e‘“)n_l, n=1,2,.... Note that it is a
geometric distribution that models the number of trials until the first success
where the probability of a success is p = e 1.

(c) Show that the mean of the Yule process at time ¢ is E(X (t)) = ¢!, and
the variance is Var(X (t)) = e* (et — 1).

(d) If A\ = 4 per week, what is the probability that there will be between 3
and 5 particles at week 17 What is the mean and standard deviation of the
number of particles at week 17

EXERCISE 7.2. Consider a Yule process, a birth-and-death process with pa-
rameters A\, = nA and u, = 0, for all n > 0. Suppose initially the process is
in state m. That is, the initial size of the population is m particles.

(a) Verify that the Kolmogorov forward equations (7.1) have the form P, (t) =
—mA P, (t) and P, (t) = (n—1)A Po_1(t) — nAP,(t), n =m,m+1,..., with
the boundary condition P,,(0) = 1.

(b) Verify that P,(t) = (: _7711 e (1 —e™) n=mm+1,....
Note that it is a negative binomial distribution of the number of trials until
the mth success, where the probability of a success is p = e~ ',

(c) Show that the mean of the Yule process at time t is E(X(¢)) = m e,
and the variance is Var(X(t)) = me* (e —1).

(d) If there are originally 5 particles in the population and they multiply
with rate A = 0.2 per day, what is the probability that there will be exactly
12 particles on day 27 What are the average and standard deviation of the
number of particles on day 27

EXERCISE 7.3. A linear death process {X(t), t > 0} is a birth-and-death
process with the initial state IV, and parameters )\, = 0 and p, = nu for
n=01,...,N—1.

2Proposed in Yule, G. U. (1925). “A mathematical theory of evolution, based on the
conclusions of Dr. J. C. Willis, F.R.S.” Philosophical transactions of the Royal Society of
London. Series B, containing papers of a biological character, 213: 21-87.
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(a) Show that the probabilities P,(t), n = 0,1,..., N, satisfy the Kol-
mogorov forward equations

Pilt) = — Nu Px(t).
P(t) = (n4+ D) Pupr(t) — nuPy(t), n=0,1,...,N — 1.

n

(b) Verify that P,(t) = (N> (e_“t)n (1 — e"”)Nﬁn, n=0,1,..., N, which
n

is a binomial distribution with parameters N and p = e .

(c) Show that the mean and variance of this process at time t are E(X(¢)) =
Ne ™ and Var(X(t)) = Ne (1 — e1).

(d) Assume p = 0.02 and N = 15. Find the probability that the process
is in state 12 at time 3. What is the expected state at time 37 What is its
standard deviation?

EXERCISE 7.4. Consider a linear birth-and-death process {X(¢), ¢t > 0} de-
scribed in Example 7.2.

(a) Suppose A = 1.3 and p = 0.2. Compute the probability that the process
will be in state 4 at time 2. Find the mean and variance of the process at
time 2.

(b) Simulate a 50-step trajectory of this process, assuming A = 1.3, u = 0.2,
and the initial state is 1.

EXERCISE 7.5. Consider an M/M/1 queue described in Application 7.1.
(a) In the long run, how many customers do we expect to see in the system
if A\ > p? Explain on an intuitive level.

(b) Assume A = 3 and p = 5. Find the probability that there will be more
than 2 customers in the system in the long run.

(c) Compute the average number of customers in the system in the long
run. Use A =3 and pu = 5.

(d) Find the proportion of customers in the system in the long run who have
to wait more than 1 minute.

EXERCISE 7.6. Suppose the bird count in a flock can be modeled as a
birth-and-death process with immigration and emigration. In this model,
An = nA+ « and p, = np+ [ where « is the rate of immigration (joining
the flock), and § is the rate of emigration (leaving the flock). Generate a
trajectory of the process until the flock size increases from 10 to 25 birds,
assuming A =1, « = 0.3, = 0.1 and

(a) p=0.2.

(b) n=0.8.
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(c) m

(d) u= 1 2.
(e) D1scuss the difference in behaviors of the four trajectories. How many
time units does each one span? Does the flock ever die out?
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Chapter 8

Branching Process

8.1 Definition of Branching Process

A discrete-time stochastic process {X,, n > 0} that gives the size of the
nth generation of multiplying particles is called a branching process (or the
Bienaymé-Galton- Watson process'). Tt starts with X, particles in the Oth
generation. Each particle survives for one-time unit, at the end of which it
splits into a random number of particles with a known probability distribu-
tion. The offspring particles survive for one-time unit, and produce a random

number of offspring, independently from each other, and the process contin-
Xn-1

ues. Put formally, X,, = Z Z; where Z; is the size of the offspring of the ith
i=1

particle in the (n — 1)st generation. The distribution of the offspring size Z;

is identical for all particles, with p, = P(Z; = k), k =0,1,..., E(Z) = pu,

and Var(Z;) = 0.

PROPOSITION 8.1. A branching process is a Markov chain.

PROOF: To prove that the Markov property holds, we use the fact that the
distribution of the number of offspring for each individual particle is inde-
pendent of the size of the current and all previous generations. We write

]P)(Xn = ]n’XO = Jo, X = Jiye - 7Xn71 = jnfl)

1A French statistician Jules Bienaymé first addressed the problem of survival of family
names in his 1845 article “De la loi de multiplication et de la durée des familles.” Société
Philomatique de Paris. Extraits des Procés-Verbauz des Séances: 37 — 39. This problem
was rediscovered later by Englishman Sir Francis Galton who posed the problem (under
the number 4001) in The Educational Times and Journal of the College of Receptors, Vol.
XXV, No. 143, on page 300. The solution by English mathematician Reverend Henry
William Watson was published in the same journal, Vol. XXVI, No. 148, on page 115.
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jnfl

:P(Z Zi:jn|X0:jU> Xlzjlv"'aanlzjnfl)

=1

jnfl

=P(D Zi=jn|Xn1=jn1) =P(Xp =jn| Xp-1 = jn1). O

i=1

PRrROPOSITION 8.2. Consider a branching process with a single initial an-
cestor, Xo = 1.

(a) The mean of the size of the nth generation is E(X,,) = u™.
(b) The variance is Var(Xy) = 0, Var(X;) = 02, and for n > 2,

o u’“(%) if o # 1

2

Var(X,) = { .
o°n, if p=1.

PROOF: (a) To find the expected value of X,,, we condition on the value of
the size of the previous generation X, ;. We write

Xﬁ,1

E(X,) = E[E(X, | X,1)] = ]E[E( Z 7| Xn_lﬂ

= E(X,1 B(Z)) = pE(X,1) = (PE(X, ) = -+ = p"E(Xo) = 1"

(b) The variance of X, = 1is 0. The variance of X; = Z; is 0. To compute
the expression for the variance of X, for n > 2, we condition on the value of
X,,—1. We obtain

Xﬁ—l

Var(X,) = Var[E(X, | X,_1)] + E[Var(X, | Xo_1)] = Var [E( > Z,-]Xn_l)]

+E[Vm~( Z ZinM)] = Var[X,1E(Z;)] + E[X,_1Var(Z;)]

i=1

= Var(pX,_1) + E(c? X,,_1) = p*Var(X,_1) + o> p"*
= 12 [,tf Var(X,_s) + o? u”_ﬂ + ot "t = ptVar(X,_o) + o (u" ™)
— . = /LG_QVCLT(Xl) 4 02(/Ln_1 N +,U2n_3) — 02(Mn—1 o NQTL_Q)

1 _ n
Pt n A,
1 —p

=" A+ 4 ) = 0P Mn—l(

and if ;1 = 1, the variance is equal to o?n. O
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EXAMPLE 8.1. (a) Suppose that the distribution of the size of the offspring
is Bernoulli(%). We know that p = % and 0% = i. Therefore, the expected

size of the nth generation is E(X,) = (3)" with the standard deviation

VI = [ @ (54 = @ - )

(b) Assume now that the distribution of the offspring size is Binomial(2,1/2).
It means that p = 1 and 0? = 1/2. Hence, E(X,) = 1, and the standard

deviation is \/Var(X \/_

(¢) Here we will assume that the distribution of Z;’s is Binomial(3,1/2).
Thus, the mean p = 3/2 and variance is 02 = 3/4. The mean of the size of
the nth generation, therefore, is found as E(X,,) = (3/2)" and the standard

deviation is y/Var(X,,) = \/ 1(_%7)") = \/(%)n((%)" -1). O

Branching processes are classified according to the value of the mean size of
the offspring. If 1 < 1, the process is called subcritical, if © = 1, it is called
critical, and if p > 1, it is called supercritical.

