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CHAPTER 1

0.3 0.4 0.3
EXERCISE 1.1. For a Markov chain with a one-step transition probability matrix [0.2 0.3 0.5]

08 0.1 0.1
we compute:

(@) PX;=2|Xy=1,X,=2,X,=3)=P(X; =2|X, =3) (by the Markov property)

= P,, = 0.1.
(b) P(X, =3|Xg=2, X35=1)=P(X,=3|X3=1) (by the Markov property)
= P5 = 0.3.

© PXo=1,X,=2X,=3,X=1)=PXs=1|Xg=1,X, =2,X, =3) P(X, =3 |X, = 1,
X;=2)P(X;=2|X,=1)P(X, =1) (by conditioning)
=P(Xs=1|X,=3)P(X,=3|X,=2)P(X, =2| X, = 1) P(Xo = 1) (by the Markov property)
= P, P,3 P, P(X, = 1) = (0.8)(0.5)(0.4)(1) = 0.16.

(d) We first compute the two-step transition probability matrix. We obtain

0.3 0.4 0.31[70.3 04 0.3 0.41 0.27 0.32
P(2)=[0.2 0.3 0.5] 0.2 0.3 0.5]=[0.52 0.22 0.26].
0.8 0.1 0.1/10.8 0.1 0.1 0.34 0.36 0.30

Now we write
PXo=1,X,=2X;=3Xs=1)=PX;=1|X,=1,X,=2,X;=3)P(X;=3|X, =1,
X, =2)PX;=2|Xy,=1)PXy, =1) (by conditioning)
=PXs=1|X3=3)P(X3=3|X,=2)P(X; =2|X,=1) P(X, = 1) (by the Markov property)
=P@ PP p, P(X, = 1) = (0.34)(0.26)(0.4)(1) = 0.03536.

EXERCISE 1.2. (a) We plot a diagram of the Markov chain.

#specifying transition probability matrix
tm<- matrix(c(1, 0, 0, 0, 0, 0.5, O, 0, O, 0.5, 0.2, 0, O, 0, 0.8,
o, 0, 1, o0, 0, 0, 0, 0, 1, 0), nrow=5, ncol=5, byrow=TRUE)

#transposing transition probability matrix
tm.tr<- t(tm)

#plotting diagram

library(diagram)

plotmat (tm.tr, arr.length=0.25, arr.width=0.1, box.col="light blue",
box.lwd=1, box.prop=0.5, box.size=0.12, box.type="circle", cex.txt=0.8,
lwd=1, self.cex=0.3, self.shiftx=0.01, self.shifty=0.09)



(b) From the diagram, the Markov chain consists of three classes {1}, {2}, and {3, 4, 5}. State 1 is
absorbing. Once the chain enters state 1, it cannot leave it, and will forever go through the loop. This
makes {1} a separate recurrent class. The existence of the loop means that its period is one, making it
an aperiodic class.

State 2 is reflective. The chain leaves that state in one step. Therefore, it forms a separate transient
class that has an infinite period.

Finally, states 3, 4, and 5 communicate and thus belong to the same class. The chain can return to
either state in this class in 3, 6, 9, etc. steps, thus the period is equal to 3. Since there is a positive
probability to leave this class, it is transient.

The R output supports these findings.

#creating Markov chain object
library (markovchain)
mc<- new ("markovchain", transitionMatrix=tm,states=c("1", "2", "3", "4", "5"))

#fcomputing Markov chain characteristics
recurrentClasses (mc)

npn
transientClasses (mc)
non

"3m o4t omsn
absorbingStates (mc)
npn

(c) Below we simulate three trajectories of the chain that start at a randomly chosen state.



#specifying total number of steps
nsteps<- 25

#specifying seed
set.seed (4955145)

#specifying initial probability
p0<- ¢(0.2, 0.2, 0.2, 0.2, 0.2)

#specifying matrix containing states
MC.states<- matrix (NA, nrow=nsteps, ncol=3)

#simulating states

for (i in 1:3) {
statel<- sample(l:5, 1, prob=p0)
MC.states[,1]<- rmarkovchain (n=nsteps-1, object=mc, tO=stateO,
include.t0=TRUE)

}

#plotting simulated trajectories
matplot (MC.states, type="1", lty=1l, 1lwd=2, col=2:4, xaxt="n", ylim=c(1l,5),
xlab="Step", ylab="State", panel.first=grid())

axis (side=1, at=c(1,5,10,15,20,25))
points (l:nsteps, MC.states[,1], pch=16, col=2)

points (l:nsteps, MC.states[,2], pch=16, col=3)
points (l:nsteps, MC.states[,3], pch=16, col=4)

State
3
|

Step

Since state 1 is an absorbing state, sooner or later, the trajectories transition into this state and don’t
leave it.

(d) To find the steady-state probabilities, we need to solve the following equations:



10000
05 0 0 0 05
(mq, Ty, T3, Ty, M) = (M1, T,, M3, Ty, Ts) [0.2 0 0 O 0.8, with the additional condition
00100
00010

thatmy + m, + m3 + my + 5 = 1.

my =1y + 0.5m, + 0.215

m, =0

M3 =1, =15 =0

T+ m,+ 3+ my+mg=1
m; =1, m, = m3 = m, = mg = 0. This solution is expected because state 1 is an absorbing state, and
so the chain ends up spending 100% of the time there. Having a unique stationary distribution, it is an
ergodic Markov chain.

Written out, the system becomes . It has the degenerate solution

Using R, we obtain:

steadyStates (mc)

12345

10000

(e) Here we plot the unconditional probabilities at time n against the time.

#specifying total number of steps
nsteps<- 70

#specifying matrix containing probabilities
probs<- matrix (NA, nrow=nsteps, ncol=5)

#computing probabilities
probs[1l,] <- p0
for(n in 2:nsteps)

probs[n, ]<- probs[n-1,]%*%tm

fplotting probabilities vs. step by state
matplot (probs, type="1", 1lty=1l, 1lwd=2, col=1l:5, ylim=c(-0.1, 1.1),
xlab="Step", ylab="Probability", panel.first=grid())

legend ("right", c("State 1", "State 2", "State 3", "Stated", "Stateb"), 1lty=1,
lwd=2, col=1:5)



1.0

— Sfate 1
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Step

The convergence to the steady-state distribution is apparent after 60 steps.

EXERCISE 1.3. (a) We plot a diagram of the Markov chain.

#specifying transition probability matrix

tm<- matrix(c(0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0
0,0,0,0,0.2,0.4,0.4,0.3,0,0,0.1,0.3,0.1,0.2,0,0
0,0,0,0.5,0.2,0.2,0.1),nrow=7, ncol=7, byrow=TR

C:\

#transposing transition probability matrix
tm.tr<- t(tm)

#plotting diagram

library(diagram)

plotmat (tm.tr, arr.length=0.3, arr.width=0.1, arr.pos=0.58, box.col="light blue",
box.lwd=1, box.prop=0.5, box.size=0.09, box.type="circle", cex.txt=0.8, lwd=1,
self.cex=0.3, self.shiftx=-0.07, self.shifty=-0.05)



(b) States 1 and 2 form a class and it is recurrent. The period is 2. Once the chain transitions into this

class, it never leaves it and will bounce between the two states.

State 3 is reflecting. The chain leaves this state in one step. This state forms a class of its own. It is a

transient class and its period is infinite.

States 4, 5, 6, and 7 communicate and thus form a class. Its period is one because of the loops.
This class is transient because with positive probability the chain can leave this state and transition

into the {1, 2} class.

From R, we obtain:

#creating Markov chain object

library (markovchain)

mc<- new ("markovchain", transitionMatrix=tm, states=c("1", "2",
"6", "7"))

#fcomputing Markov chain characteristics
recurrentClasses (mc)

lllll ll2ll
transientClasses (mc)
n 3II

ll4ll ll5ll ll6ll ll7ll

absorbingStates (mc)
character(0)

#creating irreducible Markov chain objects
tm.ir<- matrix(c(0,1,1,0),nrow=2, ncol=2, byrow=TRUE)

"3",

mc.ir<-new ("markovchain", transitionMatrix=tm.ir, states=c("1","2"))

"4", "5",



#finding periods of irreducible Markov chains
period(mc.ir)

2

(c) Below we simulate two trajectories of the chain that start at a randomly selected state.

#specifying total number of steps
nsteps<- 25

#specifying seed
set.seed (3339964)

#specifying initial probability
p0<- c¢c(1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 1/7)

#specifying matrix containing states
MC.states<- matrix (NA, nrow=nsteps, ncol=2)

#simulating states
for (1 in 1:2){
statel0<- sample(l:7, 1, prob=p0)
MC.states[,i]<- rmarkovchain (n=nsteps-1, object=mc, tO=stateO,
include.t0=TRUE)
}

#plotting simulated trajectories
matplot (MC.states, type="1", lty=1l, 1lwd=2, col=3:4, ylim=c(l,7), xaxt="n",
xlab="Step", ylab="State", panel.first=grid())
axis(side=1, at=c(1,5,10,15,20,25))

points(l:nsteps, MC.states[,1], pch=16, col=3)
points (l:nsteps, MC.states[,2], pch=16, col=4)

| —

State
4
I

Step

Both simulated trajectories transition to the class {1, 2} sooner or later.

(d) Below we calculate the limiting probabilities.



In R:

#finding steady-state distribution
round (steadyStates (mc) ,digits=4)

1 2345617
0.50.500000

There is a single limiting distribution which means that the chain is ergodic. States 1 and 2 absorb the
chain and then the chain spends 50% of the time in state 1 and the other 50%, in state 2.

(e) Here we plot the unconditional probability vectors p,, against n.

#specifying total number of steps
nsteps<- 60

#specifying matrix containing probabilities
probs<- matrix (NA, nrow=nsteps, ncol=7)

#computing probabilities
probs[1l,] <- p0
for(n in 2:nsteps)

probs[n, ]<- probs[n-1,]%*%tm

#plotting probabilities vs. step by state
matplot (probs, type="1", lty=1, lwd=2, col=1l:7, ylim=c(-0.05, 0.6),
xlab="Step", ylab="Probability", panel.first=grid())

legend ("right", c("State 1","State 2","State 3","State 4", "State 5", "State 6",
"State 7"), 1lty=1l, lwd=2, col=1l:7)state 2","state 3","state 4", "state

6", "state 7"), lty=1l, col=1:7)

5", "state

02 03 04 05 08

Frobability

State 6
State 7

00 01
|
|
[
|

Step

For state 1 and 2 the probabilities converge to 0.5, whereas for all the other states, the probabilities

converge to zero. The curves settle around step 50.
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EXERCISE 1.4. (a) We plot the diagram of the Markov chain.

#specifying the transition probability matrix
tm<- matrix(c(0.1,0.2,0.3,0,0.4,0,0.5,0.5,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0.6,0.4),
nrow=5, ncol=5, byrow=TRUE)

#transposing the transition probability matrix
tm.tr<- t(tm)

#plotting the diagram for the Markov chain

library(diagram)

plotmat (tm.tr, arr.length=0.3, arr.width=0.1,box.col="1ight blue", box.lwd=1,
box.prop=0.5, box.size=0.09, box.type="circle", cex.txt=0.8, lwd=1l, self.cex=0.3,
self.shiftx=-0.07, self.shifty=-0.05)

(b) State 1 is a reflecting state because the chain leaves it with a positive probability. It might stay for a
while in state 1 because of the loop, but then it leaves either to enter the irreducible class {2, 3} or {4,
5}. These two classes are recurrent, with period 1 (because of the loops). There are no absorbing
states.

InR:
#creating Markov chain object
library (markovchain)

mc<- new ("markovchain", transitionMatrix=tm, states=c("1", "2", "3", 4" "5"))

#computing Markov chain characteristics
recurrentClasses (mc)

11



ll2ll Il3ll
II4II ll5ll

transientClasses (mc)

nyn

absorbingStates (mc)

character(0)

#creating irreducible Markov chain objects

tm.irl<- matrix(c(0,1,0.6,0.4),nrow=2, ncol=2, byrow=TRUE)

mc.irl<-new ("markovchain", transitionMatrix=tm.ir, states=c("4","5"))

#finding periods of irreducible Markov chains
period(mc.irl)

1

#creating irreducible Markov chain objects
tm.ir2<- matrix(c (0.5, 0.5, 1, 0),nrow=2, ncol=2, byrow=TRUE)
mc.ir2<-new ("markovchain", transitionMatrix=tm.ir, states=c("2","3"))

#finding periods of irreducible Markov chains
period(mc.ir2)

1

(c) We simulate two trajectories of the Markov chain.

#specifying total number of steps
nsteps<- 25

#specifying seed
set.seed (202870)

#specifying matrix containing states
MC.states<- matrix (NA, nrow=nsteps, ncol=2)

#simulating states

for (i in 1:2){
state0<- sample(1:5, 1, prob=c(l/5, 1/5, 1/5, 1/5, 1/5))
MC.states[,1]<- rmarkovchain (n=nsteps-1, object=mc, tO=stateO,
include.t0=TRUE)

}

#plotting simulated trajectories

matplot (MC.states, type="1", lty=1l, 1lwd=2, col=3:4, ylim=c(l,5), xaxt="n"
x1lab="Step", ylab="State", panel.first=grid())

axis(side=1, at=c(1,5,10,15,20,25))

points(l:nsteps, MC.states[,1l], pch=16, col=3)
points (l:nsteps, MC.states[,2], pch=16, col=4)

The trajectories enter either class {2, 3} or {4, 5} and keep bouncing between the two states within
each class, possibly remaining for a little bit in state 2 or state 5 because of the loops.

12
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(d) In R, we compute the invariant probability measures.

round (steadyStates (mc) ,digits=4)

1 2 3 4 5
0 0.0000 0.0000 0.375 0.625
0 0.6667 0.3333 0.000 0.000

There are two invariant probability measures: (0, 0, 0, 0.375, 0.625) and (0, 0.6667, 0.3333, 0, 0). The
chain will settle for one of these distributions, depending on what recurrent class it happens to enter
{2,3} or {4,5}. Neither of these two invariant measures is considered to be the stationary distribution
because the chain is non-ergodic and the limiting distribution would depend on the initial state of the
chain.

(e) We plot the graphs of unconditional probabilities against time, assuming successively that the
chain starts in states 1, 2, 3, 4, and 5.

We run the following R code five times, each time changing the initial state.

#specifying total number of steps
nsteps<- 20

#specifying matrix containing probabilities
probs<- matrix (NA, nrow=nsteps, ncol=5)

#computing probabilities (initial state 1)
probs[l,] <- ¢(1,0,0,0,0)
#(state 2) ¢(0,1,0,0,0) (state 3) ¢(0,0,1,0,0) (state 4) c(0,0,0,1,0)
# (state 5) ¢(0,0,0,0,1)
for(n in 2:nsteps)
probs[n, ]<- probs[n-1,]%*%tm

#plotting probabilities vs. step by state
matplot (probs, main="Initial State 1", type="1", lty=1l, lwd=2, col=1l:5,

13



ylim=c(-0.05, 1.1), xlab="Step", ylab="Probability", panel.first=grid())

legend ("topright", c("State 1", "State 2", "State 3", "State 4", "State 5"),
lty=1, 1lwd=2, col=1:5)

We obtain the following five graphs.

For the initial state 1:

> probs

[,1] [,2] [,3] [,4] [,5]
[20,] 1e-19 0.3703699 0.1851856 0.1666536 0.2777908

Initial State 1

_— State 1
(= —_— State 2
= State 3
State 4
© | State 5
O
2 o
a o
m
0
2 =I
N &
(=T \\vffﬂmhﬂa—h—
g _
| T | |
5 10 15 20

Step

The probability of remaining in state 1 after n steps is 1 — 0.1", so, as n increases, the probability
converges to zero. For the other states, the probabilities converge to a linear combination of the two

invariant vectors: the chain enters the class {2, 3} with probability (0.5)(1 + 0.1 + 0.12 + -++) =
20 = gand class {4, 5} with probability 1 — g = g , thus the liming probabilities are

1-0.1
(g)(OAl6667,03333JLO)4—(g)(OJL0,0375,0625)==(0,03704,01852,016667J127778).

14



For the initial state 2:

> probs
[,1] [,2] [,31 [,41 [,5]
[20,] 0 0.6666660 0.3333340 0 0
Initial State 2
— State 1
o | —— State2
- State 3
— State 4
© | State 5
£ o
; 1‘0 1|5 zlo
Step
For the initial state 3:
> probs
[,1] [,2] [,31 [,41 [,5]
[20,] 0 0.6666679 0.3333321 0 0
Initial State 3
— State 1
a — Sfate 2
A State 3
— State 4
o | State 5
Z o |
;u 1Io 1‘5 2Io
Step
For the initial state 4:
> probs
[,1] [,2] [,3] [,4] [,5]
[20,] 0 0 0 0.3749619 0.6250381

If the chain starts in state 2, it will
remain within the class {2, 3}, and
the respective probabilities will

converge to the invariant vector
(0, 0.6667, 0.3333, 0, 0).

If the chain starts in state 3, it first
goes to state 2 with probability one,
and then will transition within the class
{2, 3}, and the respective probabilities
will converge to the invariant vector
(0, 0.6667, 0.3333, 0, 0).

15



Initial State 4

If the chain starts in state 4, it first

o | — gated transitions into state 5 with
- — gates probability one, and then will stay
@ state > within the class {4, 5}, and the

> respective probabilities will

5 = A converge to the invariant vector

§ < \/v\,v (0,0,0,0.375, 0.625).

For the initial state 5:

> probs
[,1] [,2] [,3] [,4] [,5]
[20,] 0 0 0 0.3750229 0.6249771
Initial State 5 ) .
niflal State If the chain starts in state
— State1 5, it transitions within the
= — Saes class {4, 5}, and the
— State 4 . eqe,-
w | State 5 respective probabilities
- will converge to the
2 e A invariant vector
S \/v\/‘ (0,0, 0,0.375, 0.625).
[
T T T T
5 10 15 20
Step

EXERCISE 1.5. (a) In a box, there are two red (R), four blue (B), and eight green (G) balls. One
ball is drawn at a time without replacement and its color is noted. The stochastic process
{X,, n=1,2,...} with the state space S = {R, B, G} doesn’t satisfy the Markovian property. It can be

proved, for example, as P(X; =G |X; =R, X, =B) = 1%, whereas P(X3 =G |X; =G, X, =B) =

1—72 , thus, the color of the ball drawn at the third step depends on the colors of all previously drawn
balls, not just the one drawn at step two.