The probability of extinction is defined as the probability that a branching
process with one initial ancestor will eventually have no particles. Put math-
ematically, let my denote the probability of extinction. Then

= lim P(X, =0|X,=1).

n—o0

PROPOSITION 8.3. (a) For a subcritical (1 < 1) process, the probability of
extinction is 1 (mp = 1). Intuitively, if not enough particles are being born,
the population will surely go extinct.

(b) For a critical (u = 1) process, mp = 1 (so the population is guaranteed
to become extinct), unless Z; = 1. In this case, the population consists of a
single particle throughout all generations.

(c) For a supercritical (u > 1) process, the extinction can happen with a
positive probability, but this probability is less than 1. In fact, my is the
smallest positive solution of the equation

o = Z P(extinction| X1 = k) p Z g Dk-
k=0 k=0
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Note that my = 1 is always one of the roots, which helps reduce this equation
by one degree in case it has a polynomial form. O

ExAMPLE 8.2. Going back to Example 8.1, we see that when the distribu-
tion of the offspring size is Bernoulli(1/2) (un = 1/2) or Binomial(2,1/2)
(1 = 1), the population will go extinct with probability 1. However, in the
case of Binomial(3,1/2), the extinction of the population is not a sure thing.
It will happen With probability my where 7 is the smallest positive root of
mo = g (1/2)% + 7T0 (3)(1/2)® + 75 (3)(1/2)* + 75 (1/2)?, or, rewritten in the
standard form, 7§ + 373 — 5m9 + 1 = 0. Since 7o = 1 is a solution, the cubic
equation is reduced to the quadratic one 73 + 4wy — 1 = 0, which roots are
—2—+/5 and /5 — 2. The probability of extinction is the positive of the two
roots, 7 = /5 — 2 = 0.236068. O

EXAMPLE 8.3.  Suppose a branching process {X,, n > 0} starts with a
single particle and the particles multiply according to a geometric distribu-
tion with the probability mass function p(x) = p(1 —p)*, z=0,1,2,.....

(a) The mean of the geometric distribution is p = E(Z,) = %. The process
is subcritical if 4 < 1, or % < 1, or p > 0.5. The process is critical if 4 =1
or p = 0.5. The process is supercritical if > 1, or p < 0.5.

1 — n
(b) The average size of the nth generation is E(X,) = u" = (_p) . The
D
p

, and hence, if p # 0.5,

variance of the geometric distribution is o2 =

Var(x,) = ot (1220 < o p(ony (G

L—p p p 122
5150 (- (50))
2p—1%\ p p
1—
pr:O.5,VaT(Xn):02n:#z?n.
p

(c) To find the probability of extinction as a function of p,0 < p < 0.5, we
note that my is the smallest positive solution of the equation

Zwopl— pnz%ml— #.

p)
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155) = 0. Therefore, my = P

This is a quadratic equation (mg — 1)(mg — ,
-P

Forp>05 =1 0O

8.2 Simulations in R

SIMULATION 8.1. Here we simulate generation sizes for subcritical, critical,
and supercritical processes. We assume that each population starts with a
single initial particle and the respective offspring distributions are binomial
with parameters n =3, p=02 (u=np=10.6),n =5, p=02 (up=1), and
n=3,p=0.6 (u=138).

#subcritical branching process, mu=0.6

k<- 1
N<- ¢()
N[1]<- 1

set.seed(300168)
for (i in 2:100) {
N[il<- sum(rbinom(N[i-1],3,0.2))
if (N[i]==0) {
break }

N
[11 12210

#critical branching process, mu=1
N<- ¢cO)
N[1]<- 1

set.seed(3554218)
for (i in 2:100) {
N[il<- sum(rbinom(N[i-1],5,0.2))
if (N[i]==0) {
break }

N

(1] 1 3 6 610 6 7 2 3 3 2 1
[13] 1 ©
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#supercritical branching process, mu=1.8
N<- ¢cO)
N[1]I<- 1

set.seed (965823)
for (i in 2:20)
N[i]<- sum(rbinom(N[i-1],3,0.6))

N

[1] 1 2 3 7 13 23
[7] 41 79 128 236 422 789
[13] 1435 2609 4764 8594 15565 27964
[19] 50574 91053

From the above simulation, we see that the subcritical process dies out
quickly, the critical takes a bit longer to die out, but the supercritical process
grows to a large number of particles and doesn’t become extinct. O

SIMULATION 8.2. In this simulation, we generate and plot a trajectory of
a branching process, in which offspring distribution is binomial with param-
eters n = 3 and p = 0.7. We utilize a self-referencing function in R and
request to plot five generations of the process. The code is as follows.
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library(tidyverse)

#specifying parameters gen.max<- 5
prob<- 0.7

#specifying seed
set.seed(2443534)

#simulating trajectory

level.segment<- function(gen, y, branch.num) {

branch <- data.frame(x=c(), y=c(), xend=c(), yend=c())
gen.remaining<- gen.max-gen-1

if (gen.remaining < 0) return(branch)

if (branch.num > 0) {
branch<- rbind(branch, data.frame(x=gen, y=y, xend=gen+l, yend=y),
level.segment (gen=gen+l, y=y, branch.num=rbinom(1, 3, prob)))

+

if (branch.num > 1) {

branch<- rbind(branch, data.frame(x=gen, y=y, xend=gent+l, yend=y+
3"gen.remaining), level.segment(gen=gen+l, y=y+3’gen.remaining,
branch.num=rbinom(1, 3, prob)))

}

if (branch.num > 2) {

branch<- rbind(branch, data.frame(x=gen, y=y, xend=gen+1,
yend=y-3"gen.remaining), level.segment(gen=gen+1,
y=y-3"gen.remaining, branch.num=rbinom(1, 3, prob)))

}

branch

}

bp<- level.segment(0, 0, rbinom(1, 3, prob))

#plotting trajectory

plot(bpl,1], bpl[,2], type="n", yaxt="n", xlim=c(0,5),
ylim=c(range(bp)), xlab="Generation", ylab="Branching process",

panel.first=grid())

segments (bp[,1], bpl[,2], bpl[,3], bpl,4], 1wd=2, col="blue")
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8.3 Applications of Branching Process

APPLICATION 8.1. One of the research interests of cultural anthropologists
is that of a long-term history of population dynamics. Suppose a certain
geographic area was initially populated by 25 families with 25 women of
child-bearing age. In modern days, when a census of that area was taken,
there were 19,856 women of child-bearing age. Ten percent of them had one
daughter, 20% had two daughters, 60% had three daughters, and the others
didn’t have any daughters.
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(a) From these data, we can estimate the mean size of female offspring. We
have 1z = (0)(0.1)+(1)(0.1) +(2)(0.2) + (3)(0.6) = 2.3. This is a supercritical
process. The extinction of each family in this population is not going to hap-
pen for sure. In fact, the estimated probability of extinction of each family
g solves 7o = 0.1+0.17y+0.272+0.6 T3, or, equivalently, 672 + 87y —1 = 0.
The solution is 7y = @ = (0.115069. The estimated probability that all
the 25 families become extinct is 75° which is very close to zero. However, the
probability that at least one of the 25 families becomes extinct is computed
as 1 — (1 —0.115069)% = 0.952931.