16



(b) If the drawing is done with replacement, the process is a Markov chain. Since the balls are put back
into the box, the colors of drawn balls are independent of each other. Let C stand for any of the three
colors: red, blue, or green. Then we can write

P(X3:C|X1:C,X2:C):P(X3:C):P(X3:C|X2:C),
and thus, the Markov property always holds. Note that a sequence of independent trials is a special
case of a Markov chain.
EXERCISE 1.6. Let O denote any outcome of a coin flip. The flips are considered independent,
therefore, we obtain

P(X3:0|X1:0,X2:0):P(X3ZO)ZP(X3:0|X2:0),

that is, the Markovian property always holds. The coin is fair, hence, the transition probability matrix
is

H T

0.5 0.5 . o s 0.5 0.5
H I W =
k [ 05 0. 5]. o derive the limiting probabilities, we solve (my, mr) = (g, 7T7) [ 05 05

where my + mr = 1. The solution is my = my = 0.5. Note that a sequence of independent trials is a
special case of a Markov chain.

EXERCISE 1.7. (a) Below we find the transition probability matrix for Chapter 1 of “Moby Dick”
by Herman Melville.

library(tidyverse)
chapterl <- read file("./Loomings.txt")

#cleaning the text
lowercase<- tolower (chapterl)

no.blanks<- gsub (" ","", lowercase)

no.line.breaks<- gsub ("\r\n", "", no.blanks)
#removing all punctuation

clean.string<- gsub (" [[:punct:]]","",no.line.breaks)

#splitting the string into characters
x2<- strsplit(clean.string, "")

#shifting the text by one place

no.last<- substr(clean.string, 1, nchar(clean.string)-1)
first.blank<- str c(" ", no.last)

x1<- strsplit(first.blank,"")

VOWelS<—C("a","e","i","O","u")
COHSOnantS<— C("b","C","d","f","g","h","j","k","l","m","n","p","q","r","s","t",
"V", "W", "X", "y"/ "Z")

for (counter in l:nchar(x2))
v<- ifelse(x2[[counter]] %in% vowels,1,0)
c<- ifelse (x2[[counter]] %in% consonants,1,0)

o0 ——

17



vv<- ifelse(x1[[counter]] %in% vowels & x2[[counter]] %$in% vowels,1,0)

vc<—- ifelse(x1[[counter]] %in% vowels & x2[[counter]] %in% consonants,1,0)
cv<- ifelse(x1[[counter]] %in% consonants & x2[[counter]] %in% vowels,1l,0)
cc<- ifelse(x1[[counter]] %in% consonants & x2[[counter]] %in% consonants,1,0)

}

sum (v)
3647
sum(c)
5871
sum (vv)
572

sum (vc)
3075
sum (cv)
3075

sum (cc)

2795

We check quickly that these numbers add up properly. Since the first chapter of “Moby Dick” starts
and ends with consonants, all vowels are transitioned into and transitioned from. Thus,

sum (v)=3647=sum (vv) +sum(vc)=572+3075=sum (vv) +sum (cv) . Also, all but the last
consonant are transitioned from, therefore, sum (c) -1=5870=sum(cv) +sum (cc)=3075
+2795, and all but the first consonant are transitioned to, so sum (c) -1=5870=sum (vc)

+sum (cc)=3075+2795. The transition probability matrix is

v C
v (22 = 015684 3%2 = 0.84316
3647 3647
¢ |12%5 — 052385 2725 - 047615
5870 5870

The code below computes the limiting probabilities and the proportions of vowels and consonants in
the text.

#specifying the transition probability matrix
tm<- matrix(c(sum(vv)/sum(v), sum(vc)/sum(v), sum(cv)/ (sum(c)-1),
sum(cc) / (sum(c)-1)), nrow=2, ncol=2, byrow=TRUE)

#creating Markov chain object
library (markovchain)
mc<- new ("markovchain", transitionMatrix=tm, states=c("v","c"))

#computing limiting probabilities
steadyStates (mc)

18



\% C
0.383209 0.616791

#computing proportions of vowels and consonants
print (prop.vowels<- sum(v)/ (sum(v)+sum(c)))

0.3831687

print (prop.cons<- sum(c)/ (sum(v)+sum(c)))

0.6168313

From the output, the limiting probabilities are equal to the actual proportions of vowels and

consonants.

(b) Now, we run the same code as in part (a), but with the text of Chapter 2. The code and output are

library(tidyverse)
chapter2 <- read file("./The Carpet-Bag.txt")

#cleaning the text

lowercase<- tolower (chapter?2)
no.blanks<- gsub (" ","", lowercase)
no.line.breaks<- gsub("\r\n", "",
#removing all punctuation

clean.string<- gsub (" [[:punct:]]"

no.blanks)

wn
4 14

no.line.breaks)

#splitting the string into characters
x2<- strsplit(clean.string, "")

#shifting the text by one place
no.last<- substr(clean.string, 1,
first.blank<- str c(" ", no.last)
x1<- strsplit(first.blank,"")

nchar (clean.string)-1)

Vowels<—C ("a", "e", "i", "O", "u")

COHSOHantS<— c ("b", "c", "d", "f", "g", "h", "j ", "k", "l", "m", "n
"V"/ "W"/ "X"/ "y", "Z")
for (counter in l:nchar (x2)) {
v<- ifelse(x2[[counter]] %in% vowels,1,0)
c<- ifelse(x2[[counter]] %in% consonants,1,0)
vv<- ifelse(x1l[[counter]] %in% vowels & x2[[counter]] %
ve<- ifelse(x1[[counter]] %in% vowels & x2[[counter]] %
cv<- ifelse (x1l[[counter]] %in% consonants & x2[[counter
cc<- ifelse(x1l[[counter]] %in% consonants & x2[[counter
}
sum (V)
2319
sum(c)
3899
sum(vv)

", "p", "q", "r", "S", "t",

$ vowels,1,0)

% consonants,1,0)
%in% vowels,1,0)

in% consonants,1,0)

i
i
]
11 %

n
n
]
] in%

19



340
sum(vc)
1978
sum (cv)
1978

sum (cc)

1921

Chapter 2 starts and ends with vowels, all consonants are transitions into and transitioned from.
Therefore, we must have sum (c) =3899=sum (vc) +sum (cc)=1978+1921=sum (cv)
+sum (cc) . Also, all but the last vowel are transitioned from, so sum (v) -1=2318=sum (vv)
+sum (vec)=340+1978, and all but the first vowel are transitioned into, so sum (v) -1=2318
=sum (vv) +sum (cv)=340+1978. The transition probability matrix is

v C
v |22~ 0.14668 78 = 0.85332
2318 2318
e 22 -050731 22 = 049269
3899 3899

These transition probabilities are not exactly equal to the ones in Chapter 1 but are within 1/100th,
which is very close.

EXERCISE 1.8. The sentence “The quick brown fox jumped over the lazy dog” repeated 500 times
is a deterministic sequence of vowels and consonants and cannot be modeled as a Markov chain. To
prove this mathematically, we do the following calculations.

thequickbrownfoxjumpedoverthelazydog|thequick...
CCVCVVCCCCVECCVCCVCCVEVEVCCCVEVECCVE|cevevvec. . .

Let k = 500 denote the number of repetitions. There are 0 vvv subsequences, k vvc subsequences,
k cvv subsequences, and 10k cvc subsequences. Thus, we compute

_ _ _ _ P(vvv) _ 0 _ _ _ _
PXs=v|Xy;=v,X,=v)= Frer—— 0, whereas P(X3 = v |[X, =v) =

Pvy)+P(cvv) =0k L, 0, and so, the Markovian property doesn’t hold.
P(vvv)+P(cvv)+P(vvc)+P(cvc) 0+k+k+10k 12

EXERCISE 1.9. (a) We show that the genotypes of the direct descendant and the second parent
follow a Markov chain with the state space S = {(44, AA), (AA, Aa), (A4, aa), (Aa, AA), (Aa, Aa),
(Aa,aa), (aa, AA), (aa, Aa), (aa, aa)} and the transition probability matrix
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(AA, AA) (AA, Aa) (AA, aa) (Aa, AA) (Aa, Aa) (Aa, aa) (aa, AA) (aa, Aa) (aa,aa)
0

(AA, AA) 1/3 1/3 1/3 0 0 0 0 0
(AA, 4a) [ 1/6 1/6 1/6 1/6 1/6 1/6 0 0 o]
(AA, aa) 0 0 0 1/3 1/3 1/3 0 0 0
(Aa, AA) 1/6 1/6 1/6 1/6 1/6 1/6 0 0 0
(Aa, Aa) 1/12 1/12 1/12 1/6 1/6 1/6 1/12 1/12 1/12
(Aa, aa) 0 0 0 1/6 1/6 1/6 1/6 1/6 1/6| -
(aa, AA) 0 0 0 1/3 1/3 1/3 0 0 0
(aa, Aa) 0 0 0 1/6 1/6 1/6 1/6 1/6 1/6
(aa,aa) 0 0 0 0 0 0 1/3 1/3 1/3

e If both parents have the combination AA of genes, their direct descendant will have genes AA with
probability one, and will equally likely choose the second parent with genes AA, Aa, or aa.
Therefore, the state (AA, AA) transitions into states (A4, AA), (AA, Aa), and (AA, aa) with
probabilities equal to 1/3.

e Ifthe parents have genes (A4, Aa), their direct descendant will have genes AA with probability %%
or genes Aa with probability /2. And will choose the second parent with either of the three types
with probability 1/3. Thus, (AA, Aa) transitions into states (A4, AA), (A4, Aa), (AA, aa), (Aa, AA),

(Aa,Aa), or (Aa, aa), with probability (%) G) = % each.

e Ifthe parents have genes (Aa, Aa), their offspring will have genetic type AA with probability Y4, Aa
with probability %, and aa with probability 4. Combining with a randomly chosen second parent’s
gene type, we see that the state (Aa, Aa) transitions into states (A4, AA), (A4, Aa),

(AA, aa), (aa, AA), (aa, Aa), or (aa, aa) with probability G) G) = 1—12 each, and states
(Aa, AA), (Aa, Aa), or (Aa, aa) with probability G) G) = % each.

The other cases are proven similarly.

(b) Below we determine the transient and recurrent classes of the Markov chain.

#specifying transition probability matrix

tm<- matrix(c(1/3, 1/3, 1/3, 0, 0, 0, 0, O, O, 1/6, 1/6, 1/6, 1/6, 1/6, 1/6, 0, O,
o, o, 0, 00 1/3, 1/3, 1/3, 0, O, O, 1/6, 1/6, 1/6, 1/6, 1/6, 1/6, 0, 0, O,

1/12, 1/12, 1/12, 1/6, 1/6, 1/6, 1/12, 1/12, 1/12, 0, 0, O, 1/6, 1/6, 1/6, 1/6,
i/, 1/6, 0, 0, 0, 1/3, 1/3, 1/3, 0, 0, 0, 0, O, O, 1/6, 1/6, 1/6, 1/6, 1/6, 1/6,
o, o, 0, 0o, 0, 0, 1/3, 1/3, 1/3), nrow=9, ncol=9, byrow=TRUE)

#creating Markov chain object

library (markovchain)

mc<- new ("markovchain", transitionMatrix=tm, states=c("AAAA", "AAAa", "AAaa",
"AaAA", "AaAa", "Aaaa", "aaAA", "aaAa", "aaaa") )

#computing Markov chain characteristics
transientStates (mc)

character(0)

recurrentClasses (mc)

"AAAA" "AAAa AAaa AaAA AaAa Aaaa aaAA aaAa aaaa"

All states are recurrent and none are transient.

(c) Next, we find the stationary distribution.
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#finding stationary distribution

steadyStates (mc)

AAAA AAAa AAaa AaAA
0.08333333 0.08333333 0.08333333 0.16666667
AaAa Aaaa aaAA aaAa
0.16666667 0.16666667 0.08333333 0.08333333
aaaa
0.08333333

In a long run, there will be about 8.3% of each gene type (AA, AA), (AA, Aa), (A4, aa), (aa, AA),

(aa, Aa), and (aa, aa), and about 16.7% of each gene type (Aa, AA), (Aa,Aa), and (Aa, aa).

(d) Here we find the initial state that achieves the stationary distribution in the smallest number of
generations. To answer this question, we run the following R code nine times with the initial state
ranging from (1,0,0, ...,0) to (0,0, ..., 0, 1). We look for the smallest generation number for which the

steady-state distribution has probabilities that round to 0.0833 and 0.1667.

#specifying total number of steps

nsteps<- 20

#specifying matrix containing probabilities

probs<- matrix (NA, nrow=nsteps, ncol=9)

#computing probabilities

probs[l,] <- c(1,

for(n in 2:nsteps)
print (n)

0, 0,

{

o, 0, O,

0, 0)

print (probs[n,]<- round(probs[n-1,]%*%tm, 6))

15

[,1] [,2] [,
[1,] 0.083353 0.083353 0.0833

16
[,1]

[,2]

[,3]

] [
53 0.1666

[,4]

[,5]

[,6]

4] [,5] [,6] [,
65 0.166665 0.166665 0.0833

7]

[,7]

[,8] [
12 0.083312 0.083

[,8]

[1,] 0.083343 0.083343 0.083343 0.166665 0.166665 0.166665 0.083322 0.083322 0.08

[’
33

, 9]

312

9]
22

The initial state (A4, AA) achieves the steady-state probabilities in the 16th generation. We repeat this
code for the other 8 initial states and get the following result:

Initial State (AA, AA)

(AA, Aa)

(AA, aa)

(Aa, AA)

(Aa, Aa)

(Aa,aa)

(aa,AA)

(aa, Aa)

(aa,aa)

Smallest

Generation
To Achieve the 16
Steady-State
Distribution

15

15

15

15

16

The conclusion is that the most genetically diversified type (Aa, Aa) in the first generation results in
the limiting distribution already in the second generation, whereas the least diversified genetic types
(AA, AA) and (aa, aa) need to wait until the 16th generation to see convergence.
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EXERCISE 1.10. The code below selects the weather conditions for Detroit, and computes the
empirical conditional probability of clouds tomorrow, given clouds today and yesterday, and the
conditional probability of clouds tomorrow, given clouds today.

weather.data<- read.csv("./weather description.csv", header=TRUE, sep=",")

DET<- weather.data$Detroit

table (DET)
DET
broken clouds drizzle few clouds
3975 96 1775
fog freezing rain haze
585 3 768
heavy intensity drizzle heavy 1intensity rain heavy shower snow
8 437 107
heavy snow Tight intensity drizzle

Tight intensity drizzle rain
2

249 396
Tight intensity shower rain Tight rain Tight shower sleet
193 3873 1
Tight shower snow Tight snow mist
172 1383 3414
moderate rain overcast clouds proximity shower rain
1450 6470 208
proximity thunderstorm scattered clouds shower rain
104 3940 7
shower snow sky is clear smoke
4 15249 1
snow squalls thunderstorm
222 1
thunderstorm with heavy rain thunderstorm with Tight raig thunderstorm with ra;n
14 4 4
very heavy rain
4

X3<- ifelse (DET=="sky is clear",
"few clouds", "overcast clouds",

"no clouds", ifelse(DET %in% c("broken clouds",
"scattered clouds", "smoke"), "clouds",

ifelse (DET %$in% c("heavy shower snow", "heavy snow", "light shower snow", "light
snow", "shower snow", "snow"), "snow", "rain")))
table (X3)
X3

clouds no clouds skyclear snow

16161 11705 15249 2137
library (Hmisc)
X2<- Lag(X3,shift=1)
X1<- Lag(X3,shift=2)
library (Hmisc)
X2<- Lag(X3,shift=1)
X1<- Lag (X3,shift=2)
fcomputing P (X3=c|X2=c,X1l=c)
cce<—- ifelse (X1=="clouds" & X2=="clouds" & X3=="clouds",1,0)
ccn<- ifelse (X1l=="clouds" & X2=="clouds" & X3=="no clouds",1,0)
ccr<- ifelse (X1=="clouds" & X2=="clouds" & X3=="rain",1,0)
ccs<- ifelse (X1=="clouds" & X2=="clouds" & X3=="snow",1,0)

(

sum (ccc) /sum
0.8143572

#computing P (X3=c|X2=c)

ncc<— ifelse (X1=="no clouds"
& X2=="clouds"

rcc<- ifelse (X1=="rain"

ccc+cen+ccecr+cces)

& X2=="clouds"

& X3=="clouds",1,0)
& X3=="clouds",1,0)



X1=="snow" & X2=="clouds" & X3=="clouds",1,0)
1=="no clouds" & X2=="clouds" & X3=="no clouds",1,0)
X1=="no clouds" & X2=="clouds" & X3=="rain",1,0)

scc<- ifelse (X
ncn<- ifelse (X
ncr<- ifelse(
ncs<- ifelse (X1=="no clouds" & X2=="clouds" & X3=="snow",1,0)
rcn<- ifelse (X1=="rain" & X2=="clouds" & X3=="no clouds",1,0)

(X

(X

(

(

(X

rcr<- ifelse (X1=="rain" & X2=="clouds" & X3=="rain",1,0)
rcs<- ifelse (X1=="rain" & X2=="clouds" & X3=="snow",1,0)
scn<- ifelse (X1=="snow" & X2=="clouds" & X3=="no clouds",1,0)
scr<- ifelse (X1=="snow" & X2=="clouds" & X3=="rain",1,0)
scs<- ifelse (X1=="snow" & X2=="clouds" & X3=="snow",1,0)

sum (ccct+ncc+rcecc+sce) /sum(ccect+ecentceccr+ces+necc+nen+ncr+ncs+rcecc+ren
+rcr+rcs+scc+scn+scr+scs)

0.7662892

The state space of this process is S = {c = "clouds”,n = "no clouds”,r = "rain”, s = "snow”

From the above output,
P(X1 = C'XZ = C,X3 = C)

P(Xl = C,Xz = C)
= 0.8143572,

P(X3:C|X1:C,X2:C):

B P(ccc)
"~ P(ccc) + P(cen) + P(cer) + P(ccs)

whereas

Pty = ¢ | X, = ¢) = LD F Pnee) £ Plree) + Psco) _ 66759,
s=clXy=0)= P(ccc) + P(cen) + P(cer) + -+ P(scs) .

Since the two quantities are not the same, the process is not a Markov chain.

EXERCISE 1.11. Let s denote the air quality status (good/unhealthy/hazardous). We are given that
PXps1=51X,=5Xp_1=5,..,X, =5)=PXp41 =5 | X, =5,X,-1 =s). We consider states as
air quality statuses in two consecutive days: (X3, X,), (X3, X3), etc. We show that the Markov property
holds:

P((Xn Xn1) = (5,5) | Kno1, Xp) = (5,9), ., (X1, Xp) = (5,5))
=PXpy1 =X, =5s|Xp,=5Xp-1=5...X=5)
 PXpi1=5X=5Xp1=5,..,X, =5)

B PX,=5X,1=5.,% =5)
=PXpi1=5|X,=5,X,_1=5,..,X;, =5)
=P(Xpt1 =S| X, = 5, X1 = 5) (by the assumption of the problem)
_ P(Xny1=8Xy=5Xy1=5)
P(Xn == S,Xn_l = S)
= P((Xn, Xns1) = (5, )| (Xn—1,X) = (5,5)).