(b) From the data, we can also assess how long ago the initial settlement
took place. We know that on average, the size of the nth generation is
(25)(5™) = (25)(2.3)". Therefore, (25)(2.3)" = 19,856. From here, i =
In(19,856/25)/1n(2.3) = 8.0169 or about eight generations. Assuming that
it takes around 25 years for a generation to mature, we can say that the
settlement was established about (8)(25) = 200 years ago. O

APPLICATION 8.2. In epidemiology, the most basic model of the spread of
an infectious disease is a branching process. An initially infected individual
will either recover, for instance, with probability 0.1 without infecting oth-
ers, or will infect a zero-truncated Poisson()\) random number of individuals
where A\ = 2.4, say.

(a) To find the mean of the nth generation of infected individuals, we note
that the probability mass function for the offspring is p(0) = 0.1 and p(n) =

A" 6—/\ (24)n 6_2'4 ]
(O'9>H o = (0.9) ey 1,2,3,.... The mean of this
A 0.9)(2.4
distribution is ¢ = (0.9) P (1 _)6(_2'4) = 2.375501. The variance is
— AT e 0.9 0.9
2 _ Z 2 2 _ 2 2 _
g —(09) nml_e_)\—ﬂ—l_e_A(A"‘A)—M—m(24+

(2.4)2) — (2.375501)2 = 2.433697.

(b) The expected number of infected individuals in the nth generation is
p" = (2.375501)", and the standard deviation is

I—pm \/ 1 —(2.375501)"
2 =1 — /(24 2. 1)n—1
or () = essoonysrssony— ()

= /(1.769317)(2.375501)1 ((2.375501) — 1),

(c) Since g > 1, this is a supercritical process. The probability 7y that the
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infection stops spreading is the smallest positive solution of the equation

N (24 e
mo = (0.1)(m0)° + Z 0 (0.9) nl 1 — 24’
n=1 ’

or

0.9 o= (2.4m)" 0.9
mo=01 + 62_4_12( .0) —01 + <e2~4”0—1).
n=1

Solved numerically, myp = 0.1340992. The lines of code that produce this
answer follow.

library(rootSolve)
equation<- function(x)
x-0.1-0.9/(exp(2.4)-1) *(exp(2.4%x)-1)

uniroot.all(equation, ¢(0,0.99))
0.1340992

O

Exercises for Chapter 8

EXERCISE 8.1. Consider a colony of bacteria. Bacteria are known to repro-
duce asexually by binary fission, splitting into two identical cells. Suppose
at time 0 the colony size is Xy = 100 bacteria. Suppose also that at the
end of a time unit, each bacterium, independently of the others, dies with
probability 0.25, splits into two with probability 0.6, or continues living with
probability 0.15.

(a) Show that the colony growth can be modeled as a supercritical branching
process. Find the expected size of the nth generation and its variance.

(b) Compute the extinction probability for descendants of each bacterium.
(c¢) Find the probability that descendants of at least one of ten bacteria go
extinct.

EXERCISE 8.2. Consider a branching process with a sole ancestor and a
Poisson(A) proliferation distribution.

(a) Determine the values of A for which this process is supercritical (critical,
subcritical).

(b) Give the expressions for the mean and variance of the size of the nth
generation.
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(c) Give the equation that the extinction probability solves. Plot a graph of
the numeric solution as a function of A > 1.

EXERCISE 8.3. Based on work by Alfred J. Lotka? who analyzed the data
from the 1920 U.S. Census, suppose that male offspring has a zero-adjusted
geometric distribution of the form:

p(0) = 0.4828 and p(n) = (0.228292)(0.5586)" ! if n=1,2,3,....

(a) Find the expected size of male offspring and its standard deviation.

(b) Consider a single male ancestor. Find the expected size of the nth gen-
eration of his descendants and its standard deviation.

(c) Compute the probability of extinction.

EXERCISE 8.4. Parlaying in gambling is defined as a series of bets in which
winnings are used as a stake for further bets. This process can be modeled
as a branching process. Suppose a gambler starts with a stake of $1, and
can win $1 with probability 0.3, or $15 with probability 0.2, or $20 with
probability 0.1, or $0 with probability 0.4.

(a) Show that this is a supercritical process.

(b) Find the expected winnings on the fifth bet.

(c) Find the probability that the gambler’s stake eventually turns into $0.

EXERCISE 8.5. The spread of computer viruses is often modeled as a branch-
ing process. Assume that initially one computer is infected with a virus, and
every day the virus is sent to other computers which number has a discrete
uniform distribution between 0 and 3.

(a) Is this process subcritical, critical, or supercritical?

(b) What is the average number and standard deviation of infected comput-
ers on day 107

(c) Will the spread of the virus die out with probability 17 If not, find the
extinction probability.

(d) Simulate the number of infected computers during 10 days. What is the
simulated total number of infected computers?

EXERCISE 8.6. Consider a branching process that starts with a single par-
ticle in generation 1. Assume that the offspring has a distribution with the
probability mass function p(0) = 0.1, p(1) = 0.4, p(2) = 0.5.

(a) Generate the size of the first 20 generations of this process. What is the

2Lotka, A. J. (1931a). “The extinction of families, 1.” Journal of the Washington
Academy of Sciences, 21(16): 377 — 380; and Lotka, A. J. (1931b). “The extinction of
families, I1.” Journal of the Washington Academy of Sciences, 21(18): 453 — 459.
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size of the offspring of the 19th generation? How many total particles are in
this population?

(b) Simulate and plot a sample trajectory of this process for the first six
generations.
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Chapter 9

Brownian Motion

9.1 Definition of Brownian Motion

A stochastic process {B(t), t> } is called a standard Brownian motion' (or
a Wiener process®) if: (i) B(0 ) = 0, (ii) it has independent and stationary
increments, and (iii) B(t) ~ N(0, t), t > 0.

REMARK 9.1. Brownian motion is sometimes termed the Bachelier process.
In his 1900 paper® a French mathematician Louis Bachelier derived the Brow-
nian motion as the limit of random walks.

PROPOSITION 9.1.
(a) Brownian motion is everywhere continuous but nowhere differentiable.
(b) Brownian motion hits every real number infinitely many times.

PROOF: The proofs of both statements are omitted. O

'English botanist Robert Brown observed the movement of dust particles in liquid and
described the motion in Brown, R. (1828). “A brief account of microscopical observations
made in the months of June, July and August, 1827, on the particles contained in the
pollen of plants; and on the general existence of active molecules in organic and inorganic
bodies.” Philosophical Magazine, Series 2, 4: 161 — 173.

2Norbert Wiener proposed a rigorous mathematical model for a Brownian motion in
Wiener, N. (1921). “The average of an analytic functional and the Brownian movement.”
Proceedings of the National Academy of Sciences of the United States of America, 7(10):
294 — 298.

3Bachelier, L. (1900). “Théorie de la spéculation.” Annales Scientifiques de I’Ecole
Normale Supérieure, 17: 21 — 86.

171



PrROPOSITION 9.2. For a standard Brownian motion, the covariance be-
tween B(s) and B(t) is Cov(B(s), B(t)) = min(s,t), s,t> 0.

PROOF: Suppose s < t. Since the mean of a Brownian motion is zero and
its increments are independent, we obtain

Couv(B(s), B(t)) =E(B(s)B(t)) =E[B(s)(B(t) — B(s) + B(s))]
=E[B(s)(B(t) - B(s))] +E(B(S )" = E(B(s))E(B(t) - B(s)) + E(B(s))
= E(B(s)) Var(B(s)) = s = min(s,t). O

2

PROPOSITION 9.3. (RESCALING RELATION). For any real a, B(at) and
vaB(t) have the same distribution, where B(t) denotes a standard Brow-
nian motion.

PROOF: The distribution of B(at) is N(0, at) by the definition of a Brown-
ian motion. Also, since B(t) ~ N(0,t), we have that \/aB(t) is also normal
with mean E(y/aB(t)) = aE(B(t)) = 0 and variance Var(y/aB(t)) =
aVar(B(t)) =at. O

EXAMPLE 9.1. Suppose we want to compute the conditional probability
that a standard Brownian motion is below 3 at time 3, given that it is equal
to 1 at time 1. We write

P(B(3) < 3|B(1)=1) =P(B(3) — B(1) <3—-1|B(1) =1)
= P(B(3) — B(1) < 2) (by independence of increments)
= P(B(2) < 2) (by stationarity of increments)
= IP’(\/§B 1) <2) (by the rescaling relation)

P(B(1) < V2) = ®(v/2) = 0.92135. O

Here and later ®(:) denotes the standard normal cumulative distribution
function.

PROPOSITION 9.4. (DISTRIBUTION OF HITTING TIME). Denote by 7T, the
first time a standard Brownian motion hits a level a > 0. The cumulative

distribution function of T, is Fr,(t) = 2(1 — ®(a/V1)), t > 0.
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PROOF: We write P(B(t) > a) = P(B(t) > a|T, < t)P(T, < t) +
P(B(t) > al|T, > t)P(T, > t). f T, > t, B(t) hasn’t reached the level a
vet, and it is impossible to have B(t) > a. Thus, the second term is equal
to 0.

Also, from symmetry (see the picture), the Brownian motion is as likely to
go up after hitting a as down, therefore,

P(B() > a|T. < 1) =B(B(H) < a|T, < 1) =

B(f) A

NYN
ok

Consequently, P(B(t) > a) = 1P(T, < t), and hence, P(T, < t) =
2P(B(t) > a) = 2(1 — ®(a/Vt). O

REMARK 9.2. In the proof above, we used the symmetry property of a
Brownian motion. Put rigorously, this property is known as the reflection
principle and is stated as: if a path of a Brownian motion reaches a value
B(s) at time s, a path after time s has the same distribution as its reflection
about the value B(s).

EXAMPLE 9.2. The probability that a Brownian motion reaches level 1 by
time 5 is P(7} < 5) = 2(1 — ®(1/v/5)) = 0.6547. O
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PROPOSITION 9.5. (DISTRIBUTION OF MAXIMUM VALUE). Denote by M (t)
the maximum value that a Brownian motion attains on the interval [0, ¢]. The
cumulative distribution function of M(t) is Fyuy(a) = 2®(a/V/t) — 1, for
a>0andt > 0.

PROOF: Note that M(t) > a > 0, if and only if T, < t. Therefore,

P(M()g) 1= B(M(t) > a) = 1 - B(T, < 1)
~2(1 — ®(a/V1)) = 20(a/Vi) — 1. O

EXAMPLE 9.3. The probability that a Brownian motion is below 2 every-
where on the interval [0, 4] is P(M(4) < 2) = 2®(2/v4) —1 = 2d(1) —
1 = 0.682689. O

9.2 Processes Derived from Brownian Motion

9.2.1 Brownian Bridge

A Brownian bridge is a stochastic process { X (t), 0 < ¢ < 1} that satisfies the
following properties: (i) X (¢) is normally distributed, (ii) X (0) = X (1) =0,
(iii) E(X(t)) = 0, (iv) Var(X(t)) = t(1 —t), and (v) Cov[X(s), X(t)] =
min(s,t) — st, 0 < s,t < 1.

We can think of a Brownian bridge as a Brownian motion on the interval
[0,1], tied at the two ends. Note that the variance is equal to 0 at both
ends of the interval as it should be since the values are deterministic at those
points, and increases toward the middle, reaching its maximum at t = 1/2.

More generally, a Brownian bridge on the interval [0, 7], {X(¢), 0 <t < T}
is such that: (i) X(¢) is normally distributed, (ii) X(0) = X(T") = 0, (iii
E(X(t)) = 0, (iv) Var(X(t)) = t(1 —t/T), and (v) Cov[X(s), X (t)]
min(s,t) — st/T, 0 < s,t <T.

—

PROPOSITION 9.6. Suppose that {B(t), ¢t > 0} is a standard Brownian mo-
tion, and let X (t) = B(t) —tB(1), 0 <t < 1. Then {X(¢),0<t<1}isa
Brownian bridge.
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PROOF: X (t) has a normal distribution because B(t) is normally distributed.
The mean of X (t) is E(X(¢)) = E(B(t)) — tE(B(1)) = 0 — (¢)(0) = 0. Now,
recall that Cov(B(s), B(t)) = E(B(s)B(t)) = min(s,t) (see Proposition 9.2).
Assuming s < ¢, we compute the covariance between X (s) and X (t) as

Cov(X(s), X(t)) = E[B(s) — sB(1), B(t) — tB(1)]
— E(B(s)B(t)) — tE(B(s)B(1)) — sE(B(1)B(t)) + stE(B(1))?
— min(s, ) — tmin(s, 1) — smin(1, ¢) + stVar(B(1))
— s—ts—st+st=s—st=min(s,t) — st. O

REMARK 9.3. The proof of the above proposition can be extended (do it!)
to show that {X(t) = B(t) — % B(T), t > 0} is a Brownian bridge on the
interval [0, 7.

9.2.2 Brownian Motion with Drift and Volatility

Let {B(t), t > 0} denote a standard Brownian motion. A stochastic process
{X(t) = pt + 0 B(t), t > 0} is called a Brownian motion with the drift
coefficient u and wvolatility (or diffusion) coefficient o.

PROPOSITION 9.7. The distribution of X (¢) is normal with mean pt and
variance o2 t. Also, the covariance between X (s) and X (t) is o min(s, t).

PROOF: The distribution of X (¢) is normal since B(t) is normally distributed.
The mean of X (t) is E(X(¢t)) = ut + ocE(B(t)) = pt, and the variance is
Var(X(t)) = Var(ut + o B(t)) = 0?Var(B(t)) = o*t. The covariance be-
tween X (s) and X (t) is Cov(X(s), X (t)) = E<(,us+a B(s))(ut+o B(t))) —

E(us+oB(s)E(ut+o B(t) = (us)(ut) + o”B(B(s)B(t)) — (us)(ut) =

o?min(s,t). O

9.2.3 Geometric Brownian Motion

A stochastic process {Y(t) = Y(0)exp (ut + o B(t)),t > 0} is called a
geometric (or exponential) Brownian motion.
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PROPOSITION 9.8.  The distribution of Y (¢) is log-normal with the density
function

1 (Iny —InY(0) — ut)?
fY(t)(y) = m eXP(‘ 2021 >> y > 0.

The mean and variance are

]E(Y(t)) = Y(O) eut+g2t/2 and Var(Y(t)) _ [Y<O)]262ut+g2t(eg2t B 1)'

PROOF: Since B(t) ~ N(0,t), the cumulative distribution function of Y'(¢)
is derived as follows:

Fyp(y) =PY () <y)=P(pt + 0 B(t) <Iny —InY(0))

Iny —InY(0) — ut Iny —InY(0) — pt
:P<B(t)§ny nY(0) u):q)(ny nY(0) u>7y>0'
o o/t
The density is
1 (Iny —InY(0) — ut)?
— - - <_ ) > 0.
fY(t)(?J) Y(t)(y) \/my exp 9921 Y

Using the expression for the moment generating function of B(t) ~ N(0, t),
E(e"B(t)) =7 2 we get that the mean of Y(t) is
E(Y(t)) = E(Y(O) e,ut-l—UB(t)) = Y(0) eutE(eaB(t)) — Y(0) euHUzt/g’
and the variance is
Var(Y (1)) = B(Y ()" = [E(V())]" = B(¥(0) e*+770)" — (v(0) ert+ )7
= [Y(O)]Q @2MtE(620'B(t)) _ [Y(O)]2 e?ut+g2t _ [Y(O)]2 62Mt+202t o [Y(O)]Q €2Mt+0'2t
= [Y(O)]2 62,ut+02t (6021‘, B 1). O

9.2.4 The Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck process! {X(¢), ¢t > 0} is a stochastic process of
the form

_ —0t _ o0t Lefet o2t _ 1)
X(t) = X(0)e " + p(1 )+@ B( 1)

4First appeared in Uhlenbeck, G. E. and L. S. Ornstein (1930). “On the theory of
Brownian motion.” Physical Review, 36: 823 — 841.
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Here p is the drift, ¢ > 0 is the volatility, and # > 0 is an additional pa-
rameter.

PROPOSITION 9.9. The mean of X(t) is X(0)e " + u(1—e™%"), and the

. . O _
variance is %(1 —e 29t).