EXERCISE 1.12. (a) Let state 1 give income $200, state 2 give income $0, state 3 give income -
$75, state 4 give income $105, and state 5 give income -$130. Since the rolls of the die are
independent, the next state will depend only on the present state. We use the fact that the die is fair and
that the states are traversed circularly, and write the transition probability matrix:
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1 2 3 4 5

1/6 1/3 1/6 1/6 1/6
1/6 1/6 1/3 1/6 1/6
1/6 1/6 1/6 1/3 1/6
1/6 1/6 1/6 1/6 1/3
1/3 1/6 1/6 1/6 1/6

DN B W=

(b) We compute the steady-state probability of each square and find the long-run winning of the
player.

#specifying transition probability matrix
tm<- matrix(c(l/6, 1/3, 1/6, 1/6, 1/6,
1/6, 1/6, 1/3, 1/6, 1/6,
1/6, 1/6, 1/6, 1/3, 1/6,
1/6, 1/6, 1/6, 1/6, 1/3,
1/3, 1/6, 1/6, 1/6, 1/6),
nrow=5, ncol=5, byrow=TRUE)

#creating Markov chain object
library (markovchain)
mc<- new ("markovchain", transitionMatrix=tm, states=c("1", "2", "3", "4",6 "5"))

steadyStates (mc)

1 2 3 4 5
0.2 0.2 0.2 0.2 0.2

In the long-run, the chain will be uniformly distributed between the five states, and thus the expected
winning of the player will be E (winning) = ($200)(0.2) + ($0)(0.2) + (—$75)(0.2) +
($105)(0.2) + (—$130)(0.2) =8$20.

EXERCISE 1.13. (a) Assuming that the traffic starts with the 1ight state at 1PM, we find the
distribution of the states at 6PM. Traffic conditions change every 20 minutes, therefore between 1PM
and 4PM there will be 9 transitions between the states (light/heavy/jammed), and between 4PM and
6PM there will be 6 transitions. We run the following R code to find the distribution of states at 6PM:

#specifying the transition probability matrices

tml<- matrix(c(0.4, 0.4, 0.2, 0.3, 0.5, 0.2, 0, 0.5, 0.5), nrow=3, ncol=3,
byrow=TRUE)

tm2<- matrix(c(0.1, 0.5, 0.4, 0.1, 0.3, 0.6, O, 0.1, 0.9), nrow=3, ncol=3,
byrow=TRUE)

#computing the unconditional distribution at 6pm
library (expm)

statelpm<- c (1, 0, 0)
statedpm<- statelpm%*% (tml%”"
print (statebpm<- statedpm$*%

[,1] [,2] [,3]
0.01504877 0.1332313 0.85172

%9)
(tm2%"

o

6))

P(light traffic) =0.01504877, P(heavy traffic) = 0.1332313, and P(jammed traffic) = 0.85172.
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(b) Below we simulate 10,000 trajectories to verify the result of part (a).

#creating Markov chain objects

library (markovchain)

mcl<- new("markovchain", transitionMatrix=tml, states=c("light", "heavy",
"Jammed") )

mc2<- new ("markovchain", transitionMatrix=tm2, states=c("light", "heavy",
"Jammed") )

#simulating states between lpm and 4pm
MC.statesd4pm<- matrix (NA, nrow=9, ncol=10000)

for (i1 in 1:10000)
MC.statesd4pm[,i]<- rmarkovchain (n=9, object=mcl, t0="1light")
#simulating states between 4pm and 6pm

MC.states6pm<- matrix (NA, nrow=6, ncol=10000)

for (i in 1:10000)
MC.states6pm[,1]<- rmarkovchain(n=6, object=mc2, t0=MC.statesdpm[9,1])

#concatenating two matrices
MC.states<- rbind(MC.states4pm, MC.states6pm)

#computing frequencies of states at 6pm
table (MC.states[15,])

heavy jammed Tight
1316 8533 151

Thus, the estimates are P (light traffic) =0.0151, P(heavy traffic) = 0.1316, and
P(jammed traffic) = 0.8533.

EXERCISE 1.14. (a) Assuming that a shrub is initially sustainable, we simulate three trajectories of
the Markov chain.

#specifying transition probability matrix

tm<- matrix(c(0.6, 0.2, 0.1, 0.1, 0.7, 0.2, 0.1, O, 0.1, 0.3, 0.4, 0.2, O,

0, 0, 1), nrow=4, ncol=4, byrow=TRUE)

library (markovchain)
mc<- new ("markovchain", transitionMatrix=tm, states=c("1", "2", "3", "4"))

#specifying total number of steps
nsteps<- 25

#specifying seed
set.seed(912332)

#specifying matrix containing states
MC.states<- matrix (NA, nrow=nsteps, ncol=3)
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#simulating states

for (i in 1:3){
statel<- 1
MC.states[,i]<- rmarkovchain (n=nsteps-1, object=mc, tO=stateOl,
include.t0=TRUE)
}

#plotting simulated trajectories
matplot (MC.states, type="1", lty=1, lwd=2, col=2:4, xaxt="n", yaxt="n",
ylim=c(1l,4), xlab="Step", ylab="State", panel.first=grid())

axis(side=1, at=c(1,5,10,15,20,25))
axis(side=2, at=c(1,2,3,4))

points(l:nsteps, MC.states[,1], pch=16, col=2)
points (l:nsteps, MC.states[,2], pch=16, col=3)
points (l:nsteps, MC.states[,3], pch=16, col=4)

State

Step

(b) Here we find the probability that an initially sustainable shrub will eventually become extinct.

steadyStates (mc)
1234
0001

State 4 (“extinct”) is an absorbing state, thus, eventually, a sustainable shrub will become extinct with
probability one.

EXERCISE 1.15. (a) The number of music instruments on Tuesday morning can assume values 3, 4,
5, 6, or 7. Therefore, the state space consists of these five states.

Let N ~ Poisson(4) be the number of instruments bought during the week. Then
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P(3 instruments this week | 3 instruments previous week) = P(N = 0) = exp(—4) = 0.0183
P(4 instruments this week | 3 instruments previous week) = 0

P(5 instruments this week | 3 instruments previous week) = 0

P(6 instruments this week | 3 instruments previous week) = 0

P(7 instruments this week | 3 instruments previous week) = P(N > 1) =1 — 0.0183 = 0.9817

P(3 instruments this week | 4 instruments previous week) = P(N = 1) = 4 exp(—4) = 0.0733
P(4 instruments this week | 4 instruments previous week) = P(N = 0) = exp(—4) = 0.0183
P(5 instruments this week | 4 insturments previous week) = 0

P(6 instruments this week | 4 instruments previous week) = 0

P(7 instruments this week | 4 instruments previous week) = P(N > 2) =1 —0.0733 — 0.0183
= 0.9084

2
P(3 instruments this week | 5 instruments previous week) = P(N = 2) = %exp(—4) = 0.1465

P(4 instruments this week | 5 instruments previous week) = P(N = 1) = 4 exp(—4) = 0.0733
P(5 instruments this week | 5 instruments previous week) = P(N = 0) = exp(—4) = 0.0183
P(6 instruments this week | 5 instruments previous week) = 0

P(7 instruments this week | 5 instuments previous week) = P(N > 3) = 1 — 0.1465 — 0.0733
—0.0183 = 0.7619

3
P(3 instruments this week | 6 instruments previous week) = P(N = 3) = %exp(—é&) = 0.1954

2
P(4 instruments this week | 6 instruments previous week) = P(N = 2) = %exp(—él) = 0.1465

P(5 instruments this week | 6 instruments previous week) = P(N = 1) = 4 exp(—4) = 0.0733
P(6 instruments this week | 6 instruments previous week) = P(N = 0) = exp(—4) = 0.0183
P(7 instruments this week | 6 instuments previous week) = P(N > 4) = 1 — 0.1954 — 0.1465
—0.0733 — 0.0183 = 0.5665

4

P(3 instruments this week | 7 instruments previous week) = P(N = 4) = %exp(—él) = 0.1954
3

P(4 instruments this week | 7 instruments previous week) = P(N = 3) = %exp(—4) = 0.1954

2
P(5 instruments this week | 7 instruments previous week) = P(N = 2) = %exp(—4) = 0.1465

P(6 instruments this week | 7 instruments previous week) = P(N = 1) = 4 exp(—4) = 0.0733
P(7 instruments this week | 7 instruments previous week) = P(N = 0) + P(N = 5) =
1—-0.1954 — 0.1954 — 0.1465 — 0.0733 = 0.5665 = 0.3894

The one-step transition probability matrix is

3 4 5 6 7
0.0183 0 0 0 0.9817
0.0733 0.0183 0 0 0.9084
0.1465 0.0733 0.0183 0 0.7619

0.1954 0.1465 0.0733 0.0183 0.5665
0.1954 0.1954 0.1465 0.0733 0.3894

NN D B
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(b) The following code generates inventory trajectories, assuming that the initial inventory size is

randomly chosen.

#specifying transition probability matrix

tm<- matrix(c(0.0183, 0, 0, 0, 0.9817, 0.0733, 0.0183, 0, 0, 0.9084, 0.1465,

0.0733, 0.0183, 0, 0.7619, 0.1954, 0.1465, 0.0733, 0.0183, 0.5665, 0.1954,

0.1954, 0.1465, 0.0733, 0.3894), nrow=5, ncol=5, byrow=TRUE)

library (markovchain)
mc<- new ("markovchain", transitionMatrix=tm, states=c("3", "4", "5", "g",

#specifying total number of steps
nsteps<- 25

#specifying seed
set.seed(8596943)

#specifying matrix containing states
MC.states<- matrix (NA, nrow=nsteps, ncol=2)

#simulating states

for (i in 1:2) {
state0<- sample(3:7, 1, prob=c(0.2,0.2,0.2,0.2,0.2))
MC.states[,1]<- rmarkovchain (n=nsteps-1, object=mc, tO=stateO,
include.t0=TRUE)
}

#plotting simulated trajectories

matplot (MC.states, type="1", 1lty=1, 1lwd=2, col=3:4, axat="n", ylim=c(3,7),

xlab="Tuesday morning", ylab="Number of instruments", panel.first=grid())
axis(side=1, at=c(1,5,10,15,20,25))

points(l:nsteps, MC.states[,1], pch=16, col=3)
points(l:nsteps, MC.states[,2], pch=16, col=4)

ll7ll))

Number of instruments

i

1 5 10 15 20 25

Tuesday marning
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(c) Using the definition of conditional probability and Markov property, we can write

PX :7’X :7’X:7’X:7
P(X4=7,X3=7,X2=7|X1=7)= (4 3 2 1 )

P(X, =7)
_P(X4:7|X3 :7,X2 :7, X1:7) P(X3:7,X2:7, X1:7)
- P(X, =7)
_P(X4=7|X3=7)P(X3=7|X2=7,X1=7)P(X2=7,X1=7)
- P(X, =7)
_P(X4=7|X3=7)P(X3=7|X2=7)P(X2=7|X1=7)P(X1=7)
a P(X,=7)

= P77P77P77 == P737 = (0.3894’)3 = 0.059.

(d) Below we find the steady-state probability distribution for this Markov chain.

steadyStates (mc)

3 4 5 6 7
0.1487365 0.1300719 0.09080707 0.04379828 0.5865863

Using these values, we compute the expected weekly storage cost:

E(weekly storage cost)
= $5((3)(0.1487365) + (4)(0.1300719) + (5)(0.09080707)

+(6)(0.04379828) + (7)(0.5865863)) = ($5)(5.789426) = $28.94713.

Thus, in the long run, there will be, on average, 5.789426 instruments in the store on Tuesday
morning, and the average storage cost will amount to $28.95.
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CHAPTER 2

EXERCISE 2.1. 1In theory, E (X50) = ((2)(0.3) — 1)(50) = —20 and Var(Xs,) =
(4)(0.3)(1 — 0.3)(50) = 42.

Next, we run an R code that simulates 10,000 trajectories of length 50 steps and computes the mean
and variance of the last values.

#specifying parameters
p<- 0.3

n<- 50

ntraj<- 10000

#setting seed number
set.seed (546675)

#defining walk as matrix
walk<- matrix (NA, nrow=n, ncol=ntraj)

fsimulating trajectories
for (j in l:ntraj) {
walk[1l,j]<- 0
for (k in 2:n) {
walk[k,jl<- ifelse(runif(l)<p, walk[k-1,3]+1, walk[k-1,31-1)
}
}

mean (walk[50, 1)
-19.5824

var (walk[50,1)

42.16583

The empirical values are pretty close to the theoretical ones.

EXERCISE 2.2. (a) The R script below simulates 10,000 trajectories and counts how many of them
have a value of 0 at the 1,000th step.

#setting counter to zero
nzeros<- 0

#specifying seed
set.seed (675572)

#defining walk as matrix
walk<- c ()

#simulating trajectories
for (3 in 1:10000)
{

walk[1l]<- O

for (i in 2:1001)
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walk[i]<- ifelse(runif(1)<0.5, walk[i-1]1+1, walk[i-1]1-1)
if (walk[1001]==0) nzeros=nzeros+1l

}

print (nzeros)
253

(b) The theoretical probability of returning to 0 on the 1,000th step is

1000
1000) (1) = 0.025. This quantity was computed in R:

P(X1ooo:0|X0:O):(500 2

choose (1000,500)*0.571000

0.02522502

253

The estimated probability from part (a) is P(X1990 = 0 | Xo = 0) = 75000

a pretty accurate estimate of the theoretical value.

= 0.0253, which is

EXERCISE 2.3. (a) The code below simulates the 10,000 trajectories of one-, two-, and three-dime
nsional symmetric random walks that start at the origin and continue for at most 1,000 steps. A trajecto
ry that reaches the origin is terminated.

#setting counters to zero

nlD<- 0
n2D<- 0
n3D<- 0

#specifying seed
set.seed(300799)

#defining 1D walk as vector
walklD<- c ()
nstepslD<- c ()

#simulating 1D trajectories
for (j in 1:10000)
{
walklD[1]<- 0 #setting initial value to zero
for (i in 2:1001)
{
walklD[i]<- ifelse(runif(1)<0.5, walklD[i-1]+1, walklD[i-1]1-1)
if (walklD[i]==0) {
nlD=nl1D+1
break }
}
nstepslD[j]=1

#defining 2D walk as matrix
walk2D<- matrix (NA, nrow=1001, ncol=2)
nsteps2D<- c ()

#defining random steps
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rstep2D<- matrix(c(, 0, -1, 0, O, 1, 0, -1), nrow=4, ncol=2, byrow=TRUE)

#simulating 2D trajectories
for (3 in 1:10000)
{
walk2D[1,]1<- c(0,0) #setting initial value to the origin
for (i in 2:1001)

{
walk2D[1i,]<- walk2D[i-1,]+rstep2D[sample(l:4, size=1),]

if (walk2D[i,1]==0 & walk2D[i,2]==0) {
n2D=n2D+1
break }

}
nsteps2D[j]l=1
}

#defining 3D walk as matrix
walk3D<- matrix (NA, nrow=1001, ncol=3)
nsteps3D<- c ()

#defining random steps
rstep3D<- matrix(c(, 0, 0,-1, 0, 0, O, 1, O, O, -1, O, O, O, 1, 0, 0, -1),
nrow=6, ncol=3, byrow=TRUE)

#simulating 3D trajectories
for (J in 1:10000)
{
walk3D[1,]<- c(0,0,0) #setting initial value to the origin
for (i in 2:1001)
{
walk3D[i, ]<- walk3D[i-1,]+rstep3D[sample(l:6, size=1l),]
if (walk3D[i,1]==0 & walk3D[i,2]==0 & walk3D[i,3]==0) {
n3D=n3D+1

break }
}

nsteps3D[j]=1
}
print (nlD)
9756
print (n2D)
6759

print (n3D)

3329
Roughly 97.6% of the 1D trajectories returned to 0, about 67.6% of the 2D trajectories returned to
(0, 0), and only 33.3% of the 3D trajectories returned to (0, 0, 0).

(a) The average number of steps it took those trajectories to return to the origin is computed as

mean (nstepslD[nstepslD!=1001])



27.47499
mean (nsteps2D[nsteps2D!=1001])
61.47625

mean (nsteps3D[nsteps3D!=1001])

27.83689

The 97.6% of the 1D trajectories that returned to the origin, did it in 27.47 steps, on average.
The 67.6% of the 2D trajectories that returned to the origin, did it in 61.48 steps, on average.
The 33.3% of the 3D trajectories that returned to the origin, did it in 27.84 steps, on average.

EXERCISE 2.4. (a) The R script below simulates the trajectories and terminates them if the barrier
is hit. Otherwise, trajectories continue for 1,000 steps. The total number of trajectories that hit the
barrier is counted. We also record the number of steps (for part (b)) and the y-coordinate (for part (c)).

#setting counter to zero
nhits<- 0

#specifying seed
set.seed (50118)

#defining walk as matrix

walk<- matrix (NA, nrow=1001, ncol=2)
nsteps<- c()

ycoord<- c ()

#defining random steps
rstep<- matrix(c¢(, 0, -1, 0, 0, 1, 0, -1), nrow=4, ncol=2, byrow=TRUE)

#simulating trajectories
for (j in 1:10000)
{

walk[1l,]<- c(0,0) #setting initial value to the origin
for (i in 2:1001)
{

walk[i, ]<- walk[i-1,] + rstepl[sample(l:4, size=1),]

if (walk[i,1]1==30) ¢{
nhits=nhits+1
break }
}

nsteps[jl<- i
ycoord[j]<- ifelse (i==1001, 99999, walk[i,2])
}

print (nhits)

1764

So, of the 10,000 trajectories, 1,764 hit the vertical barrier. Thus, the estimated probability to hit the
barrier is 0.1764.
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(b) The average number of steps it takes a trajectory to hit the barrier, provided it did hit
the barrier within the 1,000 steps, is estimated as

mean (nsteps[nsteps!=100117)

623.2053

It took on average 623.2 steps to hit the barrier for the 17.64% of the trajectories that terminated at
the barrier.

(a) Estimate the expected value of the y-coordinate at the time when the random walk hits the barrier.
What should this value be from the theoretical point of view? Hint: deduce from a symmetry
argument.

mean (ycoord|[ycoord!=99999]))

0.1066364

The estimated average y-coordinate for 17.64% of the trajectories that hit the barrier was 0.1066.
From the theoretical viewpoint, using the symmetry of the random walk, we can argue that the y-
coordinate should be equal to 0.

EXERCISE 2.5. By running the following script, we simulate trajectories and calculate the number
of those that hit the barrier. The plot is given below.

Nhits<- c ()

#specifying seed
set.seed (96770)

#defining walk as matrix
walk<- matrix (NA, nrow=1001, ncol=2)

#defining random steps
rstep<- matrix(c(1, 0, -1, 0, 0, 1, 0, -1), nrow=4, ncol=2, byrow=TRUE)

#varying the barrier value
for (barrier in 1:50) {
nhits<- 0
#simulating trajectories
for (j in 1:100)
{
walk[1l,]<- c(0,0) #setting initial value to the origin
for (i in 2:1001)
{
walk[i, ]<- walk[i-1l,] + rstepl[sample(l:4, size=1),]

if (walk[i,1l]==barrier) {
nhits=nhits+1
break }
}
}
Nhits[barrier]=nhits

}
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print (Nhits)

[1] 93 94 93 94 87 85 72 66 66 66 61 61

[13] 66 43 49 49 44 46 37 38 39 31 33 29
[25] 30 28 19 24 17 18 23 13 22 12 8 9
[37] 810 811 6 8 4 7 4 6 3 4
[49] 4 1

plot (1:50, Nhits/100, col="blue", xlab="Position of barrier", ylab="Probability of
hitting barrier", panel.first=grid())
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We see that as the barrier value increases from 1 to 50, the estimated probability of hitting this barrier
decreases from 0.93 to 0.01, in a slightly curvilinear (convex downward) manner.

EXERCISE 2.6. The lines of code given below terminate each trajectory if it reaches a side of the
square. The total number of steps required is recorded for each trajectory. The average value is
computed at the end.

walk<- data.frame ()
nsteps<- c ()

set.seed (37440)

#defining random steps
rstep<- matrix(c(1, 0, -1, 0, 0, 1, 0, -1), nrow=4, ncol=2, byrow=TRUE)

#simulating trajectories
for (j in 1:1000)
{

walk[1l,1]<- O
walk[1l,2]<- O
i<- 2

repeat{
walk[i,]<- walk[i-1,] + rstep[sample(l:4, size=1),]
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if (walk[i,1]1==10 | walk[i,1]==-10 | walk[i,2]==10 | walk[i,2]==-10)
{ Dbreak }
else i=i+1

}

nsteps[jl=1
}

mean (nsteps)

120.898

Hence, the average number of steps it takes for the random walk to reach the square is estimated as
120.898 steps.

EXERCISE 2.7. (a) Conditioning on the outcome of the first step, we see that the probability P;
solves the recurrence relation P; = pP;,, + qP;_; with the border constraints P, = 0 and Py = 1.

l
Assuming first that g # 1, we look for the solution in the form P; = ¢ (%) + d where c and d are

bR B
v

some constants that can be found from the boundary conditions: P, =0 = ¢ ( +dand Py =1=

@f _O-@

C(E)B + d. From here, ¢ = — ;and d = —F—=, and thus, P;
D . s (g B q B> )A_(E)B .
1Y

Now assume % = 1. We look for the solution of the recurrence relation in the form P; = ci + d.

/—\
T |

/N
o

p p p p

Again, from the boundary conditions, P, =0 =cA +d and Pz = 1 = cB + d. Hence,
1 i—A
c——andd——— leading to P; = — .
B-A B- B-A

(b) By conditioning on the first step, we see right away that the expectation satisfies the recurrence
relation E; = pE;,; + qE;_; + 1 with the boundary conditions E, = Ez = 0. Because of the additive

constant term, this equation is referred to as a non-homogeneous relation and the general solution is

i .

sought in the form E; = ¢ (%) +d+ ﬁ, if % #1, and E; =ci +d —i?,if % = 1. The constants ¢
A

and d are found from the boundary conditions. In the former case, they satisfy E;, = 0 = ¢ (g) +d+

B
iandEB=O=c(2) +d+i.Whence,
q-p P a-p

_B-4A 1
A B’
e (%) -3
and
B
-2 () B
=" TV (@ q-p’
@ -

resulting in
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In the latter case, c and d solve E;, = 0 =cA+d — A%> and Ez = 0 = ¢B + d — B2. From here,
c=A+Bandd = —AB.Thus, E; = (A + B)i — AB — i? = (B — i)(i — A).

(c) We use the formulas derived above with p = 0.47,q = 0.53,4 = 10,i = 40, and B = 80. We

obtain
10

0.53 0.53
Py = (W)m _ (W)SO = 0.007962,

6) -(7)

40

" 0.53\*  /0.53,%°
_s0-10 (o77) ~ (@) 80 —40
4053 -047 (0,53)10 _ (0,53)80 T 053047 107TLLS.
0.47 0.47

The probability of doubling the fortune in this rigged game is very small (about 0.008), and the
gambler will play, on average, about 491 games before he walks out of the casino.

Below we give the code that simulates 10,000 trajectories and computes the proportion of them that
ended in $80 (as opposed to $10) and averages the number of games in each trajectory.

#specifying parameters
p<- 0.47
ntraj<- 10000

#setting seed number
set.seed(314159)

#defining walk as matrix
walk<- data.frame (NULL)

#setting counters
n80<- 0

nl0<- 0

ngames<- 0

#simulating trajectories
for (j in l:ntraj) {
walk([1l,3]<- 40
k<- 2
repeat {
walk([k,jl<- ifelse(runif(l)<p, walk[k-1,73]1+1, walk[k-1,3]1-1)
if(walk[k,31==80) {
n80<- n80+1
break
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}
if(walk([k,Jj]==10) {
nl0<- nl0+1
break
}
k<- k+1
ngames<- ngames+l
}
}

print (prop.n80<- n80/ntraj)
0.0084
print (avg.ngames<- ngames/ntraj)

488.4926

EXERCISE 2.8. The student’s visit to the museum can be modeled as a random walk on a graph
with the state space S = {Exit, A, B,C,D,E, F}, and the transition probability matrix P

Exit A B C D E

Exit 1 0 0O 0 ©O 0
1/3 0 1/3 0 1/3 0
0 1/2 0 1/2 0 0

0 o 1/3 0 1/3 1/3

0 1/2 0 1/2 0 0
0
0

O O o © O|m

0 0 1/2 o 0 1/2
0 0 0 O 1 0

We assume that at the beginning of the walk, the student enters the museum and finds himself in
Room A. The expected number of transitions between the rooms until he reaches the exit is given by
the formula
E(# of transitions)
=(0,1,0,0,0,0,00((1(P) + (2)(P? — P) + (3)(P? — P?) + (4)(P* — P?)
+--)(1,0,0,0,0,0,0)7*

We submit the following R code that approximates this sum. The convergence is achieved with 146
terms.

#specifying the transition probability matrix

tm<- matrix(c(1,0,0,0,0,0,0,1/3,0,1/3,0,1/3,0,0,0,1/2,0,
1/3,0,1/3,1/3,0,0,1/2,0,1/2,0,0,0,0,0,0,1/2,0,0,1/2,0,0,
nrow=7, ncol=7, byrow=TRUE)

0,0,

/ZIOIOI ’
0,0,1,0),

1 0
0,0,0,1,0

fsetting counter
ntrans<- 0

#computing expected number of transitions
p<- matrix (NA, nrow=146, ncol=7)
p[11]<_ C(OlllOIOIOIOIO)
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for (i in 2:1406) {
pli,]1<- pl[i-1,]1%*%tm
ntrans<- ntrans+(i-1

}
print (ntrans)
12.94225

Thus, the student will make, on average, 12.94225 transitions between the rooms. Since he spends 30
minutes in each room, the total average length of visit will be (30)( 12.94225)=388.2675 minutes (or 6
hours and 28.3 minutes). On an “average” visit, he will be done before the museum closes for the day.
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CHAPTER 3

EXERCISE 3.1. We use the independence and stationarity of increments of a Poisson process to
derive the expression for the joint probability distribution. We write

P(N(s) =m,N(t) =n) =P(N(t) —N(s) =n—m,N(s) =m)
=P(N({t)—N(s)=n—m)P(N(s) =m) =P(N(t—s) =n—m)P(N(s) =m)

_Qe=9)"T" ey O™ = s)msT
(n —m)! m! (n—m)!'m!

m n—m(l)n a
- (- L

/lne—/'lt

EXERCISE 3.2. Assume that s < t. We compute the covariance function, using the independence

and stationarity of the increments. We have
Cov(N(s), N(t)) = EIN(s)N(8)] = E[N()]E[N ()]
= E[(N(®) = N(s) + N())(N(s))] — EIN(S)IE[N ()]
= E[(N(®) = N())N(s)] + E[N(s)]* — E[N(s)]E [N(t)]
= E[N(t) — N()IE[N(s)] + Var[N(s)] + [E(N(s))] — E[N()IE[N(®)]
= E[N(t — $)]E[N(s)] + Var[N(s)] + [E(N(s))] — E[N(s)]E[N(D)]
= A(t — s)As + As + (As)? — AsAt = As.

EXERCISE 3.3. (a) P(N(5) =16|N(1) =2,N(2) — N(1) = 3)

_ P(N(5)-N(2)=11,N(2) - N(1) =3,N(1) = 2)
B P(N(2)—N(1) =3, N(1) =2)

_P(N®3) = 1DP(N(1) = 3)P(N(1) = 2) _ L (ee)
=T PN =3P =2 TWNE=1D=Tm

(b) Since E(S;00) = (100) (%) = 20, the 100th claim is expected to be seen on the 20th business
day, that is, on January 27th.

JANUARY
Monday 2 19 16 23 30
Tuesday 3 10 17 |24 |31
Wednesday 4 11 18 | 25

e~ )3 = 0.0663.
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Thursday 5 12 19 | 26
Friday 6 13 20

Saturday 7 14 |21 28
Sunday 8 15 |22 |29

EXERCISE 3.4. (a) Phone calls that result in sales occur with rate (0.15) (%) = 1.8 per hour.

Therefore, in the next two hours, there will be, on average (2)(1.8)=3.6 successful sales.

(b) The total number of phone calls is a Poisson process with a rate of 60/5=12 per hour. Phone calls
that result in a sale and those that don’t form independent Poisson processes with rates 1.8 and 10.2
per hour, respectively. Therefore,

P(N(1) = 15,Nsq1e(1) = 5) = P(Nsqie(1) = 5, N sq1¢ (1) = 10)

5 0
= P(Vagte(1) = )P (N i (1) = 10) = Lok =10 LODT

-10.2 _
o e 101 e = 0.00325.

(c) P(N(4) =10 | N(1) =3) = P(N(4) = N(1) =7) = P(N(3) = 7) = we-m)@) = 0.119987.

EXERCISE 3.5. (a) N;(t) and N,(t) are splitted Poisson processes with the means

t
E(N.(t)) =4 f P(disease is contracted at time s, symptoms show by time t)ds
0

=1 F(t —s)ds = = — =1 d ,
= jo (t—s)ds={u=t—s} fOF(u) u
and

t
E(N,(t)) =4 f P(disease is contracted at time s, no symptoms show by time t)ds
0
t t
=/1f (1-F(t—s))ds={u= t—s}=/1f (1—F(u))du.
0 0

(b) Suppose by a fixed time t, E (N1 (t)) individuals are observed who show symptoms of a
E(N;1(D)
fot F(wdu
into the expression for the expected value of N,(t), we can calculate the estimated number of
individuals infected but not yet showing symptoms by time t as

disease. From here, we can estimate the rate of contracting the disease as 1 = . Plugging this

E(N,(D)) fot(l — F(w))du

EN(0) = [*Fodu
0

(c) Suppose the incubation period until symptoms show is an exponentially distributed random
variable with a mean of 2 days. Thus, F(u) = 1 — e %/2,u > 0. Given that E(N1(10)) = 1000, we
estimate the number of individuals who are infected but haven't shown the symptoms yet as
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0

. 0[Pe2qy  (1000)(2) (1 — e_%>
E(N,(10)) = =

= 247.8979,
10

[O(1-e2)du 10—(2)(1—9-12—0)

or about 248 individuals.

EXERCISE 3.6. (a) Let N(t) denote the number of high road surface distress areas on a t-mile
stretch of the road. It is a Poisson process with a rate A = 2.8. So, E(N(10)) = (2.8)(10) = 28.

(b) The code below simulates 30 distances between distressed surface areas. These distances are
independent and exponentially distributed with mean i =0.357143 miles.

#specifying parameters
lambda<- 2.8
Nareas<- 30

#defining states
N<- 0O:Nareas

#setting distance as vector
dist<- c{()

#setting initial value for distance
dist[1]<- 0

#specifying seed
set.seed (777754)

for (i in 2: (Nareas+1))
dist[i]<- dist[i-1] + round((-1/lambda)*log(runif (1)),2)

#plotting trajectory

plot(dist, N, type="n", xlab="Number of miles", ylab="Number of distressed areas",

panel.first = grid())

segments (dist[-length(dist)],N[-length(dist)], dist[-1]-0.07, N[-length(dist)],
lwd=2, col=4)

points(dist, N, pch=20, col=4)
points(dist[-1],N[-length(dist)],pch=1, col=4)
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In this simulation, the total length of the road that contains 30 distressed surface areas is the last value
in the vector dist, that is, 15.99 miles.

dist[length (dist) ]

15.99

(¢) Given that N(10) = 30, the distances between distressed surface areas are distributed as order
statistics of the uniform distribution on the interval (0,10). The R code below simulates the locations
of those areas.

#specifying parameters
D<- 10
Nareas<- 30

#specifying seed
set.seed (87998)

#defining states
N<- 0O:Nareas

#generating N standard uniforms
u<- c ()
ul[l]<- 0

for(i in 2: (Nareas+1l))
ulil<- runif (1)

#computing event distances
dist<- D*sort (u)

#plotting trajectory

plot (dist, N, type = "n", xlab="Number of miles", ylab="Number of distressed
areas", panel.first = grid())
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segments (dist[-length(dist)],N[-length(dist)], dist[-1]-0.07, N[-length(dist)],
1lwd=2, col=4)

points (dist, N, pch=20, col=4)
points(dist[-1],N[-length(dist)],pch=1, col=4)
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EXERCISE 3.7. For the data set on significant volcanic eruptions between 1920 and 2020, the code

below calculates interarrival times, plots a histogram, and conducts the goodness-of-fit test. The p-
value for the test is larger than 0.05, indicating that the Poisson process models the data well.

volcanoes.data<- read.csv(file="./volcanoesdata.csv", header=TRUE, sep=",")

#creating date-time variable
datetime<- as.POSIXct (paste(as.Date(volcanoes.data$DATE), volcanoes.data$TIME))

#computing lag
datetime.lag<- c(0,head(datetime, -1))

#fcomputing interarrival times (in hours)
int<- (as.numeric (datetime)-as.numeric (datetime.laqg))/ (3600*24)
int<- int[-1] # removing first value

#plotting histogram
hist (int, main="", xlab="Interarrival Time", col="dark magenta")
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#binning interarrival times

binned.int<- as.factor(ifelse (int<25,"1", ifelse(int>=25 & int<50,"2",

ifelse (int>=50 & int<100,"3", ifelse(int>=100 & int<150,"4",ifelse(int>=150 &
int<200,"5", ifelse (int>=200 & int<250,"6", "7")))))))

#computing observed frequencies
obs<- table (binned.int)

#estimating mean for exponential distribution
mean.est<- mean (int)

#computing expected frequencies
exp<- c(1l:7)

exp[l]<- length(int
exp[2]<- length (int

l-exp (-25/mean.est))
exp (-25/mean.est) —exp (-50/mean.est)

( ) *(

( ) *( )
exp[3]1<- length (int) * (exp (-50/mean.est) —exp (-100/mean.est))
exp[4]<- length(int) * (exp (-100/mean.est) -exp (-150/mean.est))
exp[5]<- length (int) * (exp (-150/mean.est) -exp (-200/mean.est))
exp[6]<- length (int) * (exp (-200/mean.est) —exp (-250/mean.est) )
exp[7]1<- length (int) *exp (-250/mean.est)
obs

1 2 3 4 5 6 7
96 64 94 42 29 13 33

round (exp, 1)

83.3 64.6 88.9 53.5 32.2 19.3 29.2

#computing chi-squared statistic
print (chi.sg<- sum( (obs-exp)"2/exp))

7.581284

#computing p-value
print (p.value<- l-pchisqg(chi.sq, df=5))

0.1808718
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EXERCISE 3.8. (a) Team A scores as a Poisson process with a rate 1, = (0.25 + 0.40 +
0.20)(0.5) = (0.85)(0.5) = 0.425 per minute. Team B scores as a Poisson process with a rate 15 =
(0.25 4+ 0.50 + 0.15)(0.4) = (0.9)(0.4) = 0.36 per minute. Hence,

1

= = 1.273885 minutes.
Aa+dg  0.425+0.36

E(time until a team scores) =

(b) E(time until team A scores) = L = = 2352941 minutes.
Aa 0.425
E (time until team B scores) = % = 0—136 = 2.777778 minutes.
B .

Aa 0425
Aa+dp  0.425+0.36

(c) P(team A scores before team B) = = 0.541401,

P(team B scores before team A) = 1 — 0.541401 = 0.458599.

(d) For team A, 1-pointers occur as an independent Poisson process with rate (0.25)(0.5) = 0.125 per
minute; 2-pointers occur as an independent Poisson process with rate (0.4)(0.5) = 0.2 per minute;
and 3-pointers occur as a Poisson process with rate (0.20)(0.5) = 0.1 per minute. For team B, the
respective rates are (0.25)(0.4) = 0.1 per minute, (0.5)(0.4) = 0.2 per minute, and (0.15)(0.4) =
0.06 per minute. Therefore,

P(teams score same #of 1-pointers, 2-pointers, and 3-pointers)

= P(same #of 1-pointers)P(same #of 2-pointers) P (same #of 3-pointers)

onmssonyag O (012500 [ o0 ((0.2)(0.2)(48)2)"
=[e (0.125+0.1)( ); o ”e (0.2+0.2)( )HZ;)( e )]

X [e—(0-1+0-06)(48) Z ((0'1)(0'06)(48)2) ] = 0.0012.
n=0

(n!)?

#computing probability of same number of l-pointers, 2-pointers, and 3-pointers
suml<- 0
for(n in 0:16)
suml<- suml+ (0.125*0.1*4872)"n/ (factorial (n))"2
print (pl<- suml*exp(-(0.125+0.1)*48))
0.1152988
sum2<- 0

for(n in 0:23)
sum2<- sum2+ (0.2*0.2*4872) " n/ (factorial(n))"2
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print (p2<- sum2*exp (- (0.2+0.2) *48))
0.09165684

sum3<- 0
for(n in 0:12)

sum3<- sum3+(0.1*0.06*48"2)"n/ (factorial (n)) "2
print (p3<- sum3*exp (-(0.1+0.06) *48))

0.1167362

pl*p2*p3

0.001233658

EXERCISE 3.9. (a) The spider will need T = 30 minutes = 0.5 hours to reach the top. The rate of
rain is A = 2 per hour. Denote by T the total time it takes the spider to reach the top. The expected

value of T is E(T) = %(6(0.5)(2) — 1) = 0.859141 hours or 51.5 minutes.

(b) Let N denote the number of times the spider will be washed down before it reaches the top. Then,
E(N) = e®9® — 1 =1.718282.

CHAPTER 4

EXERCISE 4.1. (a) The number of broken calculators can be modeled according to a
nonhomogeneous Poisson process {N(t),t = 0} with the intensity rate function

3, if0<t <3,
Mt)‘{z::—& if 3<t < 10.