PROOF: The mean of X (t) is

E(X(t) = X(0)e "'+ p(1—e") +

efGtE(B(e%t _ 1))

g
<>

= X(0)e "+ p(1—e""),

since the expected value of a Brownian motion (in this case, a time-transformed
Brownian motion) is equal to 0. The variance of X (¢) is

o? o? o
Var(X(t)) = %e’QGtVar(B(e%t—l)) = %e’%t(e%t—l) = —

REMARK 9.4. Note that as ¢ increases, the mean of the Ornstein-Uhlenbeck
process tends to p. Therefore, the drift u is the long-term mean, and the
process is called mean-reverting. The parameter 6 represents the rate by
which the process reverts towards the mean. In addition, the variance of this
process is bounded by a constant 02/(29), and in the long run, approaches
this constant. O

9.3 Simulations in R

SIMULATION 9.1.  (ONE-DIMENSIONAL STANDARD BROWNIAN MOTION). The
code below simulates three trajectories of a standard Brownian motion on
the time interval that has 500 increments of size 0.01. The plot follows.
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BM<- matrix(NA, nrow=500, ncol=3)

#specifying seed
set.seed(8221056)

#simulating trajectories
for (j in 1:3) {
BM[1,jl<- 0

for (i in 2:500)
BM[i,jl<- BM[i-1,j] + sqrt(0.01)*rnorm(1)
}

#plotting trajectories
matplot (BM, type="1", 1lty=1, 1lwd=2, col=2:4, ylim=c(range(BM)),
xlab="Time", ylab="Brownian motion", panel.first=grid())
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SIMULATION 9.2. (TWO-DIMENSIONAL BROWNIAN MOTION). A two-dimensional
Brownian motion is a stochastic process that keeps track of two coordinates,
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both of which are independent Brownian motions. The R syntax below sim-
ulates and plots one trajectory of a two-dimensional Brownian motion.

BM<- matrix(NA, nrow=5000, ncol=2)

#specifying seed
set.seed(34885002)

#simulating two independent Brownian motions
for (j in 1:2) {
BM[1,jl<- 0

for (i in 2:5000)
BM[i,jl<- BM[i-1,j] + sqrt(0.01)*rnorm(1)
}

#plotting trajectory
plot(x=BM[,1], y=BM[,2], type="1", col=4, xlab="x", ylab="y",
xlim=range (BM[,1]), ylim=range(BM[,2]), panel.first=grid())

#adding starting point
points(cbind(BM[1,1], BM[1,2]), pch=16, cex=2, col='"green")

#adding ending point
points(cbind (BM[6000,1],BM[5000,2]), pch=16, cex=2, col="red")
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SIMULATION 9.3. (THREE-DIMENSIONAL BROWNIAN MOTION). A three-
dimensional Brownian motion is a stochastic process that models position by
three coordinates, defined by three independent Brownian motions. Below we
simulate and plot a single trajectory of a three-dimensional Brownian motion.
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nsteps<- 2000
BM<- matrix(NA, nrow=nsteps, ncol=3)

#specifying seed
set.seed(1133205)

#simulating three independent Brownian motions
for (j in 1:3) {
BM[1,jl<- 0

for (i in 2:nsteps)
BM[i, jl<- BM[i-1,j] + sqrt(0.01)*rnorm(1)
h

#plotting trajectory

library(plot3D)

lines3D(BM[,1], BM[,2], BM[,3], col=4, xlab="x", ylab="y", zlab="z",
xlim=range (BM[,1]), ylim=range(BM[,2]), zlim=range(BM[,3]), bty="b2",
ticktype="detailed")

#adding starting point
points3D(x=BM[1,1], y=BM[1,2], z=BM[1,3], add=TRUE, pch=16, cex=2,
col="green")

#adding ending point

points3D(BM[nsteps,1], BM[nsteps,2], BM[nsteps,3], add=TRUE, pch=16,
cex=2, col="red")
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SIMULATION 9.4. (BROWNIAN BRIDGE). The following code generates three
trajectories of a Brownian bridge. First we simulate three trajectories of a
standard Brownian motion {B(t), ¢ € [0,500]}, and then turn them into
Brownian bridge trajectories by computing {X(t) = B(t) — s55B(500), t €
[0,500]} (see Remark 9.3). The graphical output is given below.
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#defining Brownian motion and Brownian bridge as matrices
BM<- matrix(NA, nrow=500, ncol=3)
BB<- matrix(NA, nrow=500, ncol=3)

#specifying seed
set.seed(76435567)

#simulating trajectories of Brownian motion
for (j in 1:3) {
BM[1,jl<- 0

for (i in 2:500)
BM[i,jl<- BM[i-1,j] + sqrt(0.01)*rnorm(1)
+

#computing trajectories of Brownian bridge
for(j in 1:3) {

for (i in 1:500)

BB[i,jl<- BM[i,j]-i/500%BM[500, j]

X

#plotting trajectories of Brownian bridge
matplot (BB, type="1", 1lty=1, 1lwd=2, col=2:4, ylim=c(range(BB)),
xlab="Time", ylab="Brownian bridge", panel.first=grid())
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SIMULATION 9.5. (BROWNIAN MOTION WITH DRIFT AND VOLATILITY). Below
we generate three trajectories of a Brownian motion with drift 4 = 1.3 and
volatility ¢ = 0.5. The code and plot follow.
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#specifying parameters
mu<- 1.3
sigma<- 0.5

#defining Brownian motion as matrix
BM<- matrix(NA, nrow=500, ncol=3)

#specifying seed
set.seed(8463338)

#simulating trajectories
for (j in 1:3) {
BM[1,jl<- 0

for (i in 2:500)
BM[i, jl<- mux0.01+BM[i-1,j] + sigmax*sqrt(0.01)*rnorm(1)
}

#plotting trajectories

matplot (BM, type="1", 1lty=1, 1lwd=2, col=2:4, ylim=c(range(BM)),
xlab="Time", ylab="Brownian motion with drift and volatility",
panel.first=grid())
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Brownian motion with drift and volatility
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SIMULATION 9.6. (GEOMETRIC BROWNIAN MOTION). Here we simulate
three trajectories of a geometric Brownian motion with the initial value
Y (0) = 2, the drift coefficient p = 1.3, and volatility ¢ = 0.5. Since the
trajectories of a Brownian motion with these values of drift and volatility
have already been constructed in Simulation 9.5, all we need to do is to ap-
ply the exponential function to the simulated trajectories and multiply by
the initial value. The code and graph follow.

#computing trajectories of geometric Brownian motion
GBMO<- 2
GBM<- GBMO*exp (BM)

#plotting trajectories

matplot (GBM, type="1", 1lty=1, lwd=2, col=2:4,
panel.first=grid(), ylim=c(range(GBM)), xlab="Time",
ylab="Geometric Brownian motion", panel.first=grid())
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SIMULATION 9.7. (THE ORNSTEIN-UHLENBECK PROCESS). We base our
simulation of a trajectory of an Ornstein-Uhlenbeck process {X(t), ¢ > 0}
on the approximate recursive difference equation that it satisfies:

X(t+At)=X(t)+0(u— X(t)At + oVALB(1)

where At > 0 denotes a small increment of ¢. We omit the proof of this
formula as it involves tedious algebra.

We use this relation with time increments At = 1 to simulate a trajectory
for the values of the parameters X (0) = 2,0 = 0.8, p = 1.6, and ¢ = 0.5.
The code and graph follow.
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#specifying parameters
theta<- 0.8

mu<- 1.6

sigma<- 0.5

#specifying seed
set.seed (2043442)

#defining Ornstein-Uhlenbeck trajectory as vector
0U<- ¢c()

#specifying initial value
0U[1]<- 2

#simulating trajectory
for (i in 2:100)
OU[i]l<- 0OU[i-1]+theta*(mu-0U[i-1])+sigma*rnorm(1)

#plotting trajectory
plot(1:100, OU, type="1", 1lty=1, lwd=2, col=4, xlab="Time",
ylab="0Ornstein-Uhlenbeck process", first.panel=grid())
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9.4 Applications of Brownian Motion

APPLICATION 9.1. Animal behavior researchers use the Brownian bridge
to model movements of herds as they walk on their trails during daylight
time and return to their designated lodging for an overnight stay. Suppose
researchers observe the movements of a herd of deer during 8 hours of day-
light. The main goal of the research is to estimate the distance between the
north-most and south-most points that the deer have reached. This distance
approximates the diameter of the deer home range. Assuming that the unit of
measurement is one-tenth of a mile, below we compute the theoretical mean
diameter of the home range in miles, and then simulate 1,000 trajectories to
give an empirical estimate.