The integrated rate function is

( t
. f3du=3t, if 0<t <3,
A(t)=f Awdu = {"° .
0 9+f(2u—3)du:t2—3t+9, if 3<t <10.
3

The probability mass function is

n
PN(E) = N(s) = n) = LOAD o-(a®-a) = [L2309) —(e2-57-3(e-s)),

n!
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50
(b)) PN(B) — N(#) = 50) = E200) o ~(2-47360)  ,004983,

(¢) E(N(10) — N(2)) = A(10) — A(2) = 102 — (3)(10) + 9 — (3)(2) = 73.

EXERCISE 4.2. (a) Below is the R code and plot of the intensity function A(t) = —0.000025 t3 +
0.002 t% + 0.12t against t on the interval [0, 120].

lambda<- function(t) -0.000025*t"3+0.002*t"2+0.12*t
t<- seq(0, 120, by = 0.01)

plot(t, lambda(t))

lambdait)

T T T T T T T
0 20 40 60 80 100 120

t

The intensity function looks like a skewed upside-down parabola that is equalto O att = O and t =
120. It achieves the maximum at time t that solves the equation A'(t) = 0. Therefore, t solves the
quadratic equation (—0.000025)(3)t? + (0.002)(2)t + 0.12 = 0, which simplifies to —0.0075t2 +

0.4t + 12 = 0. We need the solution that lies between 0 and 120, therefore, t = 0'40+0105'52 =

74.74068 days. Thus the peak intensity rate occurs 74.74 days into the fire season, and the maximum
number of fires per day is = —0.000025 (74.74068)3 + 0.002 (74.74068)? + 0.12(74.74068) =
9.703286, or roughly 9.7 fires per day.

(b) We write A(t) = [; A(w)du = [;(~0.000025 u® + 0.002 u? + 0.12u)du = — 0.00000625t* +
0.0006667t3 + 0.06t2,0 < t < 120. The R code and the graph are given below.

Lambda<- function(t) -0.00000625*t"4+0.0006667*t"3+0.06*t"2
t<- seq(0, 120, by = 0.01)

plot (t, Lambda(t))
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To find the average number of wildfires per season we compute A(120) = —(0.00000625)(120)* +
(0.0006667)(120)3 + (0.06)(120)% = 720.0576, so, on average, about 720 fires occur in this area
every season.

(a) The middle 50% of the fire season falls between day 30 and day 90. The mean number of wildfires
in this period is A(90) — A(30) = —(0.00000625)(90)* + (0.0006667)(90) + (0.06)(90)? —
(—(0.00000625)(30)* + (0.0006667)(30)3 + (0.06)(30)?) = 561.9618 — 66.9384 = 495.0234.

EXERCISE 4.3. (a) The integrated intensity function is

AQ) = [ Awdu = Ot%du = 24Vt t > 0.

We know that A(1) = 30. Thus, A = 15.
(b) Given that the nth injury occurred at the time s,,, the conditional cumulative distribution function

of the time until the next injury Ty4q,n = 1,is Fr. |5, (tls,) = 1 — exp{—30(\/t + s, —
\/S_n)} ,t = 0. The cdf of Ty is Fr, (£) = 1 — exp{—30vt},t = 0. To simulate observations from

this distribution, we first generate standard uniform random variables U,;, n = 1, and then
sequentially solve Fr. s (t|sy) = Upyq,i.e., we solve for t the identities 1 —

exp{—30(w/ t+S,— \/S_n)} = U,. Replacing 1 — U,, by U, since both have the same standard
uniform distribution, we obtain

1 2 1 2
Sy =(-=InUy), and Sy = (VS —=In(U,)) ,n=1.
The code and the simulated trajectory follow.

#specifying parameters
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ninjrs<- 100

#defining states
N<- O:ninjrs

#defining times as vectors
time<- c()

#specifying seed
set.seed (933541)

#computing event times
time[1]<- (-log(runif (1)) /30)"2
for(i in 2:(ninjrs+1))
time[i]<- (sqrt(time[i-1])-log(runif (1)) /30)"2

#plotting simulated trajectory
plot (time, N, type="n", xlab="Years", ylab="Number of injuries",
panel.first=grid())

segments (time[-length (time) ], N[-length(time)], time[-1]-0.07,
N[-length(time) ], col=4)

points (time, N, pch=20, col=4)
points(time[-1], N[-length(time)], pch=1l, col=4)
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0 2 4 8] B 10
Years
time[201]
9.870481

The time range of the trajectory is [0,9.870481].

(c) We are given that S;oo = 12.25 years. The times of injuries Sy, S,, ..., Sgg are then represented by

A(s) _ 30vs

order statistics from the distribution with the cumulative distribution function

\/S/S100- The code that simulates a trajectory and the graph follow.

A(S100)  304/S100
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t<- 12.25
Lambda<- 30*sqgrt (t)

#generating N (t)
set.seed (1133664)
ninjrs<- rpois (1, Lambda)

#defining states
N<- O:ninjrs

#generating standard uniforms
u<- c ()

ul[l]<- 0

for(i in 2:(ninjrs+1))

ul[i]<- runif (1)

#computing event times
time<- round(t*sort (u)"2,4)

#plotting simulated trajectory

plot(time, N, type="n", xlab="Years",

panel.first=grid())

segments (time[-length (time) ],
N[-length(time) ], col=4)

points(time, N, pch=20, col=4)

points (time[-1], N[-length(time)],

ylab="Number of injuries",

N[-length(time)], time[-1]1-0.07,

pch=1, col=4)

40 (5]0] 80 100
I I I

Number of injuries

20
I

Years

EXERCISE 4.4. Below are the code and plot of the simulated trajectory. We are using the thinning
simulation method where we uniformly dominate the intensity rate function by 20.

#specifying parameters

lambda<- function(s) 10+10*cos (2*pi*s)

lambda.star<- function(s) 20
Lambda.star<- function(s) 20*s
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#specifying seed
set.seed (2866514)

#generating N (t)
njumps<- rpois(l, Lambda.star (10))

fgenerating N(t) standard uniforms
u<- c ()
ul[l]<- 0

for(i in 2: (njumps+1l))
uli]<- runif (1)

#computing event times
time.star<- 10*sort (u)

#thinning event times
accepted<- c{()

time<- c ()
accepted[l]<- 1
time[1l]<- 0

for (i in 2:
if (runif (1)
accepted|[i

}

(njumps+1)) |
<= lambda (time.star[i
]=1 else accepted[i]=

1) /lambda.star (time.star[i]))
0

time<- time.star[-which (accepted==0) ]

N<- 0: (length(time)-1)

#plotting trajectory
plot(time, N, type="n", xlab="Time", ylab="State", panel.first = grid())

segments (time[-length (time) ],N[-length(time) ], time[-1]-0.07,
N[-length(time) ], col=4)

points(time, N, ylim=c(0,120), pch=20, col=4)
points(time[-1],N[-length(time) ],pch=1, col=4)

80 100
1

State
&80

40

20
|

Time



EXERCISE 4.5. In the process of radioactive decay, photons are emitted according to a
nonhomogeneous Poisson process with the intensity rate A(t) = 100e~%5¢, t > 0. The integrated

intensity rate function is A(t) = fotl(s)ds =200(1 —e %), t > 0.

METHOD 1 (EXPONENTIAL INTERARRIVALS). To simulate event times, we solve the recurrence
equations 1 — e 260 = U, and 1 — e~ (AGn+)=AGw) = y, ., n > 1. Equivalently, we can replace
1 — U, by U, and solve e A1) = U, and e~ (AGn+0)-AGw) = y .. n > 1. In this example, the

—200(1—e~0551) _ U, and p—200(e™035n—e=055n+1) _ 1y

equations are: e n+1, 1 = 1. Solving, we get

1
200

1

Sy =—2mn(1+( -

)ln(Ul)) and S,,; = —21In (e‘O'SSn + ( )ln(Un+1)) ,n=> 1.

The code below simulates a trajectory with 20 events.

#specifying parameters
njumps<- 20

#defining states
N<- O:njumps

#defining times as vectors
time<- c ()

#specifying seed
set.seed (40556002)

#generating standard uniforms
u<- c ()

for(i in 1l:njumps)

ul[i]<- runif (1)

fcomputing event times
time[1l]<- 0
time[2]<- -2*1log(1+(1/200)*1log(ull]))

for (i in 3: (njumps+1)) {
time[i]<- -2*log(exp(-0.5*time[i-1])+(1/200)*log(uli-11]))
}

#plotting trajectory

plot (time, N, type="n", xlab="Time", ylab="State", panel.first = grid())
segments (time[-length (time) ],N[-length(time)], time[-1]1-0.001, N[-length(time)],
lwd=2, col=4)

points (time, N, ylim=c(0,120), pch=20, col=4)
points (time[-1],N[-length(time)], pch=1, col=4)
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METHOD 2 (UNIFORM ORDER STATISTICS). In this method, an event time S is found as the
. . A . .
solution of the equation n ((fz)s.) = U where by U we denote a standard uniform random variable from

200(1—e~05%5)
200(1—e—(0-5)(0-25))
—21In(1 — (1 — e~©»O29) ). The code and graphical output are presented below.

= U. The solution is S =

an ordered sample. The equation takes the form:

#specifying parameters
t<- 0.25
Lambda<- 200* (1-exp (-0.5*t))

#specifying seed
set.seed(492231)

#generating N (t)
njumps<- rpois (1, Lambda)

#defining states
N<- 0:njumps

#generating N(t) standard uniforms
u<- c ()
ulll<- 0

for(i in 2: (njumps+1))
uli]<- runif (1)

#computing event times
time<- -2*log(l-(l-exp(-0.5*t)) *sort(u))

#plotting trajectory

plot (time, N, type="n", xlab="Time", ylab="State", panel.first = grid())
segments (time[-length (time) ],N[-length(time)], time[-1]-0.001], N[-length(time) ],
lwd=2, col=4)

points(time, N, ylim=c(0,120), pch=20, col=4)



points(time[-1],N[-length(time) ], pch=1l, col=4)
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METHOD 3 (THINNING). We bound the intensity rate function A(t) = 100e~%5¢, ¢t > 0, uniformly by
100. The code below simulates events times of a homogeneous Poisson process and then applies the
algorithm of the thinning method to select only those event times that belong to the nonhomogeneous
Poisson process. The plot follows.

#specifying parameters

lambda<- function(s) 100*exp(-0.5*s)
lambda.star<- function(s) 100
Lambda.star<- function(s) 100*s

#specifying seed
set.seed (2866514)

#generating N (t)
njumps<- rpois(l, Lambda.star(0.25))

#generating N(t) standard uniforms
u<- c()
ulll<- 0

for(i in 2: (njumps+1))
uli]<- runif (1)

#computing event times
time.star<- 0.25*sort (u)

#thinning event times
accepted<- c()

time<- c()
accepted[1l]<- 1
time[1l]<- 0

for (i in 2: (njumps+l)) {
if (runif (l)<= lambda (time.star[i
accepted[i]=1 else accepted[il]l=

1) /lambda.star (time.star([i]))
0
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time<- time.star[-which (accepted==0) ]
N<- 0: (length(time)-1)

#plotting trajectory

plot (time, N, type="n", xlab="Time", ylab="State", panel.first = grid())
segments (time[-length (time) ],N[-length(time)], time[-1]-0.001, N[-length(time) ],
1lwd=2, col=4)

points(time, N, ylim=c(0,120), pch=20, col=4)
points(time[-1],N[-length(time) ], pch=1, col=4)
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EXERCISE 4.6. (a) We run the following code to plot the counts of lightning deaths against year.

data<- read.csv(file="./lightningdata.csv", header=TRUE, sep=",")

plot (dataSYEAR, data$FREQ)
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We can see from the plot that the intensity rate decreases over time roughly exponentially. A possible
explanation for it is that over the years more awareness has been created among citizens through
educational efforts, so fewer people are exposed to the hazard.

(b) We can see that lightning strikes are essentially a seasonal phenomenon. The majority of them
happen between May and September. It means that some interarrival times have very large values not
inherent to an exponential distribution. Moreover, some incidents resulted in multiple fatalities which
would be an event of probability zero under the Poisson law.

EXERCISE 4.7. (a) The code and output below estimate the parameters of the model using the
regression approach.

port.data<- read.csv(file="./Exercised.4Data.csv", header=TRUE, sep=",")

x<- log(port.dataSdays)
y<- log(port.data$arrivals)

glm(y~x)
plot(x,y, xlab="1ln(days)", ylab="ln(arrivals)")

Coefficients:
(Intercept) X
-1.294 1.145

lines(x, -1.294+1.145%*x)
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The estimates of the model parameters are @ = e 129 = 0.274172, and § = 1.145.

(b) The code that follows estimates the parameters using the maximum likelihood approach.

port.data<- read.csv(file="./Exercise4.4Data.csv", header=TRUE, sep=",")
x<- log(port.dataSdays)

y<- log(port.data$arrivals)

N<- 27

print (beta.hat<- N/ (N*x[N]-sum(x)))

1.162782

print (alpha.hat<- N/exp (x[N]*beta.hat))

0.2351766

The MLEs are @ = 0.2351766, and [? = 1.162782.

(c¢) To predict when the next 10,000 TEUs arrive at the port, we submit the following lines of code.
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port.data<- read.csv(file="./Exercised.4Data.csv", header=TRUE, sep=",")

x<- log(port.data$days)
y<- log(port.dataSarrivals)
N<- 27

alpha.hat<- c¢(0.274172, 0.2351766)
beta.hat<- c(1.145, 1.162782)
S.hat<- c{()

library (pracma)

for(i in 1:2)

print (S.hat[i]<- alpha.hat[i]" (-

1/beta.hat[i]) *exp (alpha.hat[i]*exp (x[N]) "beta.hat[i])*

gammainc (alpha.hat[i]*exp (x[N]) “beta.hat[i], 1/beta.hat[i]+1)[2])

60.85581
60.97308

According to the data, the 27th arrival was on day 59.1. The 28th arrival is predicted to be on day
60.85581 (by the linear regression), or 60.97308 (by the maximum likelihood).

60



CHAPTER 5

EXERCISE 5.1. (a) Let X(t) = Z?’:(? Y; be the total amount paid in prizes up to time t hours. We
know that it is a compound Poisson process with N (t)~Poisson(1.5t), and Y; independent of each
other and N (t). The first two moments of Y; are E(Y;) = ($5000)(0.15) + (2000)(0.35) +
($500)(0.2) + ($100)(0.3) = $1,580, and E(Y?) = ($5000)2(0.15) + (2000)2(0.35) +

($500)2(0.2) + ($100)2(0.3) = $25,203,000.

Therefore, the mean of X (200) is E(X(200)) = (1.5)(200)($1,580) = $474,000. The variance is
Var(X(200)) = (1.5)(200)($25,203,000) = $21,560,900,000, and the standard deviation is

Var(X(200)) = /$21,560,900,000 = $39,508.23.

The budget for 100 games should be E(X(200)) + /Var(x(zoo)) = $474,000 + $39,508.23 =
$513,508.23.

(b) Below are the codes, all relevant output, and the graph for the simulated 100 games.

#specifying parameters

lambda<- 1.5

total.hours<- 200

amount<- ¢ (5000, 2000, 500, 100)
p<- c¢(0.15, 0.35, 0.2, 0.3)

#specifying seed
set.seed(704661)

#generating number of prizes
nprizes<- rpois(l,lambda*total.hours)

#defining vectors
payoff<- c{()
time<- c ()

u<- c{()

#setting initial values
payoff[l]<- 0
ul[l]l<- 0

#generating standard uniforms
for(i in 2: (nprizes+1l)) {
ul[i]<- runif (1)
payoff[i]l<- payoff[i-1] + amount[sample(l:4, 1, prob=p)]
}

#computing event times
hour<- total.hours*sort (u)

#simulating trajectory

plot (hour, payoff, type="1", 1lty=1, 1lwd=2, col="green", xlab="Hours", ylab="Amount
of payoff ($)", panel.first = grid())
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payoff[length (payoff) ]

557100

There were a total of 308 prizes given out during the 200 hours of the 100 games. The total payoff was
$557,100.00. Since the budget that the producer had for the 100 games was $513,508.23, the producer
ran out of money before the 100th game.

payoff
[289] 511200 513200 513300 515300 515400
The producer ran out of budget after the 291st prize was given out.

hour[291]
190.8272

The 291st prize was given out at hour 190.8272 of the show, that is, during the first half of the 96th

show.

EXERCISE 5.2. (a) Let Y;~Unif ($30,$300) be the ith claim amount. The two first moments of ¥;
are E(Y;) = 29890 _ ¢165, and E(v,2) =

1 (83005 _ (300)-(830)° _ ¢
$300-$30 f$30 udu = 36270) $233,300.
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Let X(t) = Z?’:(? Y; be the aggregate claim process. Its mean for t = 30 is

E (X 3 0)) =(60)(30)($165)=%$297,000, and the standard deviation is 1/ Var(X(30)) =
/(60)(30)($233,300) = $7,742.093.

X(30)-E(X(30)) __ X(30)-297000
Var(X(30)) 7742.093
300000—-297000
7742.093

(b) By the Central Limit Theorem, Z = has approximately a N(0,1)

distribution, and therefore, P(X(30) > 300000) = P (Z >
0.349196.

EXERCISE 5.3. (a) Let X(t) = yNO Y; denote the aggregate number of light photons that are

=1

) = P(Z > 0.387492) =

generated up to t seconds. We are given that N(t)~Poisson(At) and Yi~Poisson(i). The mean and

standard deviation of X (t) are E(X(t)) = (A)(t) (Z) and [Var (X (t)) = JD®(EYP) =
JWOE+2).

(b) The code below simulates 100 values of the aggregate number of light photons generated within 10

seconds.

#specifying parameters
total.time<- 10
lambda<- 50
lambda.tilde<- 5

total.photons<- c{()
for (j in 1:100) {

nphotons<- c{()
nphotons[1]<- 0

#generating N (t)
set.seed (150%7)
N<- rpois(l,lambda*total.time)

#simulating trajectory
for (i in 2:N)
nphotons[i]<- nphotons[i-1]+rpois(l, lambda.tilde)

total.photons[j]<- nphotons[N]
}

total.photons

[1] 2333 2737 2532 2392 2612 2484 2474 2440
[9] 2638 2549 2549 2361 2459 2603 2633 2537
[17] 2379 2314 2496 2630 2410 2233 2350 2610
[25] 2506 2412 2444 2444 2572 2430 2477 2472
[33] 2538 2470 2648 2641 2333 2425 2475 2549
[41] 2382 2599 2451 2386 2477 2262 2673 2627
[49] 2493 2490 2789 2449 2572 2537 2566 2427
[57] 2591 2469 2414 2508 2610 2587 2523 2384
[65] 2695 2578 2633 2523 2355 2597 2577 2558
[73] 2550 2396 2406 2496 2576 2627 2434 2552

63



[81] 2425 2393 2504 2664 2485 2408 2625 2500
[89] 2595 2609 2521 2524 2420 2569 2659 2741
[97] 2360 2617 2546 2505

(c) Below we construct a histogram for these 100 values.

hist (total.photons, col="maroon")

Histogram of total.photons
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The histogram does resemble a bell shape. It should be the case since A is large, and so, the Central
Limit Theorem should be applicable.

EXERCISE 5.4. The average present value of the total claim amount is computed by conditioning
on the value of N(t). We proceed as follows: E[P(t)] = EE[P(t)|N(t)] = [ZN(t) X;e 55| N(t)]
=F [ZN © g (X)E (e“ssl)] The claim arrival times Sy, ..., Sy(y) are order statistics from a uniform
distribution on [0, t] and we can write S; = tU; where U; is the ith order statistic from the standard
uniform distribution. We continue E[P(t)] = E [ZN(” E(X)E (e_&U(l))] E(X,)E [ZN@ E (e"‘sw )]
= EXDE(N(©)E(e0V1) = E(X)A [ e tdu = E(Xl)( ) (1—e5%).

EXERCISE 5.5. (a) Random variables Y;'s are iid ~ Poisson (f8). Therefore,
™Y, ~ Poisson (Bn). We write P(X(t) = x) = P(ZN(t) Y- = x) =Y o P, Y =
. x At _ _ A"
x IN() = MP(N(E) = n) = Ny L ~n S gt = B pte g0 WOOT oopm,

(b) E(X(D)) = ME(Yy) = AtB, Var(X(t)) = AEY? = At(B + B2).
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-B n B B
(c) P(X(t) = 0) =L e-2ty= =T “f) ebn = gty (Ae) _ rrareh _ p-dt-eh)

n

Var(X(t))

The ratio between the variance and mean is
E(X(1)

= 1+ (3, thus, B can be estimated as

g = %)((g))) — 1. Also, In P(X(t) = 0) = InP(0) = —At(1 — e~#). Hence, we can estimate A by
/:{ _ _ lnIS(Oz '
t(1—e=h)

EXERCISE 5.6. (a) The total dollar amount can be modeled by a compound Poisson process

X(t) = ZN(t) Y; where N(t) is the process governing the number of cars that come to the gas station

up to time t, and Y; is the dollar amount that the ith car driver pays. We are given that
N(t)~Poisson (At), and Y;~Gamma(a, ) with mean E(Y;) = af, and variance Var(Y;) = af?.

(b) Denote by T;~Exp(mean = l) the interarrival times between car arrivals. The method of

moments estimator of A is 1 = 1/T, the reciprocal of the sample mean of the interarrival times. The
ny? and,B—? Y, Y2 -ni?
T, Y7 -n¥? -

the system of two equation Y =E(,) = &B and ;Zi=1 Y? = E(WY?) =Var(Yy) +
~ 2 A — —
(E(r))” = (aﬁ) =Y + Y2

method of moments estimators of @ and § are @ = . They solve

ny

QH

(a) The code below produces numeric values of the estimators and plots histograms with fitted
curves.

gas.data<- read.csv(file="./Exercise5.6Data.csv", header=TRUE, sep=",")

#computing lag
gas.data$ArrivalTime.lag<- c(0,head(gas.data$ArrivalTime, -1))
#gas.data<-gas.data[-1,] #removing first row

#computing interarrival times
interarrival.time<- gas.data$ArrivalTime-gas.data$ArrivalTime.lag

#festimating lambda of Poisson arrival
print (lambda.hat<- 1/mean (interarrival.time))

0.6029832
print (1/lambda.hat)

1.658421

There are, on average, 0.6029832 car arrivals every minute. The average wait time between two
arrivals is 1.658421 minutes.

#overlaying histogram and fitted exponential density curve
hist (interarrival.time, freq=FALSE, col="purple")

x<- seq (0, 8, by=0.01)

y<- dexp (x, lambda.hat)

lines(x, y, lty=1l, col="light green", lwd=3)

65



Histogram of interarrival.time
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#estimating parameters of gamma distribution

amount<- gas.data$AmountSpent

print (alpha.hat<- length (amount) *mean (amount) *2/ (sum (amount”"2) -
length (amount) *mean (amount) ~2))

7.48998

print (beta.hat<- mean (amount) /alpha.hat)

4.29609

#overlaying histogram and fitted density
hist (amount, fregq=FALSE, col = "pale green")
x<- 0:80

y<- dgamma (x, alpha.hat, 1/beta.hat)
lines(x, y, lty=1l, col="dodger blue", 1lwd=3)

[ |
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(d) The estimated mean of the total dollar amount at one hour is £ (X (60)) = (i) (@) (,[)3 ) =
(0.6029832)(60)(7.48998)(4.29609) = $1,164.154. The estimated standard deviation is

\/Var(X(60)) = \/ (D ®@)(B)" = /(06029832)(60) (7.48998) (4.29609)2 = $70.71995.
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CHAPTER 6

EXERCISE 6.1. (a) Cov(N(s),N(t) — N(s)) = E[N(s)N(t —s)] — E[N(s)] E[N(t — s)] =
EE[N(s)N(t —s) | A] —EE[N(s) | A] - EE[N(t —s) | A] = E[(As)(A)(t —s)] — E[AS]E[A(t —
s)] = s(t — s)E(A?) — s(t — s)(E(M))? = s(t — s)Var(N).

(b) Cov(N(s),N(t)) = E[N(s)N(t)] — E[N(s)] E[N(t)] = EE[N(s)(N(t) — N(s) + N(s)) | A]
E[N(s)] E[N(£)] = EE[N(s)N(t — ) | A] + EE[(N(s))" | A] — EE[N(s) | A] - EE[N(£) | A] =
E[(As)(A)(t — s)] + E[As + (As)?] — E(As)E(At) = s(t — s)E(A?) + sE(A) + s2E(A?) —
st(E))” = stE(A2) — st(E(A))” + sE(A) = stVar(A) + sE(A).

P(N(t)=n,A<A
EXERCISE 6.2. (a) Fyyeln) = P(A<AIN(t) =n) = %

n
3 f(fp(N(t) =n | A=u)fadu f(f%e‘”tf,\(u)du _ f(;lu"e_uth(u)du

T CP(N@®) =n|A=u)rawau [UDR o —ut s, (wydu [ ure Ut f A (uydu

Ate=MrA)
Jo> Ame=Atfa()dA’

®) fainey @A) = Fyyey(dn) =

Jo© e tf, (Dda

e da

(c)E[AIN(t) =n] = fooo/lfAlN(t)(/lln)dﬂ =

EXERCISE 6.3. (a) Denote by {N(t),t = 0} the process of visitor arrival. We know that
N(t)~Poisson(At) where P(A = 4) = 0.46, P(A = 2) = 0.24, and P(A = 3) = 0.30.

The mean and variance of N(t) are E(N(t)) =tE(A) = t((4)(0.46) +(2)(0.24) + (3)(0.30)) =
3.22¢t, and Var(N(t)) = t2Var(A) + tE(A) = t2((4)?(0.46) + (2)%(0.24) + (3)%(0.30) —
(3.22)%) + 3.22t = 0.6516t2 + 3.22t.

(b) The code below simulates 5 trajectories of the process with 200 visitors each.

#specifying parameters
p<- c(0.46, 0.24, 0.30)
lambda<- c (4, 2, 3)
nvisitors<- 200

time<- data.frame ()

N<- data.frame ()

#specifying seed
set.seed(109088)

#creating loop to simulate trajectories
for(j in 1:5) {

#selecting rate
Lambda<- lambda[sample(1:3, 1, prob=p)]
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#setting initial values
time[l,j]<- O
N[1,j]<- 0

#simulating trajectory
i<- 2

repeat {
time[i,j]l<- time[i-1,j]+round((-1/Lambda)*log(l-runif(1)),3)-0.001
N[i,3]<- N[i-1,7]

if (i==2*nvisitors+2) break
else {
time[i+l,j]<- time[i,]]1+0.001
N[i+1,3]1<- N[i,7j]+1
i<— 1i+2
}
}

}

#plotting trajectories

matplot (time, N, type="1", 1lty=1, 1lwd=2, col=c("red", "blue", "green",
"purple", "orange"), xlab="Minutes", ylab="Number of visitors",
panel.first=grid())
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(c) The code below simulates 5 trajectories of the process that depict arrivals within one
hour.

#specifying parameters
t<- 60

p<- c(0.46, 0.24, 0.
lambda<- c (4, 2, 3)
time<- data.frame ()
N<- data.frame ()

30)

#specifying seed
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set.seed (5055562)

#creating loop to simulate trajectories
for(j in 1:5) {

#selecting rate
Lambda<- lambda[sample(1:3, 1, prob=p)]

#setting initial values
time[1l,3]<- 0
N[1,3]<- 0

#generating N (t)
N.total<- rpois(1l,Lambda*t)

#generating N(t) standard uniforms
u<- 1:N.total
for(i in 1:N.total)

ul[i]<- runif (1)

#sorting standard uniforms
u.sorted<- sort (u)

fcomputing N(t) event times
s<- t*u.sorted

#generating jumps
for (i in seqg(2, 2*N.total, 2)) {
time[i,j]<- s[i/2]-0.001
time[i+1,3]1<- s[i/2]
N[i,3]<- N[i-1,7]
N[i+1,9]<- N[i-1,3]+1
}
}

#plotting simulated trajectories

matplot (time, N, type="1", 1lty=1, 1lwd=2, col=c("red", "blue", "green",
"purple", "orange"), xlab="Minutes", ylab="Number of visitors",
panel.first=grid())
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EXERCISE 6.4. (a)Let N(t) denote the number of defaults by time t. It is given that
N(t)~Poisson(At) where A~Uniform(0,2). The average number of defaults within 5 years is
E(N(5)) =tE(A) = (5)(1) = 5.

(b) The variance of the number of defaults within 5 years is Var(N (5)) = t?Var(A) + tE(A) =
(5)2( ) + (5)(1) = 13.3333.

(c) As shown in Exercise 6.1(a), Cov(N(s),N(t) — N(s)) = s(t — s)Var(A). Fors =3, and t = 5,
Cov(N(3),N(5) = N(3)) = 3)(5 —3)(1/3) = 2.

(d) As shown in Exercise 1(b), Cov(N(s), N(t)) = stVar(A) + sE(A). Fors =3, andt =5,
Cov(N(3),N(5)) = (3)(5)(1/3) + 3)(1) = 8.

LSSuze_squ(u)du

oouze_squ(u)du

(e) Using the result proven in Exercise 6.2, we get P(A < 0.5|N(5) =2) =

0.5
[ uZeStdu _ 1 _ 2 _ 2
2 ———— Now, [u?e™>"du = —-u?e™>* — —ye % — ——¢~>% Therefore,
L)uze‘Sudu 5 25 125
2 _—5u —Lly2e-5u_2, ,—5u__2 ,—5u/05 -25 2
P(A < 0.5 | N(S) — 2) — fO u‘edu — s4 e 251¢ 125° lo — —€ (20+25+125)+125 —
uZ =5ugy __uze—su_iue—su_ie—sul 2
5 25 125 0 125

0.456187.

EXERCISE 6.5. (a)Let N(t) denote the amount of SWE accumulated within time t. It is given that
N(t)~Poisson (At) where A~Poisson(A = 24.3). The average and standard deviation of SWE for

one year are E(N(1)) = tE(A) = At = (24.3)(1) = 24.3 inches, and /Var(zv(1)) =
Jt2Var(A) + tE(A) = VtZ1 + t1 = /(12 + 1)(24.3) = \/48.6 = 6.97 inches. For five years,
E(N(5)) = tE(A) = At = (24.3)(5) = 121.5 inches and _[Var(N(5)) = /(52 + 5)(24.3) =
V729 = 27 inches.

(b) The code below simulates 5 trajectories that reach 140 inches of SWE each.

#specifying parameters
lambda<- 24.3
SWE.inches<- 140
time<- data.frame ()
N<- data.frame ()

#specifying seed
set.seed (9000004)

#creating loop to simulate trajectories
for(j in 1:5) {

#selecting rate
Lambda<- rpois (1, lambda)
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#setting initial wvalues
time[l,]j]<- 0
N[1,3]<- 0

#simulating trajectory
i<- 2

repeat {
time[i,jl<- time[i-1,]J]+round((-1/Lambda)*log(l-runif(1l)),3)-0.001
N[i,3]<- N[i-1,3]

if (i==2*SWE.inches+2) break
else {
time[i+1,J]<- time[i,3]1+0.001
N[i+1,j]<- N[i,7]1+1
i<- i+2
}
}

}

#plotting trajectories

matplot (time, N, type="1", 1lty=1l, 1lwd=2, col=c("red", "blue", "green",
"purple", "orange"), xlab="Years", ylab="Amount of SWE, in inches",
panel.first=grid())
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(c) The code below simulates 5 trajectories spanning over 7 years.

#specifying parameters
t<- 7

lambda<- 24.3

time<- data.frame ()
N<- data.frame ()

#specifying seed
set.seed (1001117)
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#creating loop to simulate trajectories

for(j in 1:5) {

#selecting rate
Lambda<- rpois (1, lambda)

#setting initial values
time[l,j]1<- 0
N[1l,j]1<- O

#generating N(t)
N.total<- rpois(l,Lambda*t)

#generating N(t) standard uniforms
u<- 1:N.total
for(i in 1:N.total)

uli]<- runif (1)

#sorting standard uniforms
u.sorted<- sort (u)

#computing N(t) event times
s<- t*u.sorted

#generating Jjumps
for (i in seqg(2, 2*N.total, 2)) {
time[i,j]1<- s[i/2]-0.001
time[i+1,3]<- s[i/2]
N[ilj]<_ N[j—_llj]
N[i+1l,j]<- N[i-1,3]1+1
}
}

#plotting simulated trajectories
matplot (time, N, type="1", lty=1,
"purple", "orange"), xlab="Years",
panel.first=grid())

lwd=2, col=c("red", "blue", "green",
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EXERCISE 6.6. (a) Let N(¥) be the number of defects in an £-yard roll of fabric. We know that
N(#)~Poisson (Af) where A~Gamma(a, B) with E(A) = a/f = 0.07 and \/Var(A) = /a/B% =
0.01. The mean and standard deviation of N (40) are E(N(40)) = fE(A) = (40)(0.07) = 2.8 and
JVar(N(40)) = \/£2Var(A) + £E(A) =/ (40)2(0.01)2 + (40)(0.07) = 1.72.

(b) As derived in Application 6.2(b), for a given N(t) = n, the conditional distribution of A is gamma
a/f = 0.07

a/p? = 0.0001, O here, @ =

with parameters n + a and £ + 8. The parameters ¢ and [ solve {

49 and f = 700. We are also given that £ = 40 and n = 4.

The line of code given below computes the probability to be above 0.08 for a gamma distribution with
parametersn +a =4 +49 =53 and £ + = 40 + 700 = 740.

pgamma (0.08, 53, 740, lower.tail=FALSE)

0.1932722
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CHAPTER 7

EXERCISE 7.1. (a) We plug 4,, = nd and p,, = 0 into (7.1), and note that n starts with 1 and not 0.
The Kolmogorov forward equations become P (t) = —AP;(t) and P,(t) = (n — 1)AP,,_,(t) —
nAP,(t),n = 2, 3, ..., with the initial condition P, (0) = 1.

(b) To show that P, (t) = e"“(l — e"lt)n_l, n = 1,2,.., solve the Kolmogorov equations, we write
P,(t) = e, 50 P{(t) = —de™* = —AP,(t). Also,
Py(t) = —2e™ (1 - e‘“)n_l +eM(n—1)e (1 - e"“)n_z = —le (1 - e"“)n_1 +
e M- M -1+1)(1- e‘“)n_z =—2e (1 - e"“)n_1 —(n—1) e M(1-
e"”)n_1 +(m—1DreM(1- e"“)n_z =(n-1)1eH(1- e"”)n_2 —nieH(1-
e )" = (n — 1)AP,_1(t) — nAP,(8).

(c) The distribution of X (t) is geometric that models the number of trials until the first success where

the probability of success is p = e ¢, Therefore, E(X(t)) = % = e*, and Var(X(t)) = 1p_—2p =
_,—At
1e—eut = e/’lt(e/lt - 1)'

(d) If A = 4, the probability that there will be between 3 and 5 particles at week 1is P;(1) + P,(1) +
Ps(1)=e*(1—-e)31+e (1 —e ™M1 +e*(1 —e*)5 1 =0.051989. The mean at week 1
is E(X(l)) = e* = 54.59815, and the standard deviation is \/Var(X(l)) = \/e‘*(e4 -1) =
54.09584.

EXERCISE 7.2. (a) We plug 4,, = n4 and y,, = 0 into (7.1) and note that n starts with m and not 0.
The Kolmogorov forward equations become P, (t) = —mAPR,,(t) and B,(t) = (n — 1)AP,_,(t) —
nAP,(t),n = 2,3, ..., with the initial condition B, (0) = 1.

(b) To verify that B,(t) = (g:ri)e_m“(l — e )M n = m,m + 1, ..., solve the Kolmogorov
equations, we write P,,(t) = e ™, s0 P} (t) = —mAe ™ = —mAP,,(t). Further, Pi(t) =

-mA (:__;l) e mA(1 — e"lt)n_m + (:__;l)e‘m’”(n —m)ie (1 - e"“)n_m_l =—-mAP,(t) +
(:__;l)e‘m’”(n —m)Ae™M -1+ 1)(1- e"“)n_m_1 =-—mAPB,(t)—(n—m)AP,(t) +

(n— m)(:__;l) Ae mAt(1 — e"“)n_m_1 =-nAPt)+(n—-1A (nf;lz_l) e mA(1 —

e=)" T = (n = 1AP,_1(t) — nAP,(t).

(¢) The distribution of X (t) is a negative binomial that models the number of trials until the mth
success, where the probability of success is p = e ~*¢. Therefore, the mean and the variance are

E(X(®) = % =me™, and Var(X(t)) = % =m e (e M —1).

(d) P;,(2) = (1;:;)8_(5)(0'2)(2)(1 — ¢~(02)(2))12-5 = (0,0189. The mean and standard deviations are
E(X(2)) = (5)e®P® = 7.459123, and \/Var(X(2)) = /(5)e**(e®* — 1) = 1.915354.
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EXERCISE 7.3. (a) In the Kolmogorov forward equations (7.1), we use 4,, = 0, and y,, = ny,
and the fact that the initial population size is N. We write Py (t) = —NuPy(t) and B, (t) =
(n+ DuP,41(t) — nub,(t),n=0,1,...,N — 1, with the initial condition Py (0) = 1.

(b) The probabilities P, (t) = (ﬁ)e"”“t(l — e HYN- 5 =, ..., N, solve the Kolmogorov forward
equations since Py (t) = e V¥t and so, P (t) = —Nue V¥t = —NuPy(t). Also,

N N
P(t) = —nu (n) e HE(] — g HE)N-T | <n> e T (N — n)peHE(1 — e HE)N-n—1

e~ (DBt (] — g=HON-(0+D) = (n 4+ 1) P, (t) — nuP,(t).