(a) It can be shown (see Exercise 9.9) that the expected value of the maxi-

mum of a Brownian bridge on the interval [0, 7] is %@ / % From symmetry,
it can be argued that the minimum is expected to be of the same magnitude

but with a negative sign. Therefore, the expected diameter of the deer home
range is %\ / % — ( — %, / %) = % We will assume that 7" is given in
minutes, and thus, 7" = (8)(60) = 480 minutes. Hence, the theoretical value

of the mean diameter of the home range is \/@ = 27.45873 tenths of a
mile or 2.75 miles.

(b) The code below simulates 1,000 trajectories of a Brownian bridge on the
time interval [0,480] with an increment step of 1, and computes the sample
mean of the range for the simulated trajectories.

189



#defining Brownian motion and Brownian bridge as matrices
BM<- matrix(NA, nrow=480, ncol=1000)
BB<- matrix(NA, nrow=480, ncol=1000)

#specifying seed set.seed(6769712)

#simulating trajectories of Brownian motion
for (j in 1:1000) {
BM[1,jl<- 0

for (i in 2:480)
BM[i,jl<- BM[i-1,j] + rnorm(1)
b

#computing trajectories of Brownian bridge
for(j in 1:1000){
for (i in 1:480)
BB[i,jl<- BM[i,j]-i/480%BM[480, j]
+

#computing ranges

range<- c()

for(j in 1:1000) {

range[jl<- max(BB[,jl)-min(BB[, j1)

#computing sample diameter of home range
print (diameter<- mean(range))

26.80793

Thus, the sample diameter of the home range is 26.80793/10 = 2.68 miles.

O

APPLICATION 9.2.
the behavior of a stock price over time.

A geometric Brownian motion is often used to model
The data set downloaded from

https://finance.yahoo.com/quote/AMZN /history/ contains Amazon.com, Inc.
daily stock prices at the closing time of stock market exchange between
01/02/2020 and 06,/30/2021, a total of 377 business days. First, we plot

the data.
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stock.data<- read.csv(file="./AMZN.csv", header=TRUE, sep=",")

date<- as.P0SIXct(stock.data$Date)
price<- stock.data$Close

#plotting stock price against date
plot(date, price, type="1", 1lwd=2, cex=0, col="blue",
xlab="Time", ylab="Stock price", first.panel=grid())

2500 3000 3500
|

Stock price

2000

2020 2021

Time

Now we estimate the parameters and simulate a trajectory of a geometric
Brownian motion. The model for the stock price is

{X(t)=X(t1)exp(ut+ o B(t)), t1 <t < tar7}.

We express the increments of the natural logarithm of the process as
X(t;)
X(tio1)
We take the time increments of unit length, ¢; —¢;,_; = 1, and argue using

the stationarity of increments that the log-ratios (or log-price increments)
are distributed as u 4 o B(1). That is, they have a normal distribution with

In X(¢;) —In X(t;_1) =In =1 (t; — tis1) + o (B(t;) — B(ti-1)).
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mean j and variance o2. The code given below plots a histogram, estimates
i and o by the sample values, simulates trajectories of the geometric Brow-
nian motion, and plots the actual and simulated prices on the same graph.

#calculating increments of log-price
log.inc<- c()

pricel<- pricel[-1]
pricel.lag<- head(price, -1)
log.ratio<- log(pricel/pricel.lag)

#plotting histogram

library(rcompanion)

plotNormalHistogram(log.ratio, xlab="Log-price increments",
col="1light blue")
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From the histogram, a bell-shaped curve reasonably describes the density
of the log-price increments, thus we conclude that the distribution can be
assumed normal.

#estimating parameters
print (mu.hat<- mean(log.ratio))

0.001581681
print(sigma.hat<- sd(log.ratio))
0.02156408
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#specifying Brownian motion as vector
BM<- c()

#specifying initial value
BM[1]1<- 0

#specifying seed
set.seed(43567347)

#simulating Brownian motion with drift and volatility
for (i in 2:377)
BM[i]l<- mu.hat+BM[i-1] + sigma.hat*rnorm(1)

#computing values for geometric Brownian motion
GBM<-price[1]*exp(BM)

#plotting actual and simulated trajectories

plot(date, price, type="1", 1lty=1, 1lwd=2, col="blue",
xlab="Time", ylab="Stock price", first.panel=grid())
lines(date, GBM, lwd=2, col='"green")

legend ("bottomright", c("Actual price", "Simulated price"),
1ty=1, col=c("blue", "green"))

193



L]

o |

Lo ]

=

S

D |
o © ‘Jf\ .’ | H'\,mf
L]
S A
g g b A
2 ™
® o

=

& N

L]

(=

& - — Actual price

Simulated pricq
T T
2020 2021
Time

O

APPLICATION 9.3. A geometric Brownian motion has another very famous
application in the financial world. In 1997, two American economists Myron
Scholes and Robert Merton were awarded the Nobel Prize in Economics for
the Black-Scholes-Merton Option Pricing model. In 1973, Fischer Black and
Myron Scholes® published the derivation of the model and Robert Merton®
expanded the results. Black died in 1995, so he wasn’t awarded the Nobel
Prize, for it is not given posthumously.

In this application, we discuss the model and derive the final formula. First,
we introduce the key concepts.

®Black, F. and M. Scholes (1973). “The pricing of options and corporate liabilities.”
Journal of Political Economy, 81(3): 637 — 654.

6Merton, R. (1973). “Theory of rational option pricing.
and Management Science, 4 (1): 141 — 183.

”

Bell Journal of Economics

194



In the financial market, a stock option is the right to buy (or sell) a stock at
a predetermined price at a fixed time in the future.

An individual can buy (or sell) the stock at the price X (s) at time s < ¢, and
then sell (or buy) the stock at time ¢ for the price X (¢). Suppose also that
the individual can buy (or sell) at time 0 a stock option that gives him the
right to buy a stock at time ¢ for the price K per share. How much should
he pay for one share of the stock option?

Suppose we loan out $1 today with a risk-free interest compounded contin-
uously at the fixed rate r. Then by time ¢, it would grow into amount $e"?t.
From here, we conclude that a $1 at time ¢ is worth $¢~" in today’s money.
The rate r is termed the discount factor, and the function e™"* is called the
discount function. It represents the present value of an amount of $1 at time ¢.

We will assume that it is a fair market and there is no opportunity for an
arbitrage. That is, there is no opportunity for a sure profit. Under this as-
sumption, the expected return of buying (selling) one share of stock at time
s < t and selling (buying) it at time ¢ is zero, which translates into the iden-
tity involving the present values of the stock prices,

Ele ™" X(t) | X(u), 0 <u<s| =e " X(s). (9.1)

Turning to the stock option, if the price of one share of stock at time ¢ is
below K, it is not reasonable to excise the option. Therefore, the present
value of the option is e "*(X (t) — K), if X(t) > K, and 0, otherwise, which
can be written as e™"* (X (t) — K)*.