——r 0+ e o, )

(c) The distribution of X (¢) is binomial with parameters N and p = e ~#¢. Therefore, E(X(t)) = Np =
Net, and Var(X(t)) = Np(1 — p) = Ne H(1 — eHt),

(d) P,(3) = (12)6_(12)(0'02)(3)(1 - e_(o'oz)(s))ls_lz = 0.0437. The mean and standard deviation are

E(X(3)) = 15 =003 = 14.12647, and \/Var(X(3)) = 4/15e-(002B)(1 — ¢-(0:02)(3)) =
0.907007.

EXERCISE 7.4. (a) We are given that A = 1.3 and ¢ = 0.2. We need to compute

P2 = (1-Py)(1- %Po) (gpo)n_l = a-r)(1-55R) (55 P0)

4-1

where

pe@=mt — - 0.2e(1:3-02)@ — 0.2

— =0.139172.

Po = QeG=0t — ~ 1.3e(1302)@ — 0.2

Thus, P,(2) = 0.060783. The mean and variance are E (X (2)) = e"#t = ¢(1:3-02(2) = 9,025013

and Var(X(2)) = geu—u)t(e(z—u)t -1) = %e(1-3‘0-2)(2)(e(1~3‘0~2)(2) — 1) = 98.76253.

(b) Below we simulate a 50-step trajectory of the process that starts in state 1 and has parameters 4 =
1.3and u = 0.2.

#specifying parameters
lambda<- 1.3

mu<- 0.2

njumps<- 50

#defining state and time as vectors
N<- c ()
time<- c ()

#setting initial values
N[1]<-1
time[1]<- 0

#specifying seed
set.seed(353332)
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#simulating trajectory
i<- 2

repeat {

time.birth<- (-1/(N[i-1]*lambda))*log(l-runif (1))
time.death<- (-1/(N[i-1]*mu))*log(l-runif (1))
if(time.birth < time.death | N[i-1]==0) {

time[i]<- time[i-1] + time.birth - 0.001
N[1]<- N[1-1]

if (i==2*njumps+2) break
else {
time[i+1]<- time[i] + 0.001
N[i+1]<- N[i] + 1
i<- 142
}
}

if (time.death < time.birth & N[1i-1]!=0) {
time[i]<- time[i-1] + time.death - 0.001
N[i]<- N[i-1]

if (i==2*njumps+2) break

else {
time[i+1]<- time[i] + 0.001
N[i4+1]<- N[i] - 1
i<- i+2

}

#plotting trajectory
plot (time, N, type="1", lty=1l, lwd=2, col="blue",
panel.first=grid())

xlab="Time"

4

ylab="State",
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EXERCISE 7.5. (a) If A > y, the queue will accumulate faster than customers go through the
server, and so we expect an infinite number of customers in the system in the long run.

(b) For A = 3 and u = 5, the long-run probability that there will be more than 2 customers in the
. 2 2, (A2
system is P(# of customers >2)=1—-Py— P, —P,=1— (1 —;)y[l +;+ (;) ] =1-

(1-955- ()" - () -0a16

(c) In the long run, the average number of customers in the system is

. A 3

(d) In the long run, the proportion of customers in the system who have to wait more than 1 minute is
P(T > 1) = e~ WDt = ¢=6-3)1) = 0,135335, or roughly 13.5%.

EXERCISE 7.6. (a) Below we simulate a trajectory of a birth-and-death process with immigration
and emigration, with parameters A = 1,4 = 0.2, = 0.3, and § = 0.1. The trajectory starts in state 10
and ends in state 25.

#specifying parameters
lambda<- 1

mu<- 0.2

alpha<- 0.3

beta<- 0.1

#defining state and time as vectors
N<- c ()
time<- c{()

#setting initial values
N[1]<- 10
time[1l]<- 0

#specifying seed
set.seed(93743765)

#simulating trajectory
i<- 2

repeat {

time.birth<- (-1/(N[i-1]*lambda+alpha))*log(l-runif (1))
time.death<- (-1/(N[i-1]*mu+t+beta))*log(l-runif (1))

if (time.birth < time.death | N[i-1]==0) {
time[1]<- time[i-1] + time.birth - 0.001
N[1]<- N[1-1]

1if(N[1i]==25) break
else {

time[i+1]<- time[i] + 0.001
N[i+1l]<- N[i] + 1
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i<- i+2
}

if (time.death < time.birth & N[i-1]!=0) {
time[1]<- time[i-1] + time.death - 0.001
N[i]<- N[i-1]

1f(N[1]==25) break
else {

time[i+1]<- time[i] + 0.001
N[i+1]<- N[i] - 1
i<— i+2

}

}

#plotting trajectory

plot(time, N, type="1", lty=1l, lwd=2, col="blue",
panel.first=grid())

xlab="Time",

ylab="State",
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(b) To simulate a trajectory with 4 = 0.8, we run the same code but specify the parameter as:

mu<- 0.8. The plOt is
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(c) In the same code we specify mu<- 1. The simulated trajectory is

15
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(d) Now we specify mu<- 1.2. The graph is

150

200
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(e) In the plots above we see that as the death rate increases, the population relies on immigration more
and more. When u = 0.2, the flock size grows from 10 to 25 birds within roughly 2 time units.
When p = 0.8, it takes about 16 time units to grow. When u = 1, it takes about 200 time units to grow.
When p = 1.2, it takes about 400 time units to grow. In the last two cases (4 = 1 and u = 1.2), the flock
keeps dying out and revives due to bird immigration.
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CHAPTER 8

EXERCISE 8.1. (a) For each bacterium, the offspring size Z has mean u = E(Z) = (0)(0.25) +
(1)(0.15) + (2)(0.6) = 1.35 > 1, thus the colony growth is a supercritical branching process. The
variance of Z is 62 = Var(Z) = (0)?(0.25) + (1)2(0.15) + (2)%(0.6) — (1.35)% = 0.7275.

The expected size of the nth generation is 100E (X,,) = 100u™ = (100)(1.35)™. The variance is
100 Var(X,) = 10002™"1 % = (100)(0.7275)(1.35)""1 % =
(207.8571)(1.35)""1((1.35)" — 1).

(b) Let my<I denote the extinction probability for descendants of one bacterium. It solves the

equation 1, = 1,°(0.25) + 7,1(0.15) + 1,2 (0.6), or, equivalently, 0.67,% — 0.85m, + 0.25 =
(o — 1)(0.6my — 0.25) = 0. Thus, 7, = "0—2; = 0.4167.

(c) P(extinction of descendants of at least one of ten bacteria) = 1 — P(no extinction) =
1—(1—-0.4167)'° = 0.9954.

EXERCISE 8.2. (a) Let Z denote the size of offspring. We are given that Z~Poi(1). The mean of

Zisu = E(Z) = A.If 1 > 1, the process is supercritical; if A = 1, the process is critical; if A < 1, the

process is subcritical.

(b) The variance of the offspring size is 62 = Var(Z) = A. The mean of the size of the nth

generation X,, is E(X,) = u™ = A™. The variance is Var(X,,) = a?u™1 % = 1At % =

an —11‘}; Jif A % 1; and Var(X,) = o2n = An, if 1 = 1.

(c) Let my<l denote the extinction probability. It is the smallest positive solution of the equation

o [o9)

A" ()™
Ty = z mt—et=e* Z —— 2 = et e =AM,
n

n!
n=0 n=0

Below is the code and the graph of the numeric solution m, of this equation as a function of 4 > 1.

library(rootSolve)

lambda<- seqg(1.01,8.7,0.01)
pi0<- 1:770

for (i in 1:770) {
equation<- function (x)

x—exp (lambda[i]* (x-1))

pi0[i]<- uniroot.all (equation, c(0,0.99))
}

plot (lambda,pil, col="blue")
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pi0

.9801000000

.9608919215

lambda

0 0 4
[745] 0.0003700480 0.0003700480
%§= 0 95a2o888 g 0. 00 [747] 0.0003700480 0.0003700480
1] O aoeriesids O et tree [749] 0.0003700480 0.0003700480
L] 08 lata0a033 0 833053538 [751] 0.0003700480 0.0003700480
[9] 0. - [753] 0.0003700480 0.0003700480
[11] 0.8086784805 0.7937183106 022
[11] [755] 0.0003700480 0.0003700480
[13] 0.7791773528 0.7649519043 1220
[13] [757] 0.0003700480 0.0003700480
[15] 0.7510401355 0.7375289728 5201
[15] [759] 0.0003700480 0.0000000000
[17] 0.7242501181 0.7113162379 5271
[17] [761] 0.0000000000 0.0000000000
[19] 0.6987154931 0.6863624122 00
[19] [763] 0.0000000000 0.0000000000
[21] 0.6742636161 0.6624665795 Tad
[21] [765] 0.0000000000 00000000000
[23] 0.6509652371 0.6397054345 el
23] [767] 0.0000000000 00000000000
_25_ 0-6286859791 0-6179043043 '769' O 0000000000 0 0000000000
1271 0.6073567259 0.5970386674 L7621 O :

EXERCISE 8.3. (a) Let Z denote the size of male offspring. It is given that P(Z = 0) = 0.4828,
and P(Z = n) = (0.228292)(0.5586)" 1, n = 1,2, .... The expected value and variance of Z are

u=E(Z) = (0)(0.4828) + (0.228292) ¥, n(0.5586)"1 = % = 1.171726, and 0?2 =
Var(Z) = (0)2(0.4828) + (0.228292) ¥, n?(0.5586)"1 — (1.171726)? =

0.5586 1
(0228292)[O_Qﬁm®2 Ofosﬁmy]—-(L171726 2 = 0.45331.

(b) The expected size and variance of the nth generation are E (X,,) = u"™ = (1.171726)", and
_11-u" _11-(1.171726)"

Var(X,) = a2u® 13{%-= (0.45331)(1.171726)" ' ——————— =

(2.639728)(1.171726)"1((1.171726)" — 1).

(c) Let my denote the probability of extinction. It is found as the smallest positive solution of the
equation
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0.228292
0.5586

, which is a quadratic equation

o = ,°(0.4828) + Y., o™ (0.228292)(0.5586)"1 = 0.4828 +

0.4828 + 0.228292( 1 _ 1) — 0.4828 + 0.228292
0.5586 \1-0.5586 1 1-0.5586 mg

0.5586 3 — 1.0414m, + 0.4828 = 0. The solution is T, = 0.864304.

Z§=1(0.5586T[0)n ==

EXERCISE 8.4.
(a) The mean winnings of a stake of $1 is 4 = ($1)(0.3) + ($15)(0.2) + ($20)(0.1) + ($0)(0.4) =
$5.3 > 1. Since 5.3 > 1, this the process is supercritical.

(b) The mean winning of nth bet is ™ = ($5.3)", and therefore, the expected winning on the fifth bet
is u® = ($5.3)° = $4,181.96.

(c) Let m, be the probability that the gambler's stake eventually turns into $0. It is the smallest
positive solution of the equation m, = 0.4 + 0.3 my + 0.2m3% + 0.172°. Solved numerically, m, =
0.5714957. The R script follows.

library(rootSolve)

equation<- function (x)
0.4-0.7*x+0.2*x"15+0.1*x"20

Print (pi0<- uniroot.all (equation, c¢(0,0.99)))

0.5714957

EXERCISE 8.5. (a) The mean number of computers that are infected in one day is u =
%(O + 1+ 2 + 3) = 1.5. Since the mean is larger than one, it is a supercritical process.

(b) The average number and standard deviation of infected computers on day 10 are

E(X,) = pt = (1.5)1° = 57.66504, and

JVar(Xyy) = \/G (02 + 12 + 22 + 32) — (1.5)2) (1.5)9%'15?5” = /5,445.9862 = 73.7969.

(c) Since the process of virus spread is a supercritical branching process, the virus will not die out
with probability one. The probability of its extinction 1 is the smallest positive solution of the

equation T, = i(l + o + 75 + 13), or, equivalently,
1-3my+ 7w +m5 = (no—1)(7TO—(—1+\/§))(n0—(—1—\/§)) = 0.
Hence, 1y = —1 + /2 =0.4142.

(d) Below we simulate the number of infected computers for 10 days. A total of 424 computers
became infected in this simulation.

#specifying parameters
p<- c(0.25, 0.25, 0.25, 0.25)
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N<-= c ()
N[1l]<- 1

#specifying seed
set.seed(1088878)

#simulating offspring
for (i in 2:11) {
z<- 0
for (j in 1:N[i-1]) {
Z<- Z + sample(0:3, 1, prob=p)
}

N[i]<- Z

if (N[1]==0) break

1 2 5 9 19 28 33 52 72 90 113
sum (N)

424

EXERCISE 8.6. (a) The code below generates the offspring of the first 20 generations of the
branching process and calculates the total population size.

#specifying parameters
p<- c(0.1, 0.4, 0.5)
N<-= c ()

N[1l]<- 1

#specifying seed
set.seed (377584410)

#simulating offspring
for (i in 2:20) {
7z<- 0
for (j in 1:N[i-1]) {
Z<- Z + sample(0:2, 1, prob=p)
}
N[i]<- Z

if (N[1]==0) break

N

1 1 2 4 6 8 11 15 21 30 39 56 79 101 129 181 251 345 468 667

In this simulation, the 20th generation size is 667 particles, which constitute the offspring of the 19th
generation.

sum (N)
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2415

There are a total of 2,415 particles in the 20 generations.

(a) The code below simulates a sample trajectory of this process and plots the branching process for 6
generations.

Library(tidyverse)

#specifying parameters
gen.max<- 6
p<- c(0.1, 0.4, 0.5)

#specifying seed
set.seed (332975)

#simulating trajectory
level.segment <- function(gen, y, branch.num) {

branch<- data.frame(x=c(), y=c(), xend=c(), yend=c())
gen.remaining<- gen.max-gen-1

if (gen.remaining < 0) return (branch)

if (branch.num > 0) {
branch<- rbind(branch, data.frame (x=gen, y=y, xend=gen+l, yend=y),
level.segment (gen=gen+l, y=y, branch.num=sample(0:2, 1, prob=p)))
}

if (branch.num > 1) {
branch<- rbind(branch, data.frame (x=gen, y=y, xend=gen+l,
yend=y+3~gen.remaining), level.segment (gen=gen+l, y=y+3”"gen.remaining,
branch.num=sample (0:2, 1, prob=p)))

}

if (branch.num > 2) {
branch<- rbind(branch, data.frame (x=gen, y=y, xend=gen+l,
yend=y-3"gen.remaining), level.segment (gen=gen+l, y=y-3"gen.remaining,
branch.num=sample (0:2, 1, prob=p)))

}

branch

}

bp<- level.segment(l, 0, sample(0:2, 1, prob=p))

#plotting trajectory

plot(bpl,1], bpl,2], type="n", yaxt="n", xlim=c(1l,6), ylim=c(range (bp)),

xlab="Generation", ylab="Branching process", panel.first=grid())

segments (bp[,1], bpl,2], bpl,3], bpl,4], lwd=2, col="blue")
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CHAPTER 9

EXERCISE 9.1.
s s
—= |-, ifs<t,
(B( ) B(t)) _ Cov(B(s),B(t)) __min(s,t) _ VsVt \/; __[min(s,t)
p ), T VarB()Var(BD) VsVt ¢ : ~ A/max(s,t)
i \[— , ift<s

EXERCISE 9.2.(a) X(t) =tB (%) has mean E (X (t)) =tE (B (%)) = 0 and variance
Var(X (t)) = t? (%) = t. Also, it has a normal distribution with independent and stationary

increments since B(t) does. Therefore, X(t) is a standard Brownian motion.

(b) Y(t) = aB;(t) + V1 — a?B,(t) has a normal distribution as a linear combination of two normally
distributed random variables. It also has independent and stationary increments, inherited from B, (t)

and B, (t). The mean is E(Y(t)) = aE(B;(t)) + V1 — a?E(B,(t)) = 0, and the variance is
Var(Y(t)) = Var(aB,(t) + V1 — a2B,(t) ) = a*Var(B,(t)) + (1 — a®)Var(B,(t)) = a® t +
(1 —a?) t =t, thus, Y(t) is a standard Brownian motion.

EXERCISE 9.3.

(a) P(O<B(1)<1,1<BB)—-B(1)<3)=P(0<B(1)<1)P(1<B@B)—-B(1)<3)
(by independence of increments)

= P(0 < B(1) < 1)P(1 < B(2) < 3) (bysstationarity of increments)

=P(0<B(1)< 1)P(1 <\2B(1) < 3) (by rescaling of Brownian motion)

= (®(1) — ®(0)) (q: (%) — d>(%)) = 0.076053.

(b) PO<B(1)<1, 1<B(2)<3)= P(O <B(1)<1,1-B(1)<B2)-B(1)<3-
B(1)) = [ P(1—x < B(2) = B(1) <3 —x | B(1) = x) fyz)(x)dx
= fol P(1—x <B(1) <3 —x) fp)(x)dx (by independence and stationarity of increments)

1 ~3—x 1 y2 1 x2
= ——e 2 ——e 2 dydx =0.2198108.
fo fl_x V2m V2w

func<- function(x) (pnorm (3-x,0,1)-pnorm(l-x,0,1))*pnorm(x,0,1)
integrate(func, 0, 1)

0.2198108 with absolute error < 2.4e-15

(¢) P(O<B(1)<1, 0<B()<®)=P(0<B(1)<1, —B(1) <B(2)—B(1) <o) =
Jy P(~x <B(2) = B(1) < | B(1) = x) fay(x)dx = [} P(=x < B(1) < 00) f(q)(x)dx
(by independence and stationarity of increments)
= fol P(—o0 < B(1) < x) fp)(x)dx (by the symmetry of normal distribution)
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1
=f ®(x)d P(x) =% (@2(1) — ®2(0)) = 0.228931.

EXERCISE 9.4. The distribution of B(s) + B(t) is normal as the sum of two normally distributed
random variables. The mean is E(B (s) + B(t)) = E(B (S)) + E(B(t)) =0,

and variance is Var(B(s) + B(t)) = Var(2B(s) + B(t) — B(s)) = Var(2B(s)) +

Var(B(t) — B(s)) (by independence of increments)

= 4Var(B(s)) + Var(B(t — s)) (by stationarity of increments)

=4s 4+t —s = 3s + t. Alternatively, Var(B(s) + B(t)) = Var(B(s)) + Zcov(B(s), B(t)) +
Var(B(t)) =5+ 2min(s,t) +t =3s + t.

2

EXERCISE 9.5. (a) For x > 0, P(|[B(t)] <x) = P(—x < B(t) < x) = f_"w% e 2t du

2 w1 2 d 2( ad 0 2 ad ! 2 ad 1 (x)
o o) -o0)=2(o()- D= () 1=
0 2m Vt © N/ A) Nr M(t)
. . 7 _ 1 X _ 1 _M _ _ﬁ
(b) The density of M(t) is Fyy(x) = 2 (ﬁ) =2 e 7 = pe X > 0. Therefore,
the mean is computed as

(o] x2 (o] 72 2
E(M(t))=f \/%xe_ﬁdx={z=x/\/f}=\g J e_Td%= %
0 0

(c) The theoretical mean is E (M (5)) = @ = 1.784124. Below we simulate 1,000 trajectories of

a standard Brownian motion on the interval [0,5] and calculate the sample mean of the maximum
EM(®)).