Let C' be the price of one share of option at time zero. This is the quantity
that we need to determine. In order not to create an arbitrage opportunity,
we must have

Ele ™" (X(t)—K)" = C]=0,0or C = e "E[(X(t)— K)*]. (9.2)

The Black-Scholes-Merton model assumes that X (t) is a geometric Brow-
nian motion {X(t) = X(0)e*'t7B® ¢ > 0} with the drift parameter p
and volatility o. First, we see under what condition {X(¢), ¢ > 0} satisfies
(9.1), and then plug this process into (9.2) to derive the final expression for C'

Using the independence and stationarity of increments of the Brownian mo-
tion and utilizing the expression of its moment generating function, we write

195



Ele " X(t)| X(u), 0 <u<s] = e_”X(O)E[e“H"B(” | B(u), 0 <u<s]
_ e—rtX(O) €Mt+UB(8)E[BJ(B(t)_B(S))} — Tt X(S) eu(t—s) E(GUB(t_S))
= e "t X(s) eh(t—s)+ (t—s) _ 6—rt+(u+02/2)t—(u+02/2>sX(S) = e "5 X(s),
if and only if 4 + 02/2 = r. This is the sought-for condition on the process
{X(t), t > 0}. We now use it in the expression (9.2). We compute
C =e¢"E[(Xt)-K)T :e”/ X(0)erttoviz _ g
[(X()-K)"] o )

We want X (0) e**+7Vi* — K >0, 50 z > (In(K/X(0))—pt)/(c V). Denote
by A= (ut — In(K/X(0)))/(cVt). Then the lower limit of integration is
—A. We continue

o 1 22
C = X(0 e—(u+a2/2)t/ eut-i-a\/fz - . rtK/
(0) » Work

o0 ]_ z—0o 2
= X(O)/ e dz—e_”K/
—A

2T

L1 .

e 2 dz.

dz

_L
e 2 dz

AoV o S
= X(0) me_QdZ—G_MK/ \/ﬂe_sz

= X(0)®(A + oVt) — e " K ®(A).

To work with a numeric example, suppose the current price of one share of
a stock is X (0) = $100. Suppose the stock price can be modeled by the
Black-Scholes-Merton model with the drift coefficient ;1 = —0.45 and volatil-
ity o = 1.1. We want to compute the cost of the option to buy one share of
the stock at time ¢t = 2 for the cost of K = $120. We write

_ pt = W(K/X(0)) _ (-045)(2) — In(120/100) _
A - P _ NG = —0.69574,
r=pu+ %2 = —0.45+ (L1)° = 0.155,
and

C=X0)P(A+ovt) — e KA)
= (100)®(—0.69574+(1.1)v/2) — e~ ©15)®) (120) &(—0.69574) = $59.09. O
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APPLICATION 9.4. As opposed to stock and option prices that can rise in-
definitely, interest rates and commodity prices move in a limited range. If
their values are high, the demand drops, and consequently, the values drop.
Likewise, if the values are low, demand increases, and eventually, the values
increase. This characteristic is called a reversion to a long-run mean.

The Ornstein-Uhlenbeck (OU) process is a good mathematical model that
captures this mean-reversion property. Below we fit the parameters of the
OU process to a publicly available data set on daily natural gas prices be-
tween 1/4/2010 and 8/11/2020 (downloaded from kaggle.com). Recall that
the OU process solves the difference equation

X(t+At) = X(t) +0(n — X (£))At + oVALB(1).

Using At = 1, we can rewrite this equation as

X(t+1)—X({t)=0u—0X(t)+0oB(1),

and note that this has the form of a linear regression of X (¢4 1) — X (¢) on
X(t). Denotlng by a and b the fitted intercept and slope, respectively, we
can write § = —b and [i = a/@ = —a/b. The volatility o is estimated as the
sample standard deviation of the error term. The code below estimates the
parameters of the OU model and plots the observed and simulated trajecto-
ries.
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gasprice.data<- read.csv(file="./gaspricedata.csv",
header=TRUE, sep=",")

#estimating parameters

inc<- gasprice.data$Price[-1]-head(gasprice.data$Price,-1)
fit<- glm(inc ~ head(gasprice.data$Price,-1))

theta.hat<- -fit$coefficients[2]

mu.hat<- fit$coefficients[1]/theta.hat

sigma.hat<- sigma(fit)

#specifying seed
set.seed(9467108)

#simulating OU process
o0U<- cQ
OU[1]1<- gasprice.data$Price[1]

for (i in 2:length(gasprice.data$Date))
OU[i]<- 0OU[i-1]+theta.hat*(mu.hat-0U[i-1])+sigma.hat*rnorm(1)

#plotting trajectories

plot(as.Date(gasprice.data$Date), gasprice.data$Price,
type="1", lty=1, lwd=2, col=3, ylim=c(0,8), xlab="Time",
ylab="Natural gas price", first.panel=grid())
lines(as.Date(gasprice.data$Date), 0U, lwd=2, col=4)
legend("topright", c("Actual price", "Simulated price"), 1lty=1,
col=3:4)

198



© — Actual price
— Simulated price

MNatural gas price
4
|
——
=
o

|
e
1PN A D

2010 2012 2014 2016 2018 2020

Time

APPLICATION 9.5. Investors are interested in estimating correlation be-
tween various financial investments (for example, stock prices, stock option
prices, bond yields, and commodity prices). To illustrate the concept of cor-
related Brownian motions, below we plot IBM stock prices at the closing of
the stock market between 4/1/2020 and 3/30/2021, and U.S. 10-year trea-
sury bond yields for the same time period. The data were downloaded from
hitps:/ /www.investing.com. The yields were rescaled by a multiplicative fac-
tor of 100 to plot comparable values.
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data<- read.csv(file="./stock_bonds.csv", header=TRUE, sep=",")

time<- as.Date(data$date)
IBM<- data$stock_price
bond<- data$bond_yield*100

#plotting the trajectories

plot(time, IBM, type="1", lty=1, lwd=2, col="blue",
ylim=c(0,200), xlab="Time", ylab="Stock price / Bond yield",
first.panel=grid())

lines(time, bond, lwd=2, col="orange")

legend("bottomright", c("IBM stock", "10-year bond"), 1lty=1,
1lwd=3, col=c("blue", "orange"))
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From the graph, the two curves exhibit somewhat similar behavior. To esti-
mate the correlation coefficient between these two processes, we model them
as correlated Brownian motions with the correlation coefficient p. To remove
the time dependence, we resort to considering fixed-time increments where
time steps are of size 1. The new processes are still correlated Brownian
motions with the same correlation coefficient p (see Exercise 9.15 for proof).
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The sample Pearson correlation coefficient, computed on the increments, is
the maximum-likelihood estimator of p. In our setting, the estimated corre-
lation coefficient between IBM stock prices and 10-year treasury bond yields
is about 0.36. The code and output follow.

#computing increments
IBM.diff<- IBM[-1]-head(IBM,-1)
bond.diff<- bond[-1]-head(bond,-1)

#estimating correlation coefficient
cor (IBM.diff, bond.diff)

0.3612484

O

Exercises for Chapter 9

EXERCISE 9.1. Let {B(t), t > 0} be a standard Brownian motion. Show
that the correlation between B(s) and B(t) is

p(B(s), B(t)) = % 5,1 > 0.

EXERCISE 9.2. Show that the following processes are standard Brownian
motions.

(a) X(t) =tB(1/t)ift > 0, and 0 if ¢ = 0, where B(t) is a standard Brow-
nian motion.

(b) Y(t) = aBi(t) + V1 —a? By(t), t > 0, where B;(t) and B(t) are inde-
pendent standard Brownian motions, and 0 < a < 1.

EXERCISE 9.3. Let {B(t), t > 0} be a standard Brownian motion. Find
the probability that

(a) 0< B(1) <landl < B(3)— B(1) < 3.

(b) 0 < B(1l) < land 1 < B(2) < 3. Calculate numeric value in R.
(¢) 0 < B(l) < land 0 < B(2) < 0.

EXERCISE 9.4. Let {B(t), t > 0} be a standard Brownian motion. Suppose
0 < s < t. Show that the distribution of B(s) + B(t) is normal with mean
0 and variance 3s + .
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EXERCISE 9.5. Let {B(t), t > 0} denote a standard Brownian motion, and
let M(t) = maxo<s<: B(s). By Proposition 9.5, the cumulative distribution
function of M(t) is Fy(z) = 2®@(x/Vt) — 1, x > 0.

(a) Prove that M(t) has the same distribution as |B(t)|, the absolute value
of B(t).

(b) Show that the expected value of M (t) is E(M(t)) = \/Z

s
(c) Compute the mean of the maximum on the interval [0, 5]. Simulate 1,000
trajectories of a standard Brownian motion on this interval and find an em-
pirical estimate of the mean of the maximum.

EXERCISE 9.6. Let {B(t),t > 0} denote a standard Brownian motion.
Show that

(a) {X(t) =—DB(t), t > 0} is also a standard Brownian motion.

(b) P(ming<,<; B(s) < x) = 2®(x/+/t) where z < 0.

(c) Find the probability that the minimum of a standard Brownian motion
is below -3 on the interval [0, 5].

(d) Generate 1,000 trajectories of a standard Brownian motion on the inter-
val [0, 5] and find the sample probability that the minimum falls below -3.

EXERCISE 9.7. (a) Let {B(t),t > 0} be a standard Brownian motion.
Show that

X(0) = {(1—t)B(ﬁ), if0 <t <1,
0, ift=1

is a Brownian bridge.

(b) Let {X(t), 0 <t <1} be a Brownian bridge. Show that

B(t) = (1+t)X(1L+t), £>0,

is a standard Brownian motion.

(c) Suppose {X(t),0 <t < 1} is a Brownian bridge and Z is a standard
normal random variable independent of the Brownian bridge. Show that
B(t) = X(t) +t Z is a standard Brownian motion on [0, 1].

EXERCISE 9.8. Let {B(t), t > 0} be a standard Brownian motion.
(a) Show that for 0 < s < ¢, the conditional distribution of B(s), given

B(t), is normal with mean ¢ B(t) and variance ; (t—s).
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(b) Let B(t) = 0. Argue that the process in part (a) is a Brownian bridge
on the interval [0,¢]. Note: This gives us another way to define a Brownian
bridge, as a Brownian motion conditioned on the value at the endpoint.

EXERCISE 9.9. Let {B(t), 0 <t < T} be a standard Brownian motion on
the interval [0, T, and let M (T") denote the maximum of this process.

(a) Use the reflection principle to argue that P(M(T) > a,B(T) < z) =
P(B(T) > 2a—z),a >0,z < a.

(b) Show that the conditional density of M (T") given that B(T') = x has the
form

2(2a — ) _2a(a-=)

fM(T)\B(T)(a|$>:T€ T a>0, x<a.

(¢) Denote by Mpp(T') the maximum of a Brownian bridge on the interval
[0,T]. By the result of Exercise 9.8, the maximum of a Brownian bridge is
the maximum of a Brownian motion conditioned on the value at time 7". Use
the formula derived in part (b) to show that the density of Mpp(T) is

da 22

v (a) = Te_ T, a>0.

1 T
(d) Show that the expected value of Mpg(T) is 5 %

EXERCISE 9.10. A herd of bison graze on a field and return to the water
source once a day.

(a) Model the daily movement of the herd as a two-dimensional Brownian
bridge, where both coordinates are independent Brownian bridges. Use min-
utes as time units. Plot a simulated trajectory.

(b) Suppose the home range of the herd is rectangular in shape and the
linear distance unit is one-tenth of a mile. Find its expected area in square
miles. Hint: Use the formula for the mean value of the diameter of a one-
dimensional home range derived in Application 9.1.

(c) Simulate 1,000 trajectories of the daily movement of the herd and pro-
duce an empirical estimate of the area covered, assuming a rectangular shape
of the home range. How does it compare to the theoretical value from part
(b)?

EXERCISE 9.11. Ornithologists have collected data on bird population size
in a bird viewing preserve for 5 years (60 months). The data are given in the
table below.
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Month Size | Month Size | Month Size | Month Size

1 10 16 232 31 472 46 888

14 17 276 32 510 47 927

3 47 18 331 33 510 48 898

4 50 19 346 34 523 49 949

5 60 20 348 35 594 50 979

6 91 21 369 36 565 51 994
7
8

118 22 405 37 634 92 1025

166 23 399 38 631 93 1003
9 119 24 410 39 671 o4 962
10 123 25 460 40 744 %) 968
11 109 26 400 41 782 26 991
12 160 27 432 42 786 57 982
13 168 28 458 43 773 o8 959
14 216 29 460 44 784 99 973
15 240 30 478 45 842 60 974

These data can be modeled as a Brownian motion with drift and volatility.
(a) Plot the data.

(b) Compute the increments and construct a histogram. Are the increments
normally distributed?

(c) Estimate the drift and volatility coefficients.

(d) Simulate a Brownian motion with the estimated parameters. Overlay
the actual and simulated data on the same plot.

EXERCISE 9.12. The United States Environmental Protection Agency mon-
itors an Air Quality Index (AQI) in a certain region. The data given below
contain the values of AQI for 100 consecutive days for that region.
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Day AQI | Day AQI | Day AQI | Day AQI | Day AQI
108 | 21 48 41 40 61 31 81 24
98 22 43 42 35 62 28 82 22
8 | 23 43 | 43 31 63 25 | 83 22
78 | 24 39 | 4 30 | 64 24 | 84 20
8 | 25 49 | 45 26 | 65 31 85 23
77| 26 46 | 46 24 | 66 29 | 8 21
70 | 27 49 | 47 27 | 67 22 | 87 20
63 | 28 44 | 48 25 | 68 20 | 88 27
58 | 29 46 | 49 33 | 69 28 | 89 35
53 | 30 42 | 50 32 | 70 25 | 90 32
44 | 31 44 | 51 39 | 71 23 | 91 36
40 | 32 40 | 52 35 | 72 22 | 92 33
47 | 33 48 | b3 35 | 73 28 | 93 25
48 | 34 43 | b4 32 | 74 25 | 94 23
46 | 35 43 | 55 27 | 75 21 95 20
50 | 36 39 | 56 20 | 76 14 | 96 18
47 | 37 40 | 57T 24 | 77 22 | 97 13
42 | 38 36 | 58 31 78 27 | 98 12
38 139 43 | 59 29 | 79 34 | 99 19
46 | 40 47 | 60 26 | 80 31 | 100 17

DO = = e e e e e e
SO W0 T WK = © 0D W~

(a) Plot the values of AQI against time (in days). Argue that the data may
be modeled via a geometric Brownian motion.

(b) Estimate the parameters of the geometric Brownian motion model.

(c) Plot the actual and simulated values in the same coordinate system.

EXERCISE 9.13. The current price of a stock is $150. Suppose that the price
of the stock changes according to a geometric Brownian motion with the drift
coefficient ;1 = —0.4 and variance 02 = 0.76. Use the Black-Scholes-Merton
option pricing model to calculate the cost of an option to buy the stock at
time t = 7 for a cost of $120.

EXERCISE 9.14. Foreign currency exchange rates can be modeled well with
an Ornstein-Uhlenbeck (OU) process.

(a) Explain in simple words why the mean-reverting property and bounded
variance are expected in this setting.

(b) The data file “Foreign _Exchange Rates.csv” (https://www.kaggle.com/
brunotly/foreign-exchange-rates-per-dollar-20002019) contains daily exchange
rates for some currencies (as a ratio to US dollars) between 1/3/2000 and
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12/31/2019. Select a currency and estimate the parameters of the OU pro-
cess. Plot actual and simulated trajectories on the same graph.

EXERCISE 9.15. Let {By(t),t > 0} and {Bs(t),t > 0} be two independent
standard Brownian motions. Consider a new process { Bs(t),t > 0} formed as
a linear combination of these two processes: Bs(t) = p B1(t) ++/1 — p? Ba(t)
for some fixed p, —1 < p < 1.

(a) Show that {Bs(t),t > 0} is a standard Brownian motion.

(b) Show that {B(t),t > 0} and {Bj;(t),t > 0} are correlated with the cor-
relation coefficient p.

(c) Show that for some fixed s < t, the increments B;(t) — Bi(s) and
Bs(t) — Bs(s) are correlated with the correlation coefficient p.

(d) Download historical data from investing.com website for financial invest-
ments of your choice, plot the two processes, and estimate the correlation
coeflicient between them.
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volatility coefficient, 175

walting time, see event time, 76
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