#defining Brownian motion as matrix
BM<- matrix (NA, nrow=5000, ncol=1000)

#specifying seed
set.seed (8022022)

#simulating trajectories
for (3 in 1:1000) {
BM[1,3]<- 0

for (i in 2:5000)
BM[i,j]l<- BM[i-1,]J] + sqrt(0.001)*rnorm(1l)
}

#computing maximum of each trajectory
max.BM<- c()
for (3 in 1:1000)

max.BM[]j]<- max (BM[,7])

#computing mean of maxima
mean (max.BM)

1.780714
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EXERCISE 9.6. (a) Consider the process {—B(t),t = 0}. It has a normal distribution with
independent and stationary increments since B(t) does. The mean is E (—B (t)) =—FE (B (t)) =0,
and variance is Var(—B(t)) = (—1)2Var(B(t)) = Var(B (t)) = t. Therefore, it is a standard
Brownian motion.

(b) To find the cumulative distribution function of Omint B(s), we write for x < 0,
<s<

P(min B(s) Sx) = 1—P(min B(s) >x) —1-P(B(s) > x, Vs € [0,t])

0ss<t 0ss<t

=1—-P(—B(s) < —x,Vs€[0,t])) =1— P(é‘rslgsxt(—B(s)) < —x)
=1-(20 (%) ~1)=2 (1 —® (‘—j{)) =20 (%) (by symmetry).

© P (Or?S'ESB(s) < —3) =20 (T:) = 0.179712.

(d) The code below generates 1,000 trajectories of a standard Brownian motion and calculates the
empirical probability that the minimum is less than -3 on the interval [0,5].

#specifying seed
set.seed (2541165)

#simulating trajectories
BM<- matrix (NA, nrow=500, ncol=1000)

for (j in 1:1000) {
BM[1,3]<- 0

for (i in 2:500)
BM[i,j]<- BM[i-1,3] + sgrt(0.01)*rnorm(1l)

}

#computing indicator of minimum < -3
ind<- c()

for(j in 1:1000)
ind[j]<- ifelse(min(BM[,j])< -3, 1,0)

sum (ind) /1000

0.179

EXERCISE 9.7. (a) Consider the process

t
1—¢t)B|—— if0<t<1,
X(t)={( B (7=), ifo<
0, ift=1,
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where {B(t),t = 0} is a standard Brownian motion. Note that X(0) = B(0) = 0 = X(1), so the
process is tied at the endpoints of a unit interval. It has a normal distribution since B(.) is normally

distributed. Its mean is E(X(t)) =(1-t)E (B (i)) = 0, and variance is Var ((1 —t)B (1 t)) =
(1-1¢)? (IL—t) = t(1 — t). The covariance is
Cov(X(s),X(t)) = (1 — s)(1 — t) Cov [B (1—_5) B (L)] = (1-5)(1 - t) min (— L)

1-t 1-s’1-t
(1-s)(1— t)li,= s—st, ifs<t,

= v = min(s, t) — st. Thus, X(t) is a Brownian bridge.
1 —s)(l—t)E,z t—st, ift<s

(b) Consider the process {B ) =0+0v)X ( ) t> 0} where {X(t),0 <t < 1} is a Brownian

bridge. It is normally distributed since X (t) is. The mean is E (B (t)) = (1+¢t)E <X (ﬁ)) =0,

and the variance is Var(B(t)) =1 +¢t)*Var (X (%)) =(1+1t)? (1+t) (1 — L) = t. The

1+t

covariance is Cov(B(s),B(t)) =(1+s)(1+¢t)Cov (X (li) X (L)> =1+s)(1+1)

+s 1+t

[mi“ (1 i SIL-H) N (1 i s) (%—I—t)] =1+ +0 [1 inﬁl(rsl(?t) N (1 i s) (1 i t)]
_ (1+s)(1 + t) min(s, t)

1 + min(s, t)
= min(s, t). The above properties indicate that {B(t),t = 0} is a standard Brownian motion.

— st = (1 + max(s,t)) min(s,t) — st = min(s,t) + st — st

(c) Let {B(t) = X(t) +tZ,0 <t < 1} where {X(t),0 < t < 1} is a Brownian bridge and Z is an
independent standard normal random variable. The distribution of B(t) is normal being a linear
combination of two normally distributed random variables. The mean is E (B (t)) =EX)+
tE(Z) = 0, and the variance is Var(B(t)) = Var(X(t) + tZ) = Var(X(©)) + t?Var(Z) =

t(1 —t) + t? = t. The covariance is Cov(B(s),B(t)) = Cov(X(s) +sZ,X(t) + tZ)

= Cov(X(s),X(t)) + stVar(Z) = min(s, t) — st + st = min(s, t). These indicate that the
process {B(t),0 < t < 1} is a standard Brownian motion.

EXERCISE 9.8. (a) For0 <s<t, P(B(s) <x|B(t)=w) = f_xoofB(s)|B(t)(u|w) du

f (ww-— u) fe(W f w-u
= f * L1B©BO-BE) = f RLOIONICRT6) )du (by independence of increments)
fepyw) feryw)
2 (w-u)?
1 e-u—s%e‘z(t—s)
X s -
= f_oo Zn(i;_)z du (by stationarity of increments)
Nl
1 t )
= f e 2s(t-9)/tdy, which means that the conditional distribution is normal with
® 21 s(t—s)

mean ~ 2 B(t) and variance % (t —s).
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(b) Brownian motion, conditional on the value of the endpoint B(t) = 0 is indeed a Brownian
bridge on the interval [0, t]. It is normally distributed with independent and stationary increments
(inherited from the Brownian motion). Its mean is %B (t) = 0 and variance is % (t—s) =

s(1-2)

EXERCISE 9.9. (a) As seen from the picture below, P(M(T) = a,B(T) < x) = P(M(T) =

a, B(T) = 2a — x). That is, by the reflection principle, once the Brownian motion hits level a, the
probability to end up at time T at x or below is the same as the probability of ending up at or above
2a — x.

2a —x

And if the Brownian motion ends up at or above 2a — x at time T, its maximum is definitely above a,
so the event M(T) = a can be omitted. Hence, P(M(T) = a,B(T) < x) = P(B(T) = 2a — x), where
a>0and0<x <a.

(b) The joint cdf of M(T) and B(T) can be obtained as follows:
P(M(T) < a,B(T) < x) = P(B(T) < x) — P(M(T) = a,B(T) < x) = P(B(T) < x) —

P(B(T)22a—x):¢(%)—(1—q>(23;x)), a>0and0 < x < a.

The joint density of M(T) and B(T) is found by differentiating the joint cdf with respect to a and x:

(00) = 2|0 (=) - (1- 0 (2225)

Tumsm( @) =55 P\ 77 VT
22a —x) _Ra-x)?

=———"c¢ 2T a>00<x<a.
TN2nT

2 1 2Qa-x) _ (Zaz—Tx)2
=— e
VT2 2T

The conditional density of M (T) given that B(T) = x is calculated as follows:
22a —x) _(2ax?

e e 2T
fM(T),B(T) (a,x) T\ 27T € 2(2a —x) _4a’-4ax
fM(T)|B(T)(a|x) = = > = e 2T
feery(X) 1 e_;‘_T T

V2nT
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2(2a —x) _z2a(a—x)
= " ¢ T

, >0,0<x<a.
T a x<a

(c) Letting x = 0 in the above formula for conditional density, we obtain the density of Mgz (T), the
maximum of a Brownian bridge on the interval [0, T].

4a 2a?

fugpm (@) = we T, a> 0.

(d) The expected value of Mg (T) is derived as

* *© 4a _24° 2a

E(Mgp(T)) = fo afuggr(@)da = fo a7 e" Tda={z= 7
VT z \/_ 1 7z 1 [nT

=_j z’e Zdz = V J _dz=— —.
2 ), 2 |2

The integral is equal to one since it is the expression for the variance of a standard normal random
variable.

EXERCISE 9.10. (a) The code below plots a simulated trajectory of a two-dimensional Brownian
bridge, both coordinates of which are independent Brownian bridges on the time interval [0, T] where
T = (24)(60) = 1440 minutes.

#defining processes as vectors

BMX<- c ()
BMY<- c ()
BBX<- c ()
BBY<- c()

#specifying seed
set.seed(6151009)

#simulating two trajectories of Brownian motion

BMX[1]<- 0
BMY[1]<- O

for (i1 in 2:1440) {
BMX[1]<- BMX[i-1] + rnorm(1l)
BMY[1]<- BMY[i-1] + rnorm(1l)
}

#computing two trajectories of Brownian bridge

for (i in 1: 1440) {
BBX[i]<- BMX[i]-1/1440*BMX[1440]
BBY[i]<- BMY[i]-1/1440*BMY[1440]
}

#plotting two-dimensional Brownian bridge
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plot (BBX/10, BBY/10, type="1", col="green", xlab="longitude, in miles",
ylab="latitude, in miles")

#plotting water source in blue
points (BBX[1], BBY[1l], col="blue", pch=16, cex=2)

install.packages ("magick")

library (magick)

compass<- image read("./compass.png")
bison<- image read("./bison.png")

rasterImage (compass, 0.4, 2.1, 1.4, 3.8)
rasterImage (bison, -1.6, 0.9, -0.6, 2.1)

latitude, in miles

longitude, in miles

(b) From Application 9.1, we know that the expected diameter of a one-dimensional home range is

’%T tenths of a mile. Thus, the expected area of a two-dimensional home range is /%T : /nz—T = %T =

T1419) ~ 2261.945 squared tenths of a mile or 22.62 squared miles.

(c) The following code simulates 1,000 trajectories and computes the sample value of the area.

#defining trajectories as matrices

BMX<- matrix (NA, nrow=1440, ncol=1000)
BMY<- matrix (NA, nrow=1440, ncol=1000)
BBX<- matrix(NA, nrow=1440, ncol=1000)



BBY<- matrix (NA, nrow=1440, ncol=1000)

#specifying seed
set.seed(822815)

#simulating trajectories of Brownian motion

for (j in 1:1000) {
BMX[1,31<- 0
BMY[1,3]<- 0

for (i in 2:1440) {
BMX[i,]j]<- BMX[i-1,j] + rnorm(1l)
BMY[i,]j]1<- BMY[i-1,J] + rnorm(1l)
}

#computing trajectories of Brownian bridge

for (j in 1:1000) {
for (i in 1:1440) {
BBX[1i,j]<- BMX[i,j]1-1/1440*BMX[1440,7]
BBY[i,]]<- BMY[i,3]-1/1440*BMY[1440,7]
}
}

#computing sample ranges

xrange<- c ()

yrange<- c()

for (j in 1:1000) {

xrange [j]<- max (BBX[,3])-min (BBX[,j])
yrange[Jj]<- max (BBY[,3j])-min(BBY[,J])
}

print (mean.area<- mean (xrange*yrange) /100)

21.91089

For this simulation, the sample value of the area is 21.91 squared miles.

EXERCISE 9.11. The following code estimates parameters and simulates a Brownian motion with
drift and volatility and plots actual and simulated bird population size against time (in months).

(a) We plot the data first.

birds.data<- read.csv(file="./BirdPopulation.csv", header=TRUE, sep=",")

month<- birds.data$month
popl<- birds.data$population

plot (month, popl, type="1", lwd=2, cex=0, col="blue", xlab="Month",
ylab="Bird Population")
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(b) We calculate the increments and present the histogram. The data do look normally distributed as
evidenced by the bell-shaped histogram.

#computing increments of population size

delta.popl<- popl-c (0, head(popl, -1))

delta.popl<- delta.popl[-1]

library(rcompanion)
plotNormalHistogram(delta.popl, col="light blue")
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(c) We estimated the drift and volatility by the method of moments estimators (which are the same as

the maximum-likelihood estimators).
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#estimating parameters
print (mu.hat<- mean(delta.popl))

16.33898
print (sigma.hat<- sd(delta.popl))

29.28611

(d) We simulate Brownian motion with drift and volatility and plot the actual and simulated trajectories
on the same graph.

#simulating Brownian motion with drift and volatility

#specifying Brownian motion as vector
BM<- c ()

#specifying initial value
BM[1]<- O

#specifying seed
set.seed (2217626)

#simulating trajectory
for (i in 2:60)
BM[i]<- mu.hat + BM[i-1] + sigma.hat*rnorm (1)

#plotting actual and simulated trajectories

plot (month, popl, type="1", 1lwd=2, cex=0, col="blue", xlab="Month",

ylab="Bird Population™)

lines (month, BM, 1lwd=2, col="red")

legend ("bottomright", c("Actual population size", "Simulated population size"),
lty=1, 1lwd=2, col=c("blue", "red"))
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EXERCISE 9.12. (a) Below is the script and the plot of the data.

AQI.data<- read.csv(file="./AQI.csv", header=TRUE, sep=",")

day<- AQI.dataSday
AQI<- AQI.data$AQI

plot (day, AQI, type="1", 1lwd=2, cex=0, col="purple", xlab="Days", ylab="AQI")
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We see from the graph that the values of AQI start high and then quickly decrease, suggesting that
possibly a geometric Brownian motion might have a good fit.

(b) The script lines below estimate the drift and volatility coefficients of the geometric Brownian
motion model.

#computing increments of log-AQI
log.inc<- c()

AQI1<- AQI[-1]
AQI1.lag<- head(AQI, -1)
log.inc<- log (AQI1/AQIl.lag)

#estimating parameters
print (mu.hat<- mean(log.inc))

-0.01867594
print (sigma.hat<- sd(log.inc))

0.1617922
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(c) Below we plot the actual and simulated values.

#simulating geometric Brownian motion

#specifying geometric Brownian motion as vector
GBM<- c ()

#specifying initial value
GBM[1]<- AQI[1]

#specifying seed
set.seed (34597)

#simulating trajectory
for (i in 2:100)
GBM[1]<-GBM[i-1]*exp (mu.hat+sigma.hat*rnorm(1l))

#plotting actual and simulated trajectories
plot (day, AQI, type="1", lwd=2, cex=0, col="purple",
ylab="AQI")

lines(day, GBM, 1lwd=2, col="green")
legend ("topright", c("Actual AQI", "Simulated AQI"),
"green") )

ylim=range (GBM), xlab="Days",

lty=1, 1lwd=2, col=c("purple",
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EXERCISE 9.13. We are given that u = —0.4, ¢ = 0.76, X(0) = 150, K = 120,and t = 7.

80

120

a2 0.76 s
Wecomputer—,u+7——0.4+T——0.02, A= i

v (0.76)(7)

C = X(0)P(A + aVt) — e 'K d(4) = (150)d (—1.11721 + w/(0.76)(7)) -

e~ (=00 (120)P(—1.11721) = $114.21.
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EXERCISE 9.14. (a) Foreign currency exchange rates can be modeled well with an Ornstein-
Uhlenbeck (OU) process because if the rates are very high, demand decreases, or, similarly, if the rates
are very low, then demand increases. In both cases, the rates will revert to some long-term mean. In
addition, it is reasonable to assume that the variance of exchange rates stays within certain bounds
because the variance cannot grow forever in this setting.

(b) The code below fits an OU process to euro/US$ daily exchange rate. Plots of actual and simulated
trajectories are also presented.

exchrate.data<- read.csv(file="./Foreign Exchange Rates.csv", header=TRUE,
Sep=", ")

#estimating parameters

inc<- exchrate.data$SEURO[-1]-head (exchrate.data$SEURO, -1)
fit<- glm(inc ~ head(exchrate.data$EURO,-1))

theta.hat<- -fitS$Scoefficients[2]
mu.hat<- fitScoefficients[l]/theta.hat
sigma.hat<- sigma (fit)

#simulating trajectory of OU process

#specifying seed
set.seed (5536667)

#defining OU trajectory as vector
oU<- c ()

#specifying initial value
OU[1]<- exchrate.dataSEURO[1]

for (i in 2:length (exchrate.data$DATE))
OQU[i]<- OU[i-1]+theta.hat* (mu.hat-0U[i-1])+sigma.hat*rnorm(1l)

#plotting trajectories

plot (as.Date (exchrate.data$DATE), exchrate.data$EURO, type="1", 1lty=1, 1lwd=2,
col=3, xlab="Time", ylab="EURO/USS$", first.panel=grid())

lines (as.Date (exchrate.data$DATE), OU, lwd=2, col=4)

legend ("topright", c("Actual ratio", "Simulated ratio"), lty=1l, lwd=2, col=3:4)
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EXERCISE 9.15. The process {B5(t),t = 0} has a normal distribution with independent and
stationary increments since {B; (t),t = 0} and {B,(t),t = 0} have these properties. The expected

value and variance of Bs(t) are E(B;(t)) = E(pB,(t) + /1 — p2B,(t)) = 0,and Var(B;(t)) =

Var(pB,(t) + /1 — p2B,(t)) = p?Var(B,(t)) + (1 — p?)Var(B, (1)) = p?t + (1 — p?)t = ¢.
Thus, {B;(t),t = 0} is a standard Brownian motion.

(b) The covariance between By (t) and B;(t) is Cov(B;(t), Bs(t)) = Cov(B,(t), pB,(t) +
J1—p?B, (t)) = pVar(Bl (t)) = pt. The correlation coefficient is

CovB B ) _ ot
Var(31 (t)) \/ Var(B3 (t)) VeVt

PBi(0)B3(t) = \/

(¢) The increments B;(t) — B;(s) and B,(t) — B,(s) have N(0,t — s) distribution, and, hence, by
part (a), B5(t) — Bs(s) has the same distribution. By part (b), the increments B; (t) — B;(s) and
B;(t) — B5(s) are correlated with the correlation coefficient p.

(d) We modeled the Exxon and British Petroleum (BP) historical stock prices between 4/1/2020 and
3/30/2021. The R code below plots the two processes and estimates the correlation coefficient.

data<- read.csv(file="./Exxon BP stock prices.csv", header=TRUE, sep=",")
time<- as.Date (data$Date)

Exxon<- data$Exxon
BP<- dataS$SBP
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plot (time, Exxon, type="1", lty=1l, 1lwd=2, col="blue", ylim=c(0,70), xlab="Time",
ylab="Stock prices", first.panel=grid())

lines (time, BP, 1lwd=2, col="green")

legend ("bottomright", c("Exxon", "BP"), lty=1l, lwd=2, col=c("blue", "green"))
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Exxon.diff<-Exxon[-1]-head (Exxon,-1)
BP.diff<- BP[-1]-head(BP,-1)
cor (Exxon.diff, BP.diff)

0.8331595

We conclude that Exxon and BP stock prices are highly correlated with the estimated correlation
coefficient of about 0.83.
